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A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the
points and lines of the finite projective plane of order 2. Proving a conjecture of
T. Sós, the largest triple system on n vertices containing no Fano configuration is
determined (for n > n1). It is 2-chromatic with

`n
3

´

−
`bn/2c

3

´

−
`dn/2e

3

´

triples. This
is one of the very few non-trivial exact results for hypergraph extremal problems.

1. Turán’s problem

Given a 3-uniform hypergraph F , let ex3(n,F) denote the maximum possible size of a

3-uniform hypergraph of order n that does not contain any subhypergraph isomorphic

to F . Our terminology follows that of [16] and [10], which are comprehensive survey

articles of Turán-type extremal graph and hypergraph problems, respectively. Also see

the monograph of Bollobás [2].

There is an extensive literature on Extremal Graph Problems. Nevertheless, we know

much less about the hypergraph extremal problems and we have even fewer exact results

on hypergraphs. One of the main contributions of this paper is that we improve an earlier

result of de Caen and Füredi [5], providing the exact solution of the Fano hypergraph

extremal problem.
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‡ Research supported by the Hungarian National Science Foundation grants OTKA T 026069, T 038210,
and T 0234702.
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The tetrahedron, K
(3)
4 , i.e., a complete 3-uniform hypergraph on four vertices, has

four triples {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}. The complete 3-partite

triple system K(3)(V1, V2, V3) consists of |V1||V2||V3| triples meeting all the three Vi’s. We

also use the simpler notation K(3)(n1, n2, n3) if |Vi| = ni. K(3)(2, 2, 2) is sometimes called

the octahedron. The Fano configuration F (or Fano plane, or finite projective plane

of order 2, or Steiner triple system, STS(7), or blockdesign S2(7, 3, 2)) is a hypergraph

on 7 elements, say {x1, x2, x3, a, b, c, d}, with 7 edges {x1, x2, x3}, {x1, a, b}, {x1, c, d},
{x2, a, c}, {x2, b, d}, {x3, a, d}, {x3, b, c}.
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The Complete 4-graph, the Fano hypergraph, and the Octahedron

An averaging argument shows [12] that the ratio ex3(n,F)/
(

n
3

)

is a non-increasing

sequence. Therefore

π(F) := lim
n→∞

ex3(n,F)/
(

n
3

)

exists. This monotonicity implies that ex3(5, K
(3)
4 ) ≤

⌊

(

5
3

)

ex3(4, K
(3)
4 )/

(

4
3

)

⌋

= 7, thus

ex3(n, K
(3)
4 ) ≤ .7

(

n

3

)

holds for every n ≥ 5. (1.1)

We note that the determination of π(K
(3)
4 ) is one of the oldest problems of this field,

due to Turán [18], who published a conjecture in 1961 that this limit value is 5/9, and

Erdős [8] offered $1000 for a proof. The best upper bound, .5935 . . ., is due to Fan Chung

and Linyuan Lu [6].

Concerning the octahedron, a very special case of an important theorem of Erdős [7]

states that

ex3(n, K(3)(2, 2, 2)) = O(n3−(1/4)), (1.2)

i.e., in this case the limit π = 0.

The limit π(H) is known only for very few cases when it is non-zero. D. de Caen and

Z. Füredi [5] proved that

Theorem A.

ex3(n, F) =
3

4

(

n

3

)

+ O(n2).
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The conjectured extremal graph

|X | =
⌈

n
2

⌉

|X| =
⌊

n
2

⌋

This was conjectured by Vera T. Sós [17].

She also conjectured that the following hyper-

graph, Hn, gives the exact value of ex3(n, F).

Let H(X, X) be the hypergraph obtained by

taking the union of two disjoint sets X and

X as the set of vertices and define the edge

set as the set of all triples meeting both X

and X. For Hn we take |X | = dn/2e and

|X | = bn/2c, (i.e., they have nearly equal

sizes). Then

e(Hn) =

(

n

3

)

−
(bn/2c

3

)

−
(dn/2e

3

)

,

which is 3
4

(

n
3

)

+ O(n2).

