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Abstract

Given a family L

1

; : : : ; L

r

of graphs, a graph G is called (L

1

; : : : ; L

r

){co-critical if one can colour

its edges in r colours so that the subgraph de�ned by the �

th

colour contains no L

�

, however, G is

saturated for this property: adding any edge to G we get a G

�

with the property that arbitrarily

colouring G

�

in r colours for some � we shall have a monochromatic copy of L

�

in the �

th

colour.

(The notion comes from J. Ne�set�ril.) In this paper we shall investigate the structural properties

of (K

3

;K

3

)-co-critical graphs, present various constructions of such graphs and establish some of

their properties.
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Notation. In this paper we shall consider only simple graphs, i.e., graphs without loops

and multiple edges. Given a graph H, v(H), e(H) will denote the number of vertices and

edges in H. Subscripts mostly will indicate the number of vertices: G

n

, S

n

, will always

denote graphs on n vertices. However, occasionally they are just indices, e.g., in a formula,

like (L

1

; : : : ; L

r

). Given a vertex x of a graph G, N(x) will denote the set of neighbours of

x. If the edges of the graph are coloured, say in RED and BLUE, then N

R

(x) will denote

the RED neighbourhood. �(G) is the chromatic number of G.

As usually, K

m

denotes the complete m-graph, K

m

(n

1

; : : : ; n

m

) is the complete m-partite

graph with n

i

vertices in its i

th

class. Z

n

is the graph obtained from K

n

by deleting one

edge. C

m

and P

m

are the cycle and path on m points, respectively. Given the graphs G

1

,

G

2

, we de�ne their product G

1


G

2

as the graph obtained from vertex-disjoint copies of

G

1

and G

2

by joining every vertex x of G

1

to every vertex y of G

2

.

Sometimes, according to the accepted usage, we shall say that (given the number of colours,

r) the graph G arrows L

�

's:

G! (L

1

; : : : ; L

r

)

if for arbitrary r-colouring of the edges of G for some � the �

th

colour-class contains an

L

�

. We shall denote by R(L

1

; : : : ; L

r

) the (ordinary) lower Ramsey number, belonging to

the graphs (L

1

; : : : ; L

r

), where the lower Ramsey number is the maximum N for which

there exists a suitable r-colouring of K

N

without monochromatic L

�

in the �

th

colour. We

shall denote by R

�

(L

1

; : : : ; L

r

) the following generalization of the Ramsey number: R

�

is

the largest t such that any K

t

(n; : : : ; n) can be coloured in r colours without getting an

L

�

in the �

th

colour for some � 2 [1; r]. Obviously, R

�

(L

1

; : : : ; L

r

) � R(L

1

; : : : ; L

r

).

0. INTRODUCTION

It is well known that colouring the edges of a K

6

by two colours, a monochromatic K

3

must occur. In fact, this is the simplest graph theorem in what is called Ramsey theory

(see [9]). In 1967 Erd}os and Hajnal [4] asked whether there exist graphs containing a

monochromatic triangle in any 2-colouring of the edges (i.e., arrowing the triangle), while

K

6

does not appear as a subgraph. An a�rmative answer was given by Graham [8] who

observed that the graph C

5


 C

3

arrows K

3

but contains no K

6

. Graham mentioned also

the existence of an unpublished example due to van Lint and another one by P�osa, the

latter not containing K

5

either. In fact, Erd}os and Hajnal already expected the existence

of a graph without K

4

arrowingK

3

even if we do not restrict ourselves to 2-colourings. For

two colours, for every positive integer m, Folkman [7] constructed graphs containing no

K

m+1

but having a monochromatic K

m

in any 2-colouring of the edges. The most general

result of this type was found by Ne�set�ril and R�odl [16] in 1976. They proved that for

any graph H and positive integer r, there exists a graph G that contains a monochromatic

version of H in any r-colouring of its edges, while the size of the largest clique in G is not

larger than that in H.

Most of the above facts could be interpreted by saying, that \if something is not obviously
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impossible in this area, then it is possible, and can be constructed".

On the other hand, if we regard graphs which are saturated (maximal) with respect to not

having those properties above, then we may face some completely new phenomena. The

�rst such problem due to Jarik Ne�set�ril [15], was the following question about graphs he

named co-critical. First we need a de�nition. (This de�nition we give in a fairly general

form, although in this paper we are mainly concerned with the case where r = 2 and

L

1

= L

2

= K

3

.)

De�nition 1. Given a family L

1

; : : : ; L

r

of graphs, a graph G which is not complete,

is called (L

1

; : : : ; L

r

)-co-critical if one can colour its edges in r colours so that (for � =

1; : : : ; r) the subgraph de�ned by the �

th

colour contains no L

�

, however, G is saturated

for this property: adding any edge to G we get a G

�

with the property that arbitrarily

r-colouring G

�

, for some � we shall have a monochromatic copy of L

�

in the �

th

colour.

De�nition 2. We shall call a graph saturated for property P if it has property P but after

adding any new edge it will lose this property. When given a graph F , we say that another

graph G is F -saturated we mean that G is saturated for the property of not containing F .

Sometimes, when this leads to no ambiguity, we shall call (L

1

; : : : ; L

r

)-co-critical graphs

simply co-critical graphs. We shall use this abbreviation often in case of (K

3

;K

3

)-co-critical

graphs.

Remark. We excluded the complete graphs. Without explicitely stating this, K

5

could

have been regarded (K

3

;K

3

)-co-critical.

Clearly, Z

6

(a complete 6-graph minus an edge) can be coloured by RED and BLUE,

without getting monochromatic triangles, but adding any (more precisely, the only missing)

edge to it we get a graph G

�

(now K

6

) for which G

�

! (K

3

;K

3

). How typical is this

example?

