ON RESTRICTED COLOURINGS OF K_{n}

Miklós SIMONOVITS and Vera T. SÓS

Dedicated to Paul Erdös on his seventieth birthday
Received I July 1983

Given a sample graph H and two integers, n and r, we colour K_{n} by r colours and are interested in the following problem.

Which colourings of the subgraphs isomorphic to H in K_{n} must always occur (and which types of colourings can occur when K_{n} is coloured in an appropriate way)?

These types of problems include the Ramsey theory, where we ask: for which n and r must a monochromatic H occur. They also include the anti-Ramsey type problems, where we are trying to ensure a totally multicoloured copy of H, that is, an H each edge of which has different colour.

Notation

We shall consider only simple graphs, that is, graphs without loops and multiple edges. Given a graph $G, V(G)$ resp. $v(G)$ will denote the vertex set and the number of vertices of G, respectively. We shall also use superscripts to indicate the number of vertices: G^{n}, S^{n}, \ldots will always be graphs on n vertices. Given two disjoint sets of vertices, X and Y in $V(G), e(X, Y)$ will denote the number of edges joining them. K_{m}, P_{m} and C_{m} will denote the complete graph, the path and the cycle on m vertices. $N(x)$ and $d(x)$ denote the set of vertices joined to x and the degree of x, respectively. If A is a set of vertices and edges of a graph $G, G-A$ will denote the graph obtained by deleting the edges of A, the vertices of A and the edges incident to vertices in A, from G. If $A=\{a\}$ is just one vertex or one edge, we shall use the notation $G-a$ instead of $G-\{a\}$.

Introduction

In Section 1 we determine the anti-Ramsey numbers for paths. In the paper Erdős-Simonovits-T. Sós [6] the following type of problems were investigated:

For given n and H determine the maximum integer $r=f(n, H)$ for which there exists a colouring of K_{n} by r colours without having a copy of H in K_{n} all the edges of which have different colours. A copy of a graph H each edge of which is of a different colour will be called totally multicoloured, shortly: TMC. While in Ramsey type problems we try to ensure a monochromatic copy of a sample graph H by using

AMS subject classification (1980): 05 C 35,05 C $55 ; 05$ C 38
only a small number of colours, here we use many colours to ensure a TMC copy of H. Therefore these problems will be called anti-Ramsey problems.

We have seen in [6] that anti-Ramsey problems are very strongly connected to Turán type extremal graph problems:

Given a family \mathscr{L} of forbidden graphs, determine the maximum number of edges a graph G^{n} can have without containing members of \mathscr{L}, as subgraphs. Let us denote this maximum by ex (n, \mathscr{L}). As Erdös and Simonovits [5] proved, if $p+1$ denotes the minimum chromatic number in \mathscr{L}, then

$$
\begin{equation*}
\operatorname{ex}(n, \mathscr{L})=\left(1-\frac{1}{p}\right)\binom{n}{2}+o\left(n^{2}\right) \tag{1}
\end{equation*}
$$

(They have also described the asymptotical structure of the extremal graphs, that is, of the graphs S^{n} attaining the maximum Erdös, [3], Simonovits [8].) We can see from (1) that

$$
\begin{equation*}
\operatorname{ex}(n, \mathscr{L})=o\left(n^{2}\right) \quad \text { iff } \quad \mathscr{L} \text { contains a bipartite graph } L \tag{2}
\end{equation*}
$$

The connection between anti-Ramsey problems and Turán type extremal problems is so close that we have
Theorem A (Theorem 2 of [6]). Let $\mathscr{H}=\{H-e$: e is an edge of $H\}$. Then

$$
\begin{equation*}
f(n, H)-\operatorname{ex}(n, \mathscr{H})=o\left(n^{2}\right), \quad \text { as } \quad n \rightarrow \infty \tag{3}
\end{equation*}
$$

Theorem A yields an asymptotically sharp estimate on $f(n, H)$ if $H-e$ is always at least 3-chromatic, while e runs through the edges of H. However, the situation gets much more complex when there is an edge e_{0} in H for which $H-e_{0}$ is bipartite. The first interesting cases are when H is a path or a cycle. In Theorem B $f\left(n ; P_{k}\right)$ is determined for $n>n_{0}(k) ; f\left(n ; C_{k}\right)$ is still unsettled for $k \geqq 5$. (See the conjecture in Section 3.)
Theorem B. There exists a constant c such that if $t \geqq 5, n>c t^{2}$, then for $\varepsilon=0,1$

$$
\begin{equation*}
f\left(n, P_{2 t+3+\varepsilon}\right)=t n-\binom{t+1}{2}+1+\varepsilon \tag{4}
\end{equation*}
$$