The chromatic number of a hypergraph H is the minimum p such that its vertex set

can be decomposed into p parts with no edge contained entirely in a single part. It is

well known and easy to check that the Fano plane is not two-colorable, its chromatic

number is 3. Therefore F 6⊆ H(X, X). Thus Hn supplies the lower bound for ex3(n, F) in

Theorem A, implying that π(F) ≥ 3
4 .

In this paper we prove the exact version of T. Sós’ conjecture, even in a stronger form,

describing the extremal hypergraph as well.

Theorem 1. There exists an n1 such that the following holds. If H is a triple system

on n > n1 vertices not containing the Fano configuration F and of maximum cardinality,

then it is 2-colorable. Thus H = Hn and

ex3(n, F) =

(

n

3

)

−
(bn/2c

3

)

−
(dn/2e

3

)

.

This is an easy consequence of the following structure theorem.

Theorem 2. There exist a γ2 > 0 and an n2 such that the following holds. If H is a

triple system on n > n2 vertices not containing the Fano configuration F and

deg(x) >

(

3

4
− γ2

)(

n

2

)

holds for every x ∈ V (H), then H is bipartite, H ⊆ H(X, X) for some X ⊆ V (H).

This result is a distant relative of the following classical theorem of Andrásfai, Erdős

and T. Sós [1]. Let G be a triangle-free graph on n vertices with minimum degree δ(G).

If δ(G) >
2

5
n, then G is bipartite. (1.3)

The blow up of a five-cycle C5 shows that this bound is the best possible. They further

determined

δ(n, F ) := max{δ(G) : |V (G)| = n, G is F -free χ(G) ≥ χ(F )}
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for F = Kp. The general case is still open, although Erdős and Simonovits [9] determined

a number of cases and showed, e.g., that Kp behaves uniquely: in the case χ(F ) = p,

F 6= Kp one has δ(n, F ) − δ(n, Kp) ≥ n/(6p2) − o(n).

Using the method of [5] Mubayi and Rödl [14] determined the limit π for a few more

3-uniform hypergraphs, for all of them π = 3/4. It is very likely that the extremal

hypergraphs are 2-colorable in those cases, too.

Turán [18] also conjectured that the 2-colorable triple system Hn is the largest K
(3)
5 -

free hypergraph. Sidorenko [15] disproved this conjecture, in this sharp form, for odd

values n ≥ 9. But it is still conjectured that it is true for all even values and it seems

that π(K
(3)
5 ) = 3/4 holds as well. However this question seems to be extremely difficult.

The main idea of the proof

The proof of Theorem A in [5] has already contained the possibility to prove our Theo-

rem 1, but it had to be improved in several places. One of these places was to introduce

the colored multigraphs instead of the multigraphs.

Earlier Brown, Erdős and Simonovits proved several results on multigraph extremal

problems, but the excluded graphs in [11] had special form (as in Bondy-Tuza [3]), see

e.g. the survey paper [4]. A method called “augmentation” was developed there which

implicitly is used here as well.

De Caen and Füredi [5] applied some multigraph extremal results of Füredi and

Kündgen [11]. Now we shall use colored multigraph extremal results.

Theorem 1 was proved independently and in a fairly similar way by Keevash and

Sudakov [13]. Our Theorem 2 is stronger. Theorems 4 and 5 in the next section deal with

new type of problems.

2. Fano plane and the links

First we describe, how we can find a Fano plane in a triple system, using multigraphs.

This will lead us to further investigation of multigraphs and colored multigraphs.

Definition. The graphs G1, G2, . . . (with the common vertex set V ) have 3 pairwise

crossing pairs if there are four vertices {a, b, c, d} ⊆ V and three graphs Gij
such that

ad, bc ∈ E(Gi1 ), ac, bd ∈ E(Gi2 ), and ab, cd ∈ E(Gi3 ).

Notation. If G1, . . . , Gp are (simple) graphs with the same vertex set V , then G1,...,p

denotes a colored multigraph on V in which we join two vertices a, b ∈ V by an edge of

color i if ab ∈ E(Gi). Thus, degG1,...,p
(x) =

∑

1≤i≤p degGi
(x).