Ne�set�ril [15] asked the following question:

Are there in�nitely many minimal co-critical graphs, i.e. co-critical graphs which

lose this property, whenever a vertex is deleted? Is Z

6

the only one?

We shall prove that the answer to Ne�set�ril's question is YES: there are in�nitely many

such graphs. Namely, using various constructions, we shall prove

Theorem 1. There are in�nitely many graphs G

n

which

(a) have 2-colourings without monochromatic triangles;

(b) adding any new edge to G

n

we get a G

�

n

such that in any 2-colouring of G

�

n

there

are monochromatic triangles.

(c) Deleting any vertex of G

n

we get a graph violating (b);

(d) K

5

6� G

n

.
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Further, we shall see, that { in some sense { being co-critical is not a monotone property:

it can happen that deleting any vertex of a co-critical graph we get some non-co-critical

graph, but deleting further points we get a co-critical graph again. Partly this is, why

we shall relax the conditions in Theorem 1, forgetting about one of them and trying to

investigate many di�erent graphs satisfying conditions (a), (b) and (d) or (a), (b) and (c),

respectively.

So, we shall construct various families of (K

3

;K

3

)-co-critical graphs without K

5

's (and

therefore not containing Z

6

either) and another family, the members of which are all

minimal co-critical though they contain Z

6

's. Further, we shall prove some structural

theorems on co-critical graphs.

Unfortunately, though we succeded in getting quite a few constructions, our results on the

structure of all the co-critical graphs do not seem to give as much information as we would

like to have. Probably one of the most natural questions that we are still unable to answer

is whether there exists a graph which does not arrow the triangle but after the addition of

any new edge it does, while it contains no K

4

.

Another natural question that remains open is the following. As a consequence of the

above mentioned non-monotonicity, even with having in�nitely many minimal co-critical

graphs we cannot exclude the possibility of the existence of a �nite number of graphs such

that each co-critical graph contains at least one of them. (In fact, it turns out that all of

our constructions contains one of two small co-critical graphs.) This leads to the problem

of \�nite basis": can one �nd in�nitely many minimal co-critical graphs none of which

contains any other? (This is a strengthening of Ne�set�ril's original question.) Or, in other

words, can one �nd a �nite set Q

1

; : : : ; Q

m

of co-critical graphs so that every co-critical

graph contains at least one of them? A list of open problems is given at the end of the

paper.

We shall return to the question of many colours in another paper [18].

Acknowledgement. We would like to thank

�

Akos Seress for his valueable remark on

Theorem 2, which we formulated originally in a slightly weaker form.

1. CONSTRUCTIONS OF MINIMAL

(K

3

;K

3

)-CO-CRITICAL GRAPHS

In this section we shall restrict our consideration to (K

3

;K

3

)-co-critical graphs.

Basically all our constructions originate from two basic examples, contained in Claim 1

and Claim 2, below, the proofs of which will be omitted, since they will follow from more

general results.

Take two copies of a C

5

and join them completely. Denote the obtained graph by Q

10

.

(Using the \product" notation: Q

10

= C

5


C

5

.)

Claim 1. Q

10

= C

5


 C

5

contains no Z

6

and is (K

3

;K

3

)-co-critical. However, deleting

any vertex of C

5


 C

5

we get a non-(K

3

;K

3

)-co-critical graph. Moreover, K

5

6� C

5


 C

5

.
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Claim 2. C

11

, the complement of the cycle C

11

, is a co-critical graph, while for any vertex

v, the graph C

11

� v is not (K

3

;K

3

)-co-critical. (However, Z

6

� C

11

.)

Theorem 1 will easily follow from a corollary of our next theorem.

Theorem 2. If G

1

and G

2

are two non-bipartite K

3

-sturated graphs, then G

1


 G

2

is

(K

3

;K

3

)-co-critical.

If, in addition, the G

i

's (i = 1; 2) have the property that for any vertex z of G

i

there

exists a pair of independent vertices x; y in G

i

for which z is their only common neighbour

in G

i

, then G

1


G

2

is minimal co-critical.

Remarks. (a) If G is saturated for not containing K

3

, then any pair x; y of independent

vertices have distance 2, i.e., have a common neighbour, otherwise we could add the edge

xy to G without getting a K

3

. However, mostly, non-adjacent vertices of our graphs have

a lot of common neighbours.

(b) If G is saturated for not containing K

3

, then either it is a complete bipartite graph or

it contains a C

5

.

(c) Mostly we shall consider graphs G which, besides being saturated for not containing

K

3

, satisfy the following condition:

(�) �(G) <

1

2

v(G):

Proof of Theorem 2. (a) Obviously, if we colour G

1


G

2

so that the edges belonging

to the same G

i

's are RED and the edges connecting G

1

to G

2

are BLUE, then we get no

monochromatic K

3

.

(b) To prove that G

1


G

2

is co-critical, we have to show that if we add any edge to a G

i

,

then in any 2-colouring we get a monochromatic triangle. For some reasons, which will

become clear in Section 4, we shall not choose the most direct approach. Instead, �rst we

shall assume that the G

i

's satisfy condition (�).

Let us add an arbitrary edge to the product. This edge is added either to G

1

or G

2

.

Assume, we added it to G

1

. Thus we got a G

�

1

containing a triangle abc. We wish to show

that there must be a monochromatic triangle in G

�

1


G

2

.

Assuming the contrary we get that, say, two of the edges of abc are RED, one is BLUE.

Assume that ab, ac are RED. We show that all the edges between G

2

and a are BLUE.