The extremal colouring is the following: Let $a_{1}, \ldots, a_{t}, b_{1}, \ldots, b_{n-1}$, be the vertices of K_{n}. Colour all the edges represented by the a_{i} 's differently, by $\binom{t}{2}+t(n-t)$ colours, and colour all the pairs $\left(b_{i}, b_{j}\right)$ by still another colour. In this colouring of K_{n} we shall not find TMC copies of $P_{2 t+3+\varepsilon}$. The longest TMC path will be a $P_{2 t+2}$. If we colour the edges between the b_{i} 's by two colours, the longest TMC path will be a $P_{2 t+3}$.
Remark 1. In fact we can prove the stronger theorem that (4) holds if $n \geqq(5 / 2) t+c$ with an absolute constant c and for every t. Further, for $t>t_{0}$,

$$
f\left(n, P_{k}\right)=\left\{\begin{array}{lll}
\binom{k-2}{2}+1 & \text { if } & k \leqq n \leqq \frac{5 t+3+4 \varepsilon}{2}, \tag{*}\\
t n-\binom{t+1}{2}+1+\varepsilon & \text { if } & n \geqq \frac{5 t+3+4 \varepsilon}{2}
\end{array}\right.
$$

The omitted part of this more complete result can be proven by similar arguments as used in Theorem B but is more involved and rather lengthy. We have conjectured in ESS that (*) holds for all n and t.

Remark 2. By the well known theorem of Erdós and Gallai

$$
\begin{equation*}
\operatorname{ex}\left(n, P_{k}\right) \leqq \frac{k-2}{2} n \tag{5}
\end{equation*}
$$

This is sharp: take the union of vertex disjoint K_{k-1} 's if n is divisible by $k-1$. (The results of Faudree and Schelp [7] refine this in the case when $k-1 \nmid n$.) It is easy to see that (5) implies

$$
\begin{equation*}
f\left(n, P_{2 t+3}\right) \leqq\left(t+\frac{1}{2}\right) n \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(n, P_{2 t+4}\right) \leqq(t+1) n \tag{7}
\end{equation*}
$$

Fix an arbitrary r-colouring of the edges of K_{n} and select an edge of each colour in an arbitrary way. These edges will form a graph G^{n} not containing any P_{k} if the colouring contains no TMC P_{k}.

It is also worth noticing that ex $\left(n, P_{2 t+4}\right)-\operatorname{ex}\left(n, P_{2 t+3}\right)=n / 2$, while $f\left(n, P_{2 t+4}\right)-f\left(n, P_{2 t+3}\right)=O(1)$.

In Section 2 we consider the following general problem containing Ramsey and anti-Ramsey type problems as well.

The H_{0} spectra of colourings. Given a graph $H \subset K_{n}$ and an r-colouring $\varphi_{r}: E\left(K_{n}\right) \rightarrow\{1,2, \ldots, r\}$ let $c\left(H ; \varphi_{r}\right)$ denote the number of colours in H. For a graph H_{0} we define the spectrum as

$$
S\left(H_{0} ; n, \varphi_{r}\right):=\left\{i \mid H \sim H_{0}, c(H ; \varphi)=i\right\} .
$$

The general problem is to characterize those sets $S \subset\{1, \ldots, r\}$ for which there exists an r-colouring φ_{r} such that $S\left(H_{0} ; n, \varphi_{r}\right)=S$.

Of course, the description of these sets S in terms of n, r and H_{0} is generally very difficult.

Here we shall mostly restrict our considerations to the simplest case, when $H=K_{3}$. Theorem C shows that even in this simple case quite a lot different surprising phenomena can be found.

In a recent paper of F.K. Chung and R. L. Graham [2] the following special case of this problem is considered: let $f(p ; r)$ be the largest value of n such that it is possible to colour the edges of K_{n} so that every $K_{p} \subseteq K_{n}$ has exactly $p-1$ different colours. They determine $f(3, r)$ and $f(4, r)$.