The multiplicity of a pair {a, b} ⊂ V is denoted by µ(ab) and it is the number of

graphs among the Gi’s containing ab as an edge. We have 0 ≤ m ≤ p. Also, the set

{i : ab ∈ E(Gi)} is called the set of colors of the pair ab.

As usual, e(G) stands for the number of edges of G (for multigraphs it is counted

with multiplicity). G[X ] denotes the induced (multi)graph of G spanned by the subset of

vertices X . When it is possible, we shall use simplified notations, discarding parentheses

and commas.

Given a triple system H with vertex set V and a vertex x ∈ V , the link graph G(H, x)
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is defined as the set of pairs {y, z} such that {x, y, z} is a hyperedge of H. Two of our

simple but crucial observations are that

Claim 3. Assume that F 6⊆ H.

(a) If {x1, x2, x3} is a hyperedge of H and S = {a, b, c, d} is disjoint from {x1, x2, x3},
then consider the three link graphs Gi := G(H, xi). We have

G1, G2 and G3 have no 3 pairwise crossing pairs on S. (2.1)

(b) Consider a vertex x and suppose that the link graph G = G(H, x) contains three

vertex disjoint complete graphs with vertex sets Ui, i.e., G[Ui] ≡ K(Ui). Then the triples

of H meeting each Ui can not form an octahedron:

H ∩ K(3)(U1, U2, U3) contains no K(3)(2, 2, 2). (2.2)

As a matter of fact, in the last statement four triples of appropriate position in H would

already yield a Fano configuration.

However, the main idea in the proof of Theorem A from [5] was to consider a K
(3)
4 on

{x1, x2, x3, x4} in H and to show that for the four links

∑

i≤4

e(G(H, xi)) ≤ 3

(

n

2

)

+ O(n).

In this paper our primary aim is to prove an exact form of this and describe the corre-

sponding extremal structures. Beside this we shall also prove some colored multigraph

extremal theorems.

Let B(X, X) denote the colored multigraph on the n element vertex set V with a

partition V = X ∪ X, colored in 1, 2, 3, and 4. Assume also that all edges in X have

colors 1 and 2, all edges in X have colors 3 and 4, and all edges joining X and X have

all the four colors.

Theorem 4. Let G1, . . . , G4 be four graphs on the common n-element vertex set V , for

n ≥ 4. If they do not contain 3 pairwise crossing pairs, then

∑

i≤4

e(Gi) ≤ 2

(

n

2

)

+ 2

⌊

n2

4

⌋

. (2.3)

Further, for n > 7, equality holds in (2.3) if and only if their union G1,2,3,4 is isomorphic

(up to permuting the colors) to B(X, X) with ||X | − |X|| ≤ 1.

For n = 4, 5, 6 there are other extremal configurations, for example one can add all

the four colors to every edge of the 3-partite Turán graph Tn,3. The case n = 7 remains

open (concerning the uniqueness of extremal configurations).

Again, Theorem 4 is strongly related to a structure theorem, the strongest result in

this paper:

Theorem 5. There exists a γ4 > 0 such that the following holds. Let G1, . . . , G4 be
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four graphs on the common n-element vertex set V , and let G = G1,2,3,4. Suppose that

they do not contain three pairwise crossing pairs and

degG(x) > (3 − γ4)n

holds for every vertex x ∈ V . Then G1,2,3,4 is a submultigraph of some B(X, X) (up to

permuting the colors 1, 2, 3, 4).

We prove this theorem with γ4 = 1/5. Probably, it can be sharpened. However we

cannot take a γ4 > 1/3 as shown by the colored multigraph 4Tn,3. If we color each edge

of the 3-partite Turán graph by all the 4 colors we get an example with δ = 4b2n/3c.

3. Extremal noncrossing graphs

In this Section we prove some lemmas, then Theorem 4. As in [5], we first investigate the

4-element subsets of V .

Lemma 6. Let G = G1,2,3,4 be a colored multigraph without 3 pairwise crossing pairs.