If for some x 2 G

2

xa were RED, then xb and xc were BLUE, yielding a BLUE triangle

xbc. This contradiction shows that all the edges xa are BLUE. Now, for each x 2 G

2

at

least one of xb and xc must be RED, since bc is BLUE. Therefore either b or c is joined to

at least d

1

2

v(G

2

)e vertices of G

2

in RED. Assume it is b. Then N

R

(b) \ V (G

2

) contains

an edge uv which cannot be BLUE, since both its endvertices are joined to a in BLUE,

and cannot be RED since both its endvertices are joined to b in RED. This contradiction

completes the proof of the statement that G

1


G

2

is co-critical.
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(c) We should still prove that if both G

i

's have the property that for any vertex z of

G

i

there exists a pair of independent vertices x; y in G

i

which have no other common

neighbour in G

i

but z, then G

1


G

2

is minimal co-critical. Indeed, delete any vertex z of

(say) G

1

. Then we can �nd two vertices x; y in G

1

with the above property. Adding the

edge xy to (G

1


 G

2

) � fzg we get an H 
 G

2

, where H contains no triangles, therefore

H 
G

2

can be RED-BLUE-coloured without monochromatic triangles.

(d) Now we would like to get rid of condition (�). But this is trivial: the argument of (b)

shows that C

3


 C

5

! K

3

. So, add now an edge to G

1

and observe that thus we get a

G

�

1

� K

3

, and we do have a C

5

� G

2

. Hence

G

�

1


G

2

� C

3


 C

5

! K

3

:

This proves Theorem 2 in full generality.

Remark. Actually, the fact that C

3


 C

5

! K

3

(as we have already mentioned in the

introduction) was found by R. L. Graham. We could have shortened part (b) of the proof

by referring to this fact. Still we wanted a self-contained proof. Further, we feel that this

more general setting helps to understand the phenomenon better.

Theorem 2 enables us to get many co-critical graphs. Notice that Claim 1 is now already

proved by the foregoing. The �rst question that arises is this: which graphs can replace

C

5

in Claim 1. One of them is the famous Kneser graph [10].

De�nition 3. The Kneser graph KN(m;k) is a graph the vertices of which are the

�

m

k

�

k-tuples of an m{element set and two of these k-tuples are joined if they are disjoint.

(The Petersen graph is also a Kneser graph, namely, KN(5; 2).)

Corollary 1. Fix two integers q; r (q; r � 2) and let

G

1

= KN(3q � 1; q) and G

2

= KN(3r � 1; r):

Then G = G

1


G

2

is a (K

3

;K

3

)-co-critical graph, and deleting any vertex of it we get a

non-co-critical graph.

Proof. We have chosen the above parameters 3q � 1; q and 3r � 1; r to ensure that the

corresponding Kneser graphs will be triangle-saturated: it is triangle-free but adding any

edge we get triangles in them. The only thing to be checked is that they are not bipartite.

However, one can easily show that every KN(3m � 1;m) � C

5

(whenever m � 2).

We still have to prove that deleting any vertex of such a G

n

we get a non-co-critical graph.

As we have seen, it is enough to show that for any vertex z of the Kneser graph there are

2 other vertices which are joined by a path of length 2 only through this z. This is trivial:

z is a vertex of (say) KN(3q�1; q), hence it corresponds to a q-tuple Z of a corresponding

3q � 1-element set U . Now, choose any pair (X;Y ) of q-tuples in U n Z intersecting each

6



other in exactly one element. Clearly, jX [ Y j = 2q � 1, therefore only Z will be disjoint

from both of these two sets, whence z will be the only common neighbour of the vertices

x; y corresponding to the q-tuples X;Y .

Clearly, Corollary 1 implies Theorem 1.

Remark. The Kneser graphKN(3m�1;m) (as it easily follows from the Erd}os-Ko-Rado

Theorem [5]) satis�es property (�).

2. OTHER PRODUCT CONSTRUCTIONS

OF (K

3

;K

3

)-CO-CRITICAL GRAPHS

Often we shall have graphs satisfying { instead of (�) above { the following much stronger

condition.

Condition (��). For an in�nite family of graphs G assume that

�(G) = o(v(G)) as v(G) !1: (��)

At this point one should ask if there are such K

3

-free graphs at all. It is well known that

the Ramsey number R(k; 3) > ck

2

= log

2

k (see Spencer [19], and also [2], [3].). This implies

that there exist graphs G

m

on m vertices, containing no K

3

, with �(G

m

) = O(

p

m logm).

And, obviously, this implies

Claim 3. There exist graphs S

m

on m vertices, (m ! 1) containing no K

3

, saturated

for not containing K

3

, and with �(S

m

) = O(

p

m logm).

The following is not a real construction, only a \random graph construction". (This is

because the above bound on R(k; 3) is obtained by random graph arguments.)

Construction 1. Take any graph G

n

described by Claim 3. Then G

n


G

n

is (K

3

;K

3

)-

co-critical.

Construction 2. (Margulis{Lubotzky{Phillips{Sarnak [14], [11]) The non-bipartite Lu-

botzky-Philips-Sarnak graphs have the property that their girth is large. (Besides, they

satisfy (��).) They are not K

3

-saturated, but we can add edges to them until they become

K

3

-saturated. Take two such graphs, their product is (K

3

;K

3

)-co-critical by Theorem 2.

Remark. As to the independence number of the above graph, one can be more speci�c:

taking the parameters in the LPS graph in [11] to be q � p

3

we get a graph X

n

with

�(X

n

) � O(n

5=6

).
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At this point it is worthwhile to emphasize what we have implicitly already observed, that

each of the above constructions contains a C

5


 C

5

. Indeed, we have already mentioned,

that anyK

3

-saturated graph but theK(n

1

; n

2

) contains a C

5

. We can already see, however,

that co-criticality is not a monotone property: e.g., taking the Petersen graph KN(5; 2),

G

20

= KN(5; 2) 
 KN(5; 2) is co-critical, deleting any vertex we get a non-co-critical

graph, but deleting half of its vertices we may arrive at C

5


C

5

which is again co-critical.