1. Proof of Theorem B

We shall use the following results of Erdős and Gallai [4], (see above):
Erdös-Gallai theorem on paths. ex $\left(n, P_{h}\right) \leqq \frac{h-2}{2} n$.

Erdós-Gallai theorem on cycles. If C_{r} is the longest cycle in G^{m}, then

$$
e\left(G^{m}\right) \leqq \frac{r(m-1)}{2}
$$

In the proof we shall restrict ourself to the case $t \geqq 5$. The case $t \leqq 4$ can be proved by similar arguments but need to distinguish more cases.

The proof will be in the following setup. First we take a TMC path P_{s} of maximum length. Then we choose one edge from each remaining colour so that the number of edges joining P_{s} to the remaining $n-s$ vertices be the maximum possible. Let us denote by G^{n} the graph spanned by these edges, by G^{s} the subgraph spanned by P_{s} and let $G^{q}=G^{n}-G^{s}$. Let us partition $V\left(G^{q}\right)$ into the sets U, V and W as follows:
U is the set of vertices of G^{q} not joined to P_{s} at all: neither by edges nor by paths.
V is the set of isolated vertices of G^{q} joined to P_{s} by edges;

$$
W=V\left(G^{q}\right)-U-V
$$

$G(U), G(V)$ and $G(W)$ denote the corresponding induced subgraphs, E_{U}, E_{W} the number of edges in $G(U)$ and $G(W), F_{V}$ and F_{W} the number of edges joining V and W to P_{s}. (See Figure 1.) $E_{s}=e\left(G^{r}\right)$

Fig. 1
Let x denote the maximum number of edges joining a vertex of $V \cup W$ to P_{s}.
Lemma 1. Using the above notation,
(a) $G(U)$ contains no P_{l} for $l=\left\lceil\frac{s+1}{2}\right\rceil$.
(b) $E_{U} \leqq \frac{1}{2}\left\lceil\frac{s-3}{2}\right\rceil|U|$.
(c) $E_{W}+F_{W}<\frac{s+1}{3}|W|$.

Proof. Assume that $P_{i} \subseteq G(U)$ and join its endvertex b_{1} to the middle vertex a_{i} of P_{s}. Since the number of edges between P_{s} and G^{q} is maximum, the colour of (b_{1}, a_{i}) cannot occur in P_{l}. Similarly, it does not occur in one of the 2 segments of P_{s}. Those yield a $P_{\left[\frac{s+1}{2}\right]+i}$. Since $\left\lceil\frac{s+1}{2}\right\rceil+l>s$, this contradicts the maximality of P_{s}, proving (a). The Erdős-Gallai theorem implies (b).

To prove (c) take a component H of $G(W)$ and denote by r its longest cycle. If H contains no cycles, write $r=2$. For each vertex u of H a $P_{s} \subset H$ can be found starting fiom it. Hence, if $P_{s}=a_{1}, \ldots, a_{s}$, then a_{1}, \ldots, a_{r} and a_{s}, \ldots, a_{s-r+1} cannot be joined to u : otherwise a TMC $P_{s+1} \subseteq G^{n}$, contradicting the maximality of P_{s}. Take three consecutive vertices $\left\{a_{i}, a_{i+1}, a_{i+1}\right\}$. Again, by the maximality of P_{s}, there are no two independent edges between a_{i}, a_{i+1}, a_{i+2} and H. Hence for $h=v(H)$ there are at most

$$
\frac{r h-r}{2}+h \frac{s-2 r+2}{3} \leqq \frac{s+1}{3} h
$$

edges between H and P_{s}. Adding this up we get (c).
Lemma 2. $x \leqq\left[\frac{s-3}{2}\right] \leqq t$ (where x denotes the maximum number of edges joining some vertex of $V \cup W$ to P_{s}).

Proof. Let $w \in V \cup W$ be joined to $P_{s}=\left(a_{1}, \ldots, a_{s}\right)$ by x edges. Because of the maximality of $s,\left(w, a_{1}\right),\left(w, a_{s}\right)$ and $\left(a_{1}, a_{s}\right)$ do not belong to G^{n}, unless $x=0$. Adding $\left(a_{1}, a_{s}\right)$ to G^{n} we must have an edge (a_{m}, a_{m+1}) of the same colour. Otherwise the cycle $P_{s}+\left(a_{1}, a_{s}\right)$ and an edge f joining $V \cup W$ to G^{s} would form a TMC P_{s+1}. (It is easy to ensure that the colours of f and $\left(a_{1}, a_{s}\right)$ be different.) Clearly $\left(a_{1}, a_{s}\right)$ and (a_{m}, a_{m+1}) are equivalent: w is not joined to a_{m} and a_{m+1} either.