Suppose that n = 4, V = {a, b, c, d}. Then

(i) e(G) ≤ 20, with equality if V can be split into two pairs, V = X ∪X, so that the 4

edges of the complete bipartite graph K(X, X) (in fact it is a C4) belong to all the four

graphs, however, X and X do not belong to the same E(Gi).

(ii) If e(G) = 19, then G is obtained from the above example by deleting an edge.

(iii) If µ(ac) + µ(ad) + µ(bc) + µ(bd) ≥ 14 then ab and cd get different colors.

(iv) e(G1) + e(G2) + e(G3) ≤ 15.

Proof. There are only finitely many configurations to check. A quick way to do it is

as follows. Consider the 3 perfect matchings of V = {a, b, c, d}, M 1 = {ab, cd}, M2 =

{ac, bd} and M3 = {ad, bc} and arrange the 24 possible edges of G into a 4 × 3 array

of ‘cells’. Namely, the cell in the ith row and the jth column contains the intersection

E(Gi) ∩ M j . A cell is called full if it contains 2 edges, otherwise it is incomplete. In this

setting 3 crossing pairs corresponds to 3 full cells in different rows and columns.

M1 M2 M3

d

b

d

a b

c

a a b

dcc

The Matching Table

G1

G2

G3

G4

A very special case of Frobenius’ theorem (in other words,

the König-Egerváry theorem) states that if there are no 3

such cells, then all the full cells can be covered by 2 rows or

2 columns or by 1 column and 1 row. (We use these deeps

theorems only to make the proof more transparent: for 4

vertices we do not really need this heavy artillery.)

Suppose e(G) ≥ 19. Since e(G) is the sum of the number

of the edges in the 12 cells, there must be at least seven full

cells. By Frobenius theorem, they are in 2 columns. So we

may assume that all the four cells in the third column are

incomplete. We arrived at the structure of G claimed in (i)

and (ii).
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Concerning (iii), to get the 14 edges, the columns of M 2 and M3 must contain at least

6 full cells. Then Frobenius theorem gives that the first column, M 1, has only incomplete

cells. This is exactly the assertion of (iii).

Finally, the proof of (iv) is similar to the proof of (i), but simpler. �

We will frequently use the following obvious estimate for the degrees in a set of vertices

U ⊂ V . (In fact, it is an identity, but we use it as an upper bound.)

∑

u∈U

deg(u) ≤ 2 × e(U) +
∑

x∈V \U

(

∑

u∈U

µ(xu)

)

. (3.1)

The type of a triangle (triple) {a, b, c} is the list of the multiplicities of its pairs,

(µ(ab), µ(bc), µ(ca)). (Note that these triangles have nothing to do with our 3-uniform

hypergraphs, this section is about graphs, not hypergraphs.)

Lemma 7. Let G = G1,2,3,4 be a colored multigraph without 3 pairwise crossing pairs.

Suppose that δ(G) > (8/3)n. Then G has no triangle of types (4, 4, 4), (4, 4, 3), (4, 3, 3).

Proof. Suppose that µ(ab) = µ(bc) = µ(ca) = 4. Consider an x ∈ V \ {a, b, c}. Then

abcx contains at most 20 edges (by Lemma 6 (i)), so µ(ax) + µ(bx) + µ(cx) ≤ 8. Adding

up these inequalities for every x, (more exactly, applying (3.1) to U = {a, b, c}) we obtain

deg(a) + deg(b) + deg(c) ≤ 2 × 12 + 8(n − 3) = 8n.

This contradicts our condition δ(G) > (8/3)n. So from now on, we may suppose that

there is no triangle of type (4, 4, 4).

Suppose that µ(ab) = µ(ac) = 4, µ(bc) = 3. Consider V \ {a, b, c} and classify its

vertices according to their sum of multiplicities:

V≤7 := {x ∈ V \ {a, b, c} : µ(ax) + µ(bx) + µ(cx) ≤ 7},
V≥8 := {x ∈ V \ {a, b, c} : µ(ax) + µ(bx) + µ(cx) ≥ 8}.