The same phenomenon can be observed in case of C

11

(see Claim 2), or more generally,

in the \cyclic construction" of the next section, providing a second proof of Theorem 1,

apart from that it will contain K

5

's.

So in general, we should distinguish between two notions of minimality:

De�nition 4. We will call an (L

1

; : : : ; L

r

)-co-critical graphGminimal co-critical if delet-

ing any vertex u of G we get a non-(L

1

; : : : ; L

r

)-co-critical graph G � u. We will call an

(L

1

; : : : ; L

r

)-co-critical graph G strongly minimal co-critical if it contains no smaller

(L

1

; : : : ; L

r

)-co-critical graphs.

It should be emphasized, that, apart from Z

6

, the only strongly minimal co-critical graph

we know about is C

5


C

5

and it remains one of the most intriguing open problems whether

there are in�nitely many strongly minimal co-critical graphs.

Before leaving the product constructions we should still examine one question: which are

the possible RED-BLUE colourings of the above graphs without monochromatic triangles.

One could ask if the co-critical graphs described in Theorem 2 have only one RED-BLUE-

colouring without monochromatic triangles, namely, colouring the edges of G

1

and of G

2

by the same colour, say, by RED, and colouring the edges joining G

1

to G

2

by the other

colour (now, by BLUE). This is almost true, but not quite.

Lemma 1. If G

1

and G

2

are connected non-bipartite graphs, then in every RED-BLUE

colouring of G

1


G

2

with no monochromaticK

3

both G

1

and G

2

must be monochromatic,

moreover, they must have the same colour. Further, if the edges of G

1

are RED, say, then

for every x 2 V (G

2

) all but �(G

1

) edges xy : y 2 V (G

1

) must be BLUE (and the same

holds if we change the role of G

1

and G

2

).

Proof. (a) First we show that in any good colouring of the above product, (i.e., one

without monochromatic triangles) all the edges of G

1

must have the same colour. Assume

this is not so. Since G

1

is connected, there exists a node a connected to two nodes in

di�erent colours. Let these be b and c. Assume ab is RED and ac is BLUE. Those vertices

in V (G

2

) that are connected to a by RED should be connected to b by BLUE, so neither

RED nor BLUE edges can occur among them. Similarly, all other vertices in V (G

2

) are

connected to a by BLUE and to c by RED, i.e., no edge can appear among these vertices

either. This implies that G

2

is bipartite, a contradiction. Obviously, all edges in G

2

must

have the same colour, too.

(b) Next we prove the last statement. Assume that all the edges in V (G

1

) are RED. Now

we show that for any x 2 V (G

2

) the number of RED edges joining x to G

1

is at most

8



�(G

1

). Indeed, jN

R

(x) \ V (G

1

)j contains no RED edges, so it contains no edges at all:

jN

R

(x) \ V (G

1

)j � �(G

1

):

By the way, this inequality holds not only for the whole graphs G

1

but every connected

induced subgraph H

1

� G

1

:

jN

R

(x) \ V (H

1

)j � �(H

1

):

(c) Since the G

i

's are non-bipartite, they both contain odd cycles. Let H

i

� G

i

be odd

cycles. (We do not assume them to be induced cycles, though taking the shortest odd cy-

cles we could achieve that.) By (b), if G

1

is RED, then the number of RED edges between

H

1

and H

2

is strictly greater than the number of BLUE edges. Now, if G

2

were BLUE,

then the number of BLUE edges between H

1

and H

2

were again strictly greater than the

number of RED edges. These two facts exclude each other: G

1

and G

2

have the same

colour.

Remark. We cannot assert that all the edges joining G

1

to G

2

are of the same colour:

Fix a matching between nodes of G

1

and G

2

, colour it RED, colour all the edges of G

1

and

G

2

also RED but colour all the other edges BLUE: we still will have no monochromatic

triangles.

The next short argument is a detour from our main line. Here we investigate whether one

can reverse Theorem 2.

Problem. Is it true that if G

1


G

2

is (K

3

;K

3

)-co-critical, then G

1

, G

2

are K

3

-saturated?

The answer is NO:

Claim 4. There exist (K

3

;K

3

)-co-critical graphs of form G

1


G

2

where G

1

is bipartite,

G

2

contains triangles.

Proof. Indeed, let G

1

= K(m;m), G

2

be any non-bipartite K

3

-saturated graph.

(a) Then G

1


 G

2

is not (K

3

;K

3

)-co-critical, since we can add an edge uv to G

2

and

still 2-colour the obtained G

1


H

2

without monochromatic triangles. Indeed, colour the

original G

1


 G

2

as usual, G

1

, H

2

in RED, the new edge uv in BLUE, and change the

colour of the edges xu to RED if x is in the �rst class of K(m;m) and the edges yv also

to RED if y is in the second class of K(m;m). There will be no monochromatic triangles.

(b) At the same time, adding any edge to G

1

, (by the argument of the Proof of Theorem

2), we immediately get a graph \arrowing" (K

3

;K

3

).

(c) Now add edges to G

1


 G

2

until the whole graph becomes co-critical. This example

will be a product G

1


H

�

2

where H

�

2

� K

3

, G

1

is bipartite.
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3. THE CYCLIC CONSTRUCTION

Generalizing the construction of Claim 2, now we give a second proof that there are

in�nitely many (K

3

;K

3

)-co-critical graphs G

n

which are minimal: deleting any vertex of

G

n

we get a G

n�1

which is not co-critical any more. This construction is weaker than

that of Theorem 2, since it contains (many) K

5

's. Still, it has a nice and simple structure,

completely di�erent from the previous ones.