Since w is not joined to consecutive a_{i}^{\prime} 's and it is not joined to $a_{1}, a_{s}, a_{m}, a_{m+1}$. therefore $x \leqq\left\lceil\frac{s-3}{2}\right\rceil \leqq t$. (This holds even if some of the 4 vertices a_{1}, a_{s}, a_{m} and a_{m+1} coincide, e.g. $a_{1}=a_{m}$.)

Fig. 2

Lemma 3. If a colouring of K_{n} contains a TMC copy of $K_{t, t+2}$ but does not contain a TMC $P_{2 t+3+\varepsilon}(\varepsilon=0,1)$, then it is the following colouring: denote by Q the vertices of $K_{n}-K_{t, t+2}$, by Q_{t} the smaller class of $K_{t, t+2}$ and by Q^{\prime} the other one. Then there are at most $1+\varepsilon$ colours between the edges of Q^{\prime}. Let they be red (and blue). Then all the vertices of Q are joined to Q^{\prime} be red (either by red or by blue).

We get the most colours if all the edges between Q and Q_{t} are different, they differ from all the other edges and we use exactly $1+\varepsilon$ colours in Q^{\prime}. Then the number of colours is

$$
t n-\binom{t+1}{2}+1+c
$$

The proof is trivial.
Proof of Theorem B. We assume that $t \geqq 5$ and $n \geqq n_{t}$. Clearly,

$$
f\left(n, P_{2 t+3+\varepsilon}\right) \leqq E_{S}+E_{U}+F_{V}+E_{W}+F_{W}
$$

Using the estimates of the Lemmas

$$
f\left(n, P_{2 t+3+\varepsilon}\right) \leqq\binom{ s}{2}+\frac{t+1}{2}|U|+x \cdot|V|+\frac{2 t+1}{3}|W| .
$$

Here $\frac{t+1}{2} \leqq t-\frac{1}{2}$ and $\frac{2 t+4}{3} \leqq t-\frac{1}{3}$, finally, $x \equiv t$. Let $V^{*} \leqq V$ denote the set of vertices of degree t. Then

$$
\left.m-\binom{t+1}{2}+1+\varepsilon \cong f\left(n, P_{2 t+3+\varepsilon}\right) \leqq\binom{ s}{2}+\left(t-\frac{1}{3}\right)\left(n-s-\left|V^{*}\right|\right)+t \right\rvert\, V^{*}{ }_{1} .
$$

Hence for $n>c \cdot t^{2}$ we get at least $t+2$ vertices $b_{1}, \ldots, b_{t} \in V^{*}$ joined to the same t vertices of P^{s}. By Lemma 3 the proof is completed.

2. On the K_{3}-spectra of colourings

To describe the H-spectra of the colourings of K_{n} by r colours seems to be fairly involved. We make a few preliminary remarks on the cases $H=K_{p}$ and $H=P_{h}$.

Trivially, if $R(m, H)$ is the m-colour Ramsey number of H, that is, the maximum N such that K_{N} can be coloured in m colours without having a monochromatic H, then for $n>R(r, H)$ the spectrum of every r-colouring φ must contain 1. Similarly, if H contains v independent edges, then every r-colouring has an H of at least $\min (r, v)$ colours, assumed that $n \equiv v(H)$.

In some of our investigations the following construction plays important role.
The Split-Colouring. Take a K_{n} on the vertices a_{1}, \ldots, a_{n}, split the vertex-set into two parts: V_{1} and V_{2}, and use colour " 1 " for (a_{i}, a_{j}) if a_{i} and a_{j} belong to different parts. Then split V_{1} into two parts: V_{11} and V_{12}, colour the edges between them by " 2 ". Similarly, split V_{2} into V_{21} and V_{22} and colour the edges between them by " 3 ". Continue this, always splitting into nonempty parts and stop whenever a set contains only one element. Thus K_{n} is coloured by $n-1$ colours. An important subcase of this colouring is when (a_{i}, a_{k}) is coloured by "min (i, k) ".