If x ∈ V≥8 then {a, b, c, x} contains at least 19 edges. So Lemma 6 (ii) gives that the

edges of multiplicities 4 are contained in the 4-cycle a-b-x-c-a. Thus the colors of ax and

bc are distinct. Hence µ(ax) + µ(bc) ≤ 4, implying µ(ax) ≤ 1. Thus

deg(a) ≤ 8 + 4|V≤7| + |V≥8|. (3.2)

This inequality, together with the lower bound on δ(G), implies that |V≤7| is large.

However, then there are too few edges going to {a, b, c}, a contradiction. More formally,

Lemma 6 (i) implies that µ(ax) + µ(bx) + µ(cx) ≤ 9. Apply (3.1) with U = {a, b, c}:

deg(a) + deg(b) + deg(c) ≤ 2 × 11 + 7|V≤7| + 9|V≥8|. (3.3)

Adding the double of (3.2) to the triple of (3.3) and using |V≤7|+ |V≥8| = n− 3, one gets

11 × (8/3)n < 5 deg(a) + 3 deg(b) + 3 deg(c) ≤ 82 + 29(|V≤7| + |V≥8|) < 29n.

This contradiction implies that there is no triangle of type (4, 4, 3) either.

Finally, suppose that µ(ac) = µ(bc) = 3, µ(ab) = 4. We show that µ(ax) + µ(bx) +

µ(cx) ≤ 8 for every x ∈ V \ {a, b, c}. Consider an x ∈ V \ {a, b, c}. Suppose that µ(ax) +
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µ(bx) + µ(cx) ≥ 9. Then Lemma 6 (ii) can be applied. Thus there are (exactly) 3 edges

of multiplicities 4 in {a, b, c, x} forming a path. ab could not be its middle edge, so the

path is, say, a-b-x-c. Then the triangle bxc is of type (4, 4, 3), contradicting to our earlier

observations. Apply (3.1) to U = {a, b, c}:

3δ(G) ≤ deg(a) + deg(b) + deg(c) ≤ 2 × 10 + 8(n − 3) = 8n − 4.

This contradicts our condition δ(G) > (8/3)n, completing the proof of Lemma 7. �

Define

f(n) := 2

(

n

2

)

+ 2

⌊

n2

4

⌋

.

Let Mn be a multigraph obtained by taking four times the edges of a complete bipartite

graph K(X, X) on n vertices with an equipartition (X, X) and by taking the other edges

of Kn twice. Obviously, e(Mn) = f(n).

Lemma 8. Let M be a multigraph with maximum edge-multiplicity at most 4. If M
has no triangle of types (4, 4, 4), (4, 4, 3), (4, 3, 3), then e(M) ≤ f(n). Here equality holds

only if M ≡ Mn.

This is the part, where we do not use colors.

Proof of Lemma 8. We just copy the proof of the Turán-Mantel theorem using in-

duction from n − 2 to n. The cases n = 1, 2, 3 are obvious.

If there is no edge of multiplicity 4, then e(M) ≤ 3
(

n
2

)

≤ f(n) (for n ≥ 3) and we are

done. Now suppose that µ(ab) = 4 and let A := {x : µ(bx) ≥ 3} and B := {y : µ(ay) ≥ 3}.
Our condition implies that A ∩ B = ∅, thus

deg(a) + deg(b) ≤ 4|A| + 2(n − 1 − |A|) + 4|B| + 2(n − 1 − |B|)
= 4n− 4 + 2(|A| + |B|) ≤ 6n − 4. (3.4)

Use induction for M\ {a, b}. We have

e(M) = e(M\ {a, b}) + deg(a) + deg(b) − 4 ≤ f(n − 2) + 6n − 8 = f(n).

If here equality holds then equality holds in (3.4) too. This implies that A ∪B = V (M)

and every edge of the form bx with x ∈ A has multiplicity 4. Thus every edge in A has

multiplicity at most 2. The same holds for B, implying

e(M) ≤ 2

(|A|
2

)

+ 2

(|B|
2

)

+ 4|A||B| ≤ f(n).