Construction 3. Let for n = 6k � 1, (k � 3) the vertices of the (\cyclic") graph G

n

be

0; 1; 2; : : : ; 6k � 2, and put these vertices onto the circumference of a circle of perimeter

(6k � 1). We join two vertices i and j by an edge i� their distance is at least k on the

circumference of the circle.

Theorem 3. The graph de�ned in Construction 3 is minimal (K

3

;K

3

)-co-critical, i.e., it

is co-critical while deleting any vertex of it the resulting graph is not co-critical any more.

Remark. Since G

n

is a di�erent graph for every k � 3, Construction 3 provides in�nitely

many minimal co-critical graphs, by Theorem 3. (The construction in Claim 2 is the special

case when k = 3.)

Proof. (a) First we show that G

n

has a two-colouring without monochromatic triangles.

We colour those edges RED which join vertices of distance k; k + 1; : : : ; 2k � 1 and by

BLUE those joining vertices of distance 2k; 2k + 1; : : : ; 3k � 1. It is easy to verify that no

monochromatic triangle occurs in this colouring.

(b) If we add any missing edge to G

n

then a K

6

will occur already ensuring that every

2-colouring of the resulting graph has monochromatic triangles. This proves that G

n

is

co-critical.

(c) To see that G

n

is minimal co-critical, let us delete a vertex. Because of the symmetry

of G

n

we may assume that vertex 3k is deleted. We claim that now we can add new edges

to the graph and still two-colour it without monochromatic triangles. Let us add the edge

(5k; 0) and colour it RED, while (for the moment) colour all the other edges with the colour

it had in the colouring described in (a). We will show that by changing the colour of three

appropriately chosen edges we get a good colouring. First observe that after the addition of

our new edge in RED only two monochromatic triangles occured: (5k; 0; k) and (4k; 5k; 0)

(obviously both RED). Now change the colour of the edges (5k; k) and (4k; 0) to BLUE.

Now we do not have RED triangles any more but BLUE triangles may occur. Notice that

no BLUE triangle occurs because of the recolouring of the edge (5k; k). (In fact, the only

such triangle would be (5k; k; 3k) but the vertex 3k is now deleted.) There occurs only one

BLUE triangle as a result of recolouring (4k; 0): this is (4k; 0; 2k). Change the colour of

(2k; 4k) to RED, then we have no BLUE triangles any more, but RED triangles may occur

again. But actually they do not (again, the only possible RED triangle would have the

deleted 3k as its third vertex), so we have found a good colouring, proving our statement.
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Remarks. (a) Having deleted 3k, besides adding (5k; 0), three more edges can still be

added to our graph without ruining its colourability: adding the edges (1; k), (k + 1; 2k),

(4k; 5k�1) and changing the colour of the edge (1; 2k) from RED to BLUE in the colouring

given above one can easily check that no monochromatic triangle occurs.

(b) The above proof of Theorem 3 is easy to check, but does not explain the reason

why are we so \lucky" that changing the colour of only very few edges gives us a good

colouring of the truncated graph G

n�1

. Here we sketch another proof of the statement that

the truncated graph G

n�1

is well colourable, because, we believe, this argument \gives a

reason for it". Consider the graph we left with after the deletion of vertex 3k and the

addition of the four edges (1; k); (k+1; 2k); (4k; 5k�1); (5k; 0). Let's call this graph H

n�1

.

One can easily check that the pairs of vertices (0; 1); (k; k + 1); (2k; 2k + 1); (4k � 1; 4k)

and (5k � 1; 5k) became twins in this graph. (Two vertices are twins if they are adjacent

to exactly the same vertices in the graph, meaning also that they are not adjacent to each

other.) Identifying the vertices that form twins we get a graph on n � 6 vertices that we

call F

n�6

. Now notice that this graph is nothing but the G

n�6

from Construction 3, i.e.,

the graph Construction 3 gives with k being 1 smaller than before. So we know (from the

beginning of the proof of Theorem 3) that F

n�6

has a valid colouring. But duplicating

a vertex of a graph we could colour without monochromatic triangles cannot ruin this

property.

Remark. It is worth noticing that the graphs of Construction 3 contain no C

5


 C

5

.

On the other hand, it is not di�cult to see that the G

6k�1

of Construction 3 contains

G

6(k�1)�1

and thereby all G

6j�1

's with j < k of the same construction. Indeed, if we leave

the vertices 1; k + 1; 2k + 1; 3k; 4k; 5k from G

6k�1

we obtain exactly a G

6(k�1)�1

.

One more observation should be made. In all the cases we know, having a co-critical graph

G and replacing a vertex x of it by a set of independent vertices fx

1

; : : : ; x

r

g joined to the

neighbours of x we get a co-critical graph again. Unfortunately, we cannot prove this in

general (cf. Problem 5).

4. STRUCTURAL RESULTS

Co-critical graphs with high edge-density

One can ask for the extremal values of the basic parameters of co-critical graphs: what

are the extremal values of the sizes ( = edge-number) of a co-critical G

n

, or the extremal

values of the degrees, and so on. Some of these questions are more interesting, some others

prove to be routine.

We start with an easy question.

We introduce a new notation. For given n and p, T

n;p

denotes the p-chromatic graph with

the most edges (also called the Tur�an graph on n vertices, with p classes): n vertices are

11



partitioned into p classes as equally as possible and all the edges joining points of di�erent

classes are present.