It is easily seen that each K_{p} contains exactly $p-1$ colours. It is also interesting to notice that no TMC cycle occurs in this construction. Add now j new vertices to the above construction, b_{1}, \ldots, b_{i}, and colour all the edges (b_{s}, a_{i}) and all the edges (b_{s}, b_{i}) by " 1 ". Trivially, the K_{p} spectrum of this colouring is. $\{p-j, \ldots, p-1\}$.

Proposition. There is a constant R such that if we colour K_{n} so that each K_{p} contains at most $\frac{p}{2}$ colours, then we used at most $R+\frac{p}{2}$ colours.

Proof. In the proof we use that $f\left(n, P_{4}\right)=O(1)$.

We know from Theorem B that for $r>R$ every r-colouring of K_{n} contains a 3-coloured P_{4}. Choose $\left[\frac{p-4}{2}\right]$ further colours. The corresponding edges and P_{4} define a K_{p} coloured by at least $\frac{p}{2}+1$ colours.

We intend to return to the investigation of the K_{p}-spectra and more generally to H-spectra of colourings in another paper. Below we restrict our considerations to the simple case of K_{3}.

Let $\varrho(n)$ denote the inverse of the Ramsey-function $R\left(m, K_{p}\right)$ i.e. the minimum number m of colours for which K_{n} can be coloured in m colours without having a monochromatic K_{3}. We have the following possibilities for the spectrum of a colouring: $S=\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$. We exclude the trivial cases $S=\{1\}$ and $S=\{1,2,3\}$.

Theorem C.

Case I. $S=\{2\}$. If $\log _{2} n \leqq r \leqq n-1$, one can colour K_{n} by r colours so that each K_{3} contains exactly two colours. If $r<\varrho(n)$ or $r \geqq n$, no such colouring exists.

Case II. $S=\{3\}$. There exists an r-colouring of K_{n} in which each K_{3} is 3 -coloured iff $n^{*} \leqq r \leqq\binom{ n}{2}$, where $n^{*}=n-1$ if n is even, $n^{*}=n$ for n odd,

Case III. $S=\{1,2\}$. There exists an r-colouring φ_{r} of K_{n} with $S\left(K_{3}, \varphi_{r}\right)$ $=\{1,2\}$ iff $2 \leqq r \leqq n-1$.

Case IV. $S=\{1,3\}$. If $2 \leqq r<\sqrt{n}+1$ and K_{n} is r-coloured, there is always a 2-coloured K_{3}. This is sharp: for some constant c, if $\sqrt{n}+o(\sqrt{n}) \leqq r \leqq\binom{ n}{2}-c$ then there exists an r-colouring φ_{r} of K_{n} with $S\left(K_{3}, \varphi_{r}\right)=\{1,3\} .{ }^{1}$

Case V. $S=\{2,3\}$. There exists an r-colouring of K_{n} with $S\left(K_{3}, \varphi_{r}\right)=\{2,3\}$ if $\varrho(n) \leqq r \leqq\binom{ n}{2}-1$, where $\varrho(n)$, as above, denotes the inverse of the Ramsey-function $R\left(m, K_{3}\right)$.
Proof. Case of $\{2\}$. We use a construction obtained from the "split-colouring" when $j=0$ by identifying some colours. The easiest way to formulate our construction is perhaps to represent the n vertices a_{1}, \ldots, a_{n} by the endvertices of a rooted binary tree. Each a_{i} corresponds to a $0-1$ sequence (of length $h\left(a_{i}\right)$). Colour (a_{i}, a_{j}) by the colour k if the corresponding $0-1$ sequences are the same upto the first $k-1$ terms and differ in the k-th one. It is possible to choose the "code-sequences" (the rooted binary tree) so that r colours be used, if $\log _{2} n \leqq r \leqq n-1$. One can easily check that each K_{3} is 2 -coloured. If $r<\varrho(n)$, then we must have a monochromatic K_{3}, if $r \geqq n$, we have a TMC K_{3}.