In the case of equality every A-B edge must have multiplicity four, thus M is isomorphic

to Mn. �

Proof of Theorem 4.

Let e(n) be the maximum of e(G), where G := G1,2,3,4. We prove by induction that

e(n) = f(n) for every n ≥ 4. By Lemma 6 (i) we have e(4) = 20.
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A standard averaging argument shows that the sequence e(n)/
(

n
2

)

is monotone de-

creasing (non-increasing). This gives that e(5) ≤
(

5
2

)

e(4)/
(

4
2

)

= 33.33 . . .. We claim that

e(5) = 32. Suppose, on the contrary, that V = {a, b, c, d, e} and e(G) = 33 with no three

crossing pairs. Since e(4) = 20, we have that every degree of G is at least 33− e(4) = 13,

so the degree sequence of G is (13, 13, 13, 13, 14). Thus every four-element subset of V

contains at least 19 edges. Then Lemma 6 (ii) implies that every four-element set X ⊂ V

contains a unique disjoint pair of edges P1(X), P2(X) with total multiplicities at most

4. Suppose that µ(P1) ≤ µ(P2). Suppose that P1(X) = {a, b} for X = {a, b, c, d} with

µ(ab) := µ ≤ 2. Consider the sets X = V \ {c}, V \ {d}, and V \ {e}, we get that

P2(X) = de, ce, and cd, respectively. We get µ(de), µ(ce), and µ(cd) ≤ 4 − µ. Hence

e(G) ≤ µ + 3(4− µ) + 6× 4 = 36− 2µ. This is at most 32 for µ = 2, a contradiction. So

the last case to consider is, when µ(P1(X)) ≤ 1 for every X . In this case every X ⊂ V ,

|X | = 4 contains a unique pair with multiplicity at most 1. However, this is impossible.

From now on we suppose that n ≥ 6 and that e(G) is maximal, i.e., e(G) = e(n).

Consider, first, the case when G has no triangle of types (4, 4, 4), (4, 4, 3), (4, 3, 3). Then

Lemma 8 implies that e(G) ≤ f(n) and in case of equality the edges of multiplicity 4

form a complete bipartite graph. Then Lemma 6 (i) implies that G is isomorphic to a

B(X, X).

Consider the other case when G has a triangle of edge-multiplicities at least 4, 3 and

3. Lemma 7 gives that there exists a vertex x of small degree

deg(x) ≤
⌊

8

3
n

⌋

≤ 2n − 2 + 2
⌊n

2

⌋

. (3.5)

Applying induction to G \ {x} we have

e(G) ≤ e(n − 1) + deg(x) ≤ f(n − 1) + 2(n − 1) + 2
⌊n

2

⌋

= f(n) (3.6)

finishing the proof of e(n) = f(n).

Now suppose that e(G) = e(n) and n ≥ 8. For n ≥ 10 and for n = 8 the inequality

(3.5) is sharp, so (3.6) gives e(G) < f(n). Thus in these cases e(G) = e(n) implies that

G is isomorphic to a B(X, X).

Finally, in case of n = 9, e(G) = e(n), δ(G) = 2(n−1)+2bn/2c = (8/3)n we can return

to the proof of Lemma 7. One can sharpen it in the following way: if δ(G) = (8/3)n and

it contains a triangle of types (4,≥ 3,≥ 3), then G is isomorphic to 4Tn,3. The details

are omitted. �

4. The structure of 4 noncrossing graphs

In this section first we prove two lemmas, then Theorem 5.

Lemma 9. Let G = G1,2,3,4 be a colored multigraph without 3 pairwise crossing pairs.

If n ≥ 5 then there is an edge of multiplicity at most 2.