Theorem 4. Let (L

1

; : : : ; L

r

) be complete graphs. If G

n

is (L

1

; : : : ; L

r

)-co-critical, and

R = R(L

1

; : : : ; L

r

) is the corresponding Ramsey number, then

e(G

n

) � e(T

n;R

):

Proof. If e(G

n

) > e(T

n;R

), then there is a K

R+1

� G

n

. If we r-colour the edges of G

n

,

then this K

R+1

is also r-coloured and gives (by de�nition) a monochromatic L

�

(for some

� � r). This proves Theorem 4.

Remark. Clearly, Theorem 4 is sharp: T

n;R

is really (L

1

; : : : ; L

r

)-co-critical. The above

estimate is valid also for arbitrary sample graphs (L

1

; : : : ; L

r

), since we have not used the

fact that the L

i

's are complete when proving the inequality. However, in the general case

Theorem 4 is not sharp.

One can generalize the above theorem to arbitrary graphs L

i

, to get a sharp form. First

we recall the de�nition of the generalized Ramsey numbers. Let (L

1

; : : : ; L

r

) be arbitrary

graphs. Let R = R

�

(L

1

; : : : ; L

r

) be the largest integer satisfying the following condition

(see Burr, Erd}os, Lov�asz, [1]): for arbitrary large h, K

R

(h; : : : ; h) can be coloured in r

colours without getting an L

�

in the �

th

colour.

Theorem 4*. Let L

1

; : : : ; L

r

be arbitrary graphs. If G

n

is (L

1

; : : : ; L

r

)-co-critical, with

maximum number of edges (for �xed L

1

; : : : ; L

r

and n), and R = R

�

(L

1

; : : : ; L

r

) is the

corresponding generalized Ramsey number, then

e(T

n;R

�

) � e(G

n

) � e(T

n;R

�

) + o(n

2

); as n!1:

Proof of Theorem 4*.

(a) The lower bound of Theorem 4* is trivial again: by de�nition, T

n;R

�

can be r-coloured

without monochromatic L

�

in its �

th

colour.

(b) To prove the upper bound of Theorem 4*, we shall use the Erd}os{Stone theorem [6],

according to which, for every � and " > 0 there exists an n

0

such that for n > n

0

a graph

G

n

not containing K

t+1

(�; : : : ; �) has at most

�

1�

1

t

��

n

2

�

+ "n

2

edges. By de�nition, we can �x a � so large that

K

R

�

+1;(R

�

+1)�

= K

R

�

+1

(�; : : : ; �)! (L

1

; : : : ; L

r

):
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Hence a co-critical G

n

cannot contain a K

R

�

+1

(�; : : : ; �): So, by the Erd}os{Stone theorem,

e(G

n

) � e(T

n;R

�

) + o(n

2

); as n!1:

Co-critical graphs with low maximum degree

It is much more interesting to ask if there are co-critical graphs with low edge-density.

Still, here we have to be slightly careful:

It is easy to construct (K

3

;K

3

)-co-critical graphs with a linear number of edges: K(1; 1; 1; 1; n�

4) will do. It will have 4n � 10 edges. Or, if we want a co-critical graph not containing

K

5

's, and having O(n) edges, take G

1


G

2

as in Theorem 2, however, keep G

1

= C

5

�xed,

and let G

2

= C

5

(1; 1; 1; 1; n� 9), where C

5

(1; 1; 1; 1; k) denotes the graph we obtain when

substituting a vertex of C

5

by an independent set of size k.. This G

n

is co-critical, and

e(G

n

) = 7n�35. Thus one should ask for constructing "almost regular" co-critical graphs

with low edge-density, or for low maximum degree.

Theorem 5. There exists an in�nite sequence of (K

3

;K

3

)-co-critical graphs with

d

max

(G

n

) = O(n

3=4

logn):

Proof. Let �(G) denote the maximum degree of a graph G. Let kjn. Take a graph S

k

,

described in Claim 3 (or any other K

3

-saturated graph with �(S

k

) = O(

p

k log k)). To get

a graph on n vertices, replace each vertex of S

k

by n=k independent vertices: D

i

is the

class of m = n=k vertices corresponding to the vertex x

i

(i = 1; : : : ; k). Join every x 2 D

i

to every y 2 D

j

i� the original vertices corresponding to D

i

and D

j

have been joined.

We shall denote the obtained graph with G

0

n

= G

k

� I

n=k

. Let H be any K

3

-saturated

graph on m = n=k vertices, satisfying �(H

m

) = O(

p

m logm). (E.g. let H also be a graph

described in Claim 3.) Put into each class of G

0

n

such an H. Denote the obtained graph

by H

�

n

.

Now we add a few new edges to this graph: repeatedly add edges to the graph until it

becomes saturated for the property of not arrowing (K

3

;K

3

). Call the resulting graph U

n

.

We show that U

n

is (K

3

;K

3

)-co-critical and its maximum degree is

�(U

n

) � �(S

k

) �m+ k � �(H) +�(H): (2)

Here, on the right hand side, the �rst term estimates the degrees in the full connections

between di�erent copies of H, the last one the degrees within the graphs H and { as it

is explained below, { the middle term estimates the degrees coming from the saturating

edges.

The �rst statement, namely, that U

n

is co-critical, is trivial, by its construction: by the

fact that we obtained it by a saturation procedure. (In fact, we also have to show that the

graph we start to saturate is not yet arrowing the triangle. But this is obvious: colouring
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all edges within the same D

i

by RED and all others by BLUE, we get no monochromatic

triangles in that graph.)

To prove (2) on the maximum degree we will show that

(a) we could not possibly add edges joining vertices of the same D

j

and

(b) if D

i

and D

j

correspond to independent vertices of S

m

, then each x 2 D

i

is joined

to at most �(H) vertices of D

j

.