Case of $\{3\}$. Let us partition the edges into n^{*} edge-disjoint 1 -factors and colour each of them by different colours. Clearly, each K_{3} is 3-coloured. This remains

[^0]valid if we use for some (or for all) 1-factors more than 1 colour, ensuring, however, that each colour occurs only in one 1 -factor. Thus we may colour the edges of K_{n} in exactly r colours, if $n-1 \leqq r \leqq\binom{ n}{2}$.

If we use $r<n^{*}$ colours, then there exist two incident edges (a, b) and (a, c) of the same colour: (a, b, c) is $\leqq 2$-coloured.

Case of $\{1,2\}$. The Split Colouring with $n-r-1$'s has spectrum $\{1,2\}$. Using $n-1$ or more colours we get a TMC K_{3}.

Case of $\{1,3\}$. (A) Take an arbitrary r-colouring of K_{n}. Fix a vertex x. We may assume that red is the colour used the most often to colour the edges (x, y). Assume that no 2-coloured K_{3} occurs. Then x and those neighbours y of x for which (x, y) is red form a monochromatic (red) K_{m} for $m=\left\lceil\frac{n-1}{r}\right\rceil+1$. Take a red K_{h} of maximum size. Then $h \geqq\left\lceil\frac{n-1}{r}\right\rceil+1$. If w is a vertex not belonging to this K_{h}, no edge $(w, y)\left(y \in V\left(K_{h}\right)\right)$ can be coloured in red: otherwise either there were another vertex $y^{\prime} \in V\left(K_{h}\right)$ for which $\left(x, y^{\prime}\right)$ is not red and hence (y, y^{\prime}, w) would be 2 -coloured, or else all the edges (w, y^{\prime}) were red, contradicting to the maximality of K_{h}. Thus the edges (x, y^{\prime}) cannot be red and all they must have different colours: $r-1 \geqq\left\lceil\frac{n-1}{r}\right\rceil+1$. This proves that $r \geqq \sqrt{n}+1$.
(B) First let $n=p^{2}$ and p be a prime-power. Let the vertices of a graph G^{n} be the points of the finite affine plane: the pairs $(x, y) \bmod p$. Let the colour of the edge $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ be $\frac{y^{\prime}-y}{x^{\prime}-x}$ unless $x=x^{\prime}$, when we colour the edge by a colour " ∞ ". Thus we used $p+1$ colours on n^{2} vertices and no 2 -coloured K_{3} occurs. (The idea was that colouring the edges with the "slope" of the corresponding line we can use that given a point and a slope, the corresponding line is determined.)

Observe that according to this construction the lower bound $\sqrt{n}+1$ is the best possible if $n=p^{2}$ (where p is prime or a prime-power) and the error-term $o(\sqrt{n})$ is needed only since we must approximate \sqrt{n} by prime-powers.
(C) Let n be now arbitrary and choose the least prime power p for which $p^{2} \geqq n$. Put $q=p^{2}-n$. We delete from the above construction q vertices from $\left\lceil\frac{q}{p}\right\rceil$ lines coloured by " ∞ ". Thus all the remaining lines have roughly the same number of points, namely $p-\left\lceil\frac{q}{p}\right\rceil=p-o(p)$. Choose the lines e_{1}, \ldots, e_{m} so that the number of edges covered by them be at least r, while the number of edges covered by e_{1}, \ldots, e_{m-1} be less than r. Until now the edges on a line e_{i} were of the same colour. Now we replace them by different colours. This way we get a new graph each K_{3} of which is still monochromatic or 3-chromatic. The number of colours may be larger than r, but then we may use the same colour in e_{m-1} and e_{m}, the K_{3} 's remain still 1or 3 -chromatic. This way we may achieve that the number of colours be exactly r. If at least one line e_{j} stays monochromatic, then the sprectrum is really $\{1,3\}$. Clearly, this construction works, if $\sqrt{n}+\varepsilon \sqrt{n}<r<(1-\varepsilon)\binom{n}{2}$ and $n>n_{0}(\varepsilon)$.
(D) The following trivial construction works between $\binom{n}{2}-c$ and $n+o(n)$: Partition the n-element set S into the subsets A_{1}, \ldots, A_{k} and colour each A_{i} either with colour " i "' or with $\binom{\left|A_{i}\right|}{2}$ different colours. Then give to each edge $(x, y), x \in A_{i}$, $y \in A_{j},(i \neq j)$ a colour which is used only for this edge. (The colours used for edges in different A_{i} 's may be different and may also be the same.) One can easily see that the spectrum of this colouring is $\{1,3\}$.