Proof. There are only finitely many configurations to check. A quick way to do it is as

follows. Suppose, on the contrary, that every pair has multiplicity at least 3. We may also
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suppose that each edge has multiplicity exactly 3 (if not, delete some extra multiplicities)

and that n = 5, V = {a, b, c, d, e}. Consider the restriction of G to {a, b, c, d} and the

4 × 3 cells we can form from its homogeneous matchings (i.e., on both of its edges the

set of colours is the same). (See the Figure in Section 3.) The number of the edges in a

column is the sum of the multiplicities of the two corresponding edges, so each column

contains exactly 6 edges. Thus each column contains at least two full cells. As we have

seen, Frobenius theorem implies that the full cells can be covered by 2 rows; two columns

or a column and a row would not suffice. The possibility of an empty cell is also excluded.

Thus in two rows we have the 6 full cells and in the other two rows we have 1 edge in

each cell. Then two of the Gi’s are K4’s, a third one is a triangle, and the fourth is the

complementary star of 3 edges. We have, e.g., that all the 6 edges of the K4 generated

by {a, b, c, d} have colors 1 and 2, and ab, ac, bc have color 3 and ad, bd, cd have color 4.

Consider abce. Its colors form the same structure that we have seen on abcd. The

triangle abc has colors 1,2 and 3, so ae, be, ce must form a star of color 4. Then, in abde

the edges ad, db, be and ea have color 4, but ab does not, contradicting the fact that each

color class is a K4, a triangle, or a star of 3 edges. �

Lemma 10. Let G = G1,2,3,4 be a colored multigraph without 3 pairwise crossing pairs.

Suppose that δ(G) > (11n − 8)/4. If G has no triangle of type (4, 4, 3) neither (4, 3, 3),

then it has no triangle with multiplicities (3, 3, 3) either.

Proof. Suppose that µ(ab) = µ(ac) = µ(bc) = 3. If for all x ∈ V \ {a, b, c} we have

µ(ax) + µ(bx) + µ(cx) ≤ 8, then (3.1) leads to

3δ(G) ≤ deg(a) + deg(b) + deg(c) ≤ 8n− 6,

a contradiction.

So there exists a vertex d joined with at least 9 edges to abc. If µ(ad) = 4, then consider

the abd triangle. Our condition implies that its third side, bd has multiplicity at most 2.

Considering acd we obtain µ(cd) ≤ 2. Thus µ(ad) + µ(bd) + µ(cd) ≤ 8, a contradiction.

Thus µ(ad) ≤ 3, implying µ(ad) = µ(bd) = µ(cd) = 3. Now we repeat the above

argument. If every x ∈ V \{a, b, c, d} is joined to abcd by at most 11 edges, then applying

(3.1) to U = {a, b, c, d} we get the contradiction

11n− 8 < 4δ(G) ≤ deg(a) + deg(b) + deg(c) + deg(d)

≤ 2 × 18 + 11(n − 4) = 11n− 8.

Thus there exists an e ∈ V with µ(ae)+µ(be)+µ(ce)+µ(de) ≥ 12. Our condition implies

again that the multiplicities of these edges are 3. So all edges of abcde have multiplicities

exactly 3. However this contradicts Lemma 9, completing the proof of Lemma 10. �

Proof of Theorem 5.

Let G3,4 be the graph formed by the edges with multiplicities 3 and 4. Let d(i)(x) be the

number of pairs xy with multiplicities i (in G) and d3,4(x) := d(3)(x) + d(4)(x). In this
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proof we abbreviate degG(x) to deg(x). For any x we have

deg(x) =
∑

i≤4

id(i)(x)

≤ 4(d(4)(x) + d(3)(x)) + 2(d(2)(x) + d(1)(x) + d(0)(x))

= 2d3,4(x) + 2(n − 1).

Thus

d3,4(x) ≥ 1

2
deg(x) − (n − 1) >

1− γ4

2
n ≥ 2

5
n. (4.1)

Here in the last step we used that γ4 = 1/5.

Lemmas 7 and 10 give that G3,4 is triangle free, and (4.1) gives that its minimum

degree exceeds 2n/5. Then the result of Andrásfai, Erdős and T. Sós [1], i.e., (1.3) can

be applied. Hence this graph is bipartite.

Let X, X be the parts of the bipartite graph G3,4. We may suppose that |X| ≤ n/2.