The proof of (a) is easy from Theorem 2: For each D

j

we consider a D

`

completely joined

to D

j

. They span a (K

3

;K

3

)-co-critical subgraph of U

n

. So no edges can be added to D

j

without arrowing a monochromatic K

3

.

To prove (b) observe �rst that since S

k

is K

3

-saturated, there must exist a D

k

joined to

both D

i

and D

j

. By Lemma 1, we know that if U

n

is coloured in RED and BLUE without

monochromatic triangles, then all the edges joining vertices of the same group D

t

must

have the same colour, and this is the same for every D

t

. We shall assume that this colour

is RED. In particular, all the edges xy, x; y 2 D

i

are RED, and the same holds for D

j

and

D

`

. We also know that for �xed u 2 D

i

all but at most �(H) edges uw w 2 D

j

are BLUE.

Let now x 2 D

i

be joined to the vertices of X � D

j

. If there is an edge uv, u; v 2 X,

then we may assume { by the exclusion of RED triangles { that xu is BLUE. Both x and

u are joined to D

`

in RED by at most �(H) edges, by Lemma 1. Therefore there exists a

w 2 D

`

joined to both x and u in BLUE, providing a BLUE K

3

, a contradiction. So X is

a set of independent vertices in D

j

, proving that x is joined to at most �(H) vertices of

D

j

.

Observe, that in a triangle-free graph U the degree d(x) of a vertex is at most �(U): the

neighbours of x form an independent set. So the estimates above on the independence

number apply also to the maximum degree. Put

m = k; �(H) � �(S

k

) < c

1

p

k log k:

Now we can estimate the maximum degree as follows:

�(U

n

) � �(S

k

)k + k�(H) + k = O(n

3=4

logn):

So �(U

n

) � c

2

n

3=4

logn.

Restrictions on the minimum degree

In this section we will show that the minimum degree of a (K

3

;K

3

)-co-critical graph is at

least 4. To prove this we will make use of the following easy statement.

Claim 5. G is (K

3

;K

3

)-co-critical, if and only if in any good RED-BLUE edge-colouring

of G (i.e., one without monochromatic triangles) for any non-edge (v;w) there must be a

2-path between v and w in both colours.
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Proof. To see this, assume that G is co-critical and there is given a good RED-BLUE

colouring of G. If there is no RED 2-path between v and w, then joining v and w by a

RED edge would not create a monochromatic triangle contradicting that G is co-critical.

The proof of the opposite direction is similar.

Another easy observation we will use is the following.

Claim 6. If �(G) � 5 then the edges of G can be 2-coloured without having monochro-

matic triangles.

For the sake of completeness we formulate the latter statement (in fact, a consequence of

it) in a more general form.

Lemma 2. If G is (L

1

; : : : ; L

r

)-co-critical, then �(G) � R(L

1

; : : : ; L

r

): Further, if �(G) =

R(L

1

; : : : ; L

r

), then G is a complete R-partite graph: G = K

R

(n

1

; : : : ; n

R

).

Now we are ready to prove our statement about the minimum degree.

Theorem 6. For every (K

3

;K

3

)-co-critical graph G the minimum degree d(G) � 4.

Proof. Assume that there exists a co-critical G with a vertex v of degree 3. (The same

argument works for smaller minimum degree.) Let the neighbours of v be x, y, and z and

the set of remaining vertices be denoted by U .

Consider a \good colouring" of G. It follows immediately from Claim 5 that the edges

vx; vy; vz cannot all have the same colour. Then we can assume that two of them are RED

and one of them is BLUE. Let vz be the BLUE one.

Again, by Claim 5, z should be connected to each u 2 U by a BLUE edge, otherwise there

would be no BLUE 2-path between v and some u 2 U . Hence U contains no BLUE edges

at all.

Now U can be partitioned into A = U \ (N

R

(x) \N

R

(y)), B = U \ (N

R

(x) nN

R

(y)) and

C = U \ (N

R

(y) nN

R

(x)), since, again by Claim 5 every u 2 U is connected to either x or

y by RED.

Here A [ B and A [ C are independent sets of vertices, since for each of them there

is a vertex outside, completely joined to them in RED, and another vertex, (namely z)

completely joined to them in BLUE. Hence they can contain neither RED, nor BLUE

edges.

Thus we succeded in covering the whole set V (G) by 5 independent sets: fvg [ A [ B,

C and fxg, fyg and fzg. Assume �rst that B and C are nonempty. Join (say) v to a

vertex u 2 C. The resulting G

�

is still covered by the same 5 groups of independent ver-

tices. Thus �(G

�

) � 5: Since any 5-chromatic graph can be coloured in RED and BLUE
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avoiding monochromatic triangles, and adding an edge to G we still could obtain an at

most 5-chromatic graph, we have shown that G is not co-critical. The case when e.g. B is

empty is even easier, for now G is covered by 4 classes of independent vertices: fvg [ U ,

fxg fyg fzg, and joining v to a u 2 U we obtain a 5-chromatic graph, contradicting again

to the assumption that G is co-critical.

Remark. Of course, this theorem is sharp, as shown by Z

6

, or more generally, by

K

5

(1; 1; 1; 1; n� 4).

Claim 7. If there is a vertex of degree 4, then there exists a K

4

� G

n

.

Proof. Given a RED-BLUE-colouring of a graph G, we shall say that a vertex x has

degree (p:q:) if it is adjacent to p RED and q BLUE edges.

There are two cases: either we can colour G

n

having (3.1.) or (1.3.) RED-BLUE degree

at the degree four vertex x or it must be (2.2.). Consider the second case �rst.