Case of $\{2,3\}$. Colour K_{n} by $r-1 \quad(\varrho(n) \leqq r-1 \leqq n-2)$ colours without having monochromatic triangles. Clearly, there exists at least one 2-chromatic K_{3} on each vertex. This is exactly 2 -chromatic. Change one K_{3} into 3 -chromatic: we get that the spectrum of the r-colouring is $\{2,3\}$. To cover the case $n-1 \leqq r<\binom{n}{2}$ we may use e.g. Case of $\{3\}$: change (in the colouring given there) the colour of one edge to obtain a 2-chromatic K_{3} as well. This will not spoil all the 3 -chromatic K_{3} 's.
Remark. In Theorem C all cases but $S=\{2\}$ are sharp.
The result in [2] in this setting means that for $n=5^{k / 2}$ (if k is even) $k\left(=2 \log _{5} n\right)$ is the least value of r for which an r-colouring φ_{r} of K_{n} exists with $S\left(K_{3}, \varphi_{r}\right)=\{2\}$. Some further relevant results can also be found in [2].

Some open problems

There are many different results on the spectra of colourings in r colours with respect to an H. Most of them immediately follow from some corresponding extremal graph theorems. The really interesting questions are which show some completely new phenomena. which e.g. do not follow relatively easily from Turán type extremal graph theorems.

Some other problems we started investigating are connected with uniform colourings, where one uses each colour approximately for the same number of edges.
Problem 1. Does there exist a constant c such that one can colour K_{n} uniformly in $c \cdot k \cdot n$ colours without getting a TMC C_{k} ?
Problem 2. What is the maximum number r of colours if we can colour the edges of K_{n} using each colour at most $(1+o(1)) \frac{1}{r}\binom{n}{2}$ times without getting a TMC copy of H ?

More precisely, we assume that for a given function $\varphi(n)$ tending to 0 each colour is used at most $(1+\varphi(n)) \frac{1}{r}\binom{n}{2}$ times. Denoting the maximum by $f(n, H, \varphi)$ we are interested in its dependence on n. We may change the uniformity condition above to the weaker one that for a given constant K each colour is used at most $K \cdot\binom{n}{2} / r$ times.

The motivation of these problems is that in most of our anti-Ramsey theorems most of the colours are used only once, and a few colours very many times. One
would like to know what happens if one excludes this unevenness. We do not know the answer even for cycles:

Problem 3. What is the maximum number $g^{*}(n, r, H)$ of colours occuring at every r-colouring of K_{n} in at least one copy of H; what is the minimum number $g_{*}(n, r, H)$ of colours occuring in every r-colouring of K in at least on H ?

References

[1] N. Alon, On a conjecture of Erdős, T. Sós and Simonovits, J. Graph Theory, to appear.
[2] F. R. K. Chung and R. L. Graham, Edge-coloured complete graphs with precisely coloured subgraphs, Combinatorica 3 (3-4), (1983) 315-324.
[3] P. Erdös, Some recent results in extremal graph problems in graph theory, Theory of Graphs, Proc. Symp. Rome (1966), 118-123.
[4] P. Erdös and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10 (1959), 337-356.
[5] P. Erdös and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hung. 1 (1966), 51-57.
[6] P. Erdős, M. Simonovits and V. T. Sós, Anti-Ramsey theorems, Coll. Math. Soc. J. Bolyai 10, Infinite and finite sets, Keszthely (Hungary), 1973, 633-642.
[7] R. J. Faudree and R. H. Schelp, Ramsey type results, Coll. Math. Soc. J. Bolyai 10. Infinite and finite sets, Keszthely (Hungary), 1973, 657-665.
[8] M. Smonovits, A method for solving extremal problems in graph theory, stability problems, Theory of Graphs, Proc. Symp. held at Tihany, Hungary (1966), Acad. Press. New York (1968), 279-319.
M. Simonovits and Vera T. Sós

Dept. Analysis I, Eötvös University'
Budapest, Hungary H-1088

[^0]: : As a matter of fact, we know that the spectrum $S=\{1,3\}$ does not occur for $\binom{n}{2}=c=r$ iff $c=0,1$, if $n>4$.