(a) Assume that we regard the vertex x joined to a; b; c and d. Assume that ax and dx are

BLUE, and bx, cx are RED. Since bx (alone) cannot be recoloured by BLUE, therefore

either ab or db must be BLUE. Assume that ab is BLUE. Since xa cannot be recoloured

by RED, therefore either ba or ca must be RED. Thus ca is RED. Applying this argument

to the recolouring of xc we get that dc is BLUE. Applying it to xd we get that bd is red.

Let U denote the set of remaining vertices. Every u 2 U is connected either to a or to

d by BLUE (to be joined to x by a BLUE 2-path). Therefore joining ad in RED cannot

create a monochromatic K

3

. The same argument shows that joining bc in BLUE cannot

create BLUE triangles. Hence we have got even a K

5

in G

n

.

(b) The other case is when there is a (3.1) colouring, say xa is RED, xb; xc; xd are BLUE.

Hence a is joined in RED completely to U . Hence ab, ac, ad can be added in BLUE. If

any of bc, bd, or cd is in the graph then we are home: we have a K

4

. In the remaining case

we really can assume that the edges ab, ac, ad are BLUE. Therefore each of them can be

joined to U in RED: this contradicts to the BLUE 2-path condition.

We have seen that all of our constructions contain either Z

6

or C

5


C

5

as subgraphs. Both

of these graphs contain Z

5

, so it is natural to ask whether a co-critical graph must always

contain a Z

5

, or even stronger, is it true that adding any new edge to a co-critical graph a

K

5

appears. Knowing the results by Folkman and by Ne�set�ril and R�odl, one is inclined to

believe in the existence of Z

5

-free co-critical graphs. But we have no such examples. The

next step is Z

4

, a complete graph on four vertices minus one edge. (Z

4

is often called as

diamond.) Next we prove that a diamond always appears in co-critical graphs.

Theorem 7. Every (K

3

;K

3

)-co-critical graph contains a diamond, i.e., a Z

4

= (K

4

� e).

Proof. Assume there is no diamond in a (K

3

;K

3

)-co-critical graph G, and �x a good

RED-BLUE edge-colouring, i.e., one without monochromatic triangles. Observe, that
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every edge belongs to at most one triangle in this graph (otherwise there would be a

diamond). Let a and b be two non-adjacent vertices of our graph G. If N(a) \ N(b)

contains an edge, we have an (induced) diamond, as a subgraph. If N(a)\N(b) is a set of

independent vertices, then we change all the BLUE edges between fa; bg and N(a) \N(b)

RED. Some monochromatic K

3

's of form

faxy : x 2 N(a) \N(b); y 2 N(a) nN(b)g

or

fbxy : x 2 N(a) \N(b); y 2 N(b) nN(a)g

can arise. However, since each edge is in at most one triangle, the edges ay (or by, respec-

tively) belonging to RED triangles could be recoloured by BLUE, without getting further

monochromatic triangles. Now, adding ab as a BLUE edge would not create a monochro-

matic triangle, so G was not co-critical.

Remark. The above proof does not show whether there must be an induced Z

4

in a

co-critical graph, because the \independent triangle colourability" is ruined also if we have

a K

4

. It could be interesting to know the answer to the following

Problem. Is it true that every non-edge of a (K

3

;K

3

)-co-critical graph is the non-edge

of a diamond? (cf. Open Problem 3.)

5. CONNECTION TO DIRAC'S EXAMPLE

IN THE THEORY OF COLOUR-CRITICAL GRAPHS

Some of the ideas of this paper are coming or motivated from the theory of 4-chromatic-

edge-critical graphs. Hence we include a \ short survey" of these graphs.

Gallai, Erd}os and Dirac started investigating the structure of colour-edge-critical graphs,

i.e. graphs, which are k-chromatic for some given, �xed k, but deleting any edge of the

graph the chromatic number drops (by 1). Erd}os asked (among others) if the number of

such graphs can be large or not.

For k = 3 the odd cycles are the colour-critical graphs, therefore we shall assume above

that k � 4. Dirac observed that C

2k+1


 C

2`+1

is 6-chromatic, colour-critical. Further, if

k = ` and n = 4k + 2, then the minimum degree of this graph is also �

1

2

n.

For k = 2; ` = 2 we get C

5


 C

5

, the graph of Claim 1. One feels that the two problems

have some deeper connection. (B. Toft later constructed a graphG

n

which was 4-chromatic

colour-critical and had � n

2

=16 edges. This settled the problem of the existence of colour-

critical graphs with many edges. The maximum number of edges such a graph can have is

still open (apart from some estimates) and one of the most intriguing problems in the �eld

asks if the minimum degree of a 4-critical graph can be � cn for some c > 0 as n ! 1.

The best result is the construction of 4-chromatic colour-critical graphs G

n

with mimimum

degree � cn

1=3

([20], [21], [17].))
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6. OPEN PROBLEMS

1. Are there in�nitely many strongly minimal co-critical graphs.

2. Can one get a construction of a (K

3

;K

3

)-co-critical graph G

n

without K

4

?

3. Is it true that for every (K

3

;K

3

)-co-critical G

n

adding any new edge we get a K

5

? Or

at least a K

4

? (Instead of the latter question we can ask whether every non-edge of a

co-critical graph is in a diamond.)

4. Assume that a (K

3

;K

3

)-co-critical G

n

contains a K

5

. Does this imply that G

n

contains

also a Z

6

?

5. Is it always true that duplicating a vertex of a co-critical graph (cf. the Remark after

Theorem 3) we get a co-critical graph?

6. Can one �x the parameters of a LPS-graph to get a (K

3

;K

3

)-co-critical graph?
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