Then (4.1) gives

1

2
δ(G) − n < |X| ≤ n

2
≤ |X | < 2n− 1

2
δ(G). (4.2)

Let Q be the induced subgraph G2[X ], the subgraph induced by the edges of multiplicity

2 in X . We claim that this graph is connected, moreover, it has diameter 2.

Claim 11. For every a, b ∈ X there exists a vertex x ∈ X with ax, bx ∈ E(Q).

Proof. Let

N := {c : c ∈ X, µ(ac) + µ(bc) = 4}.
Apply (3.1) to U = {a, b}.

2δ(G) ≤ deg(a) + deg(b) ≤ 2 × 2 + 3(|X | − 2) + |N | + 8|X|
< 3(|X | + |X|) + 5|X| + |N | ≤ 5.5n + |N |.

Then δ(G) > (11/4)n implies that N 6= ∅. �

Claim 12. Suppose that a, b, c ∈ X and suppose that ab has colors 1 and 2. Then bc

cannot have color 3 (neither color 4).

Proof. Suppose on the contrary, that bc has color 3, and let

N := {x : x ∈ X, µ(ax) + µ(bx) + µ(cx) ≥ 11}.
Apply (3.1) to U = {a, b, c}.

deg(a) + deg(b) + deg(c) ≤ 2 × 6 + 6(|X | − 3) + 12|N |+ 10(|X| − |N |)
= 6n + 2|N |+ 4|X| − 6. (4.3)

Now δ > (8/3)n and |X | ≤ n/2 imply that |N | > 3. Fix a vertex x ∈ N and let y be

another arbitrary vertex in N . We have

µ(ax) + µ(bx) = (µ(ax) + µ(bx) + µ(cx)) − µ(cx) ≥ 11 − 4 = 7,
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and similarly, µ(ay)+µ(by) ≥ 7. Apply Lemma 6 (iii) to the a-x-b-y-a cycle. It gives that

the colors of xy are different from the colors of ab. Similarly, we get that µ(xb)+µ(xc) ≥ 7,

and also µ(yb) + µ(yc) ≥ 7. Applying Lemma 6 (iii) again to x-b-y-c-x, one obtains that

the colors of xy are different from the colors of bc, too. Thus xy can have at most one

color. We obtain

deg(x) ≤ 4|X |+ (|N | − 1) + 2(|X| − |N |) < 2n + 2|X | − |N |.

Adding the double of this to (4.3) we get

5δ(G) ≤ 2 deg(x) + deg(a) + deg(b) + deg(c)

< 2(2n + 2|X | − |N |) + 6n + 2|N | + 4|X| = 14n.

This contradicts δ > (14/5)n, finishing the proof of Claim 12. �

By Claim 11 Q is connected, so the above Claim 12 implies that it is homogeneous,

i.e., all of its edges get the same pair of colors, say colors 1 and 2. Then the Claim also

implies that all pairs of G[X ] can have only colors 1 and 2.

The only thing left to show is that the edges of G[X ] do not have color 1 (neither 2).

Suppose on the contrary that x, y ∈ X and xy has color 1. Consider

N := {a : a ∈ X, µ(ax) + µ(ay) ≥ 7}.

Apply (3.1) to U = {x, y}.

deg(x) + deg(y) ≤ 4|X| − 4 + 6|X |+ 2|N | < 4n + 2|X |+ 2|N |. (4.4)

Then the upper bound (4.2) on |X | implies that |N | > 3
2δ(G) − 3n, so |N | > n/5 ≥ 2.

Fix a vertex a ∈ N and apply Lemma 6 (iii) to a-x-b-y-a with b ∈ N . We get that ab

cannot have color 1, so it has only at most one color (namely, 2). Thus

deg(a) ≤ 4|X| + 2|X | − 2 − (|N | − 1) < 2n + 2|X| − |N |.

Adding the double of this to (4.4), we get the contradiction

4δ(G) ≤ 2 deg(a) + deg(x) + deg(y) < 8n + 2(|X | + |X|) + 2|X| ≤ 11n. �

5. The structure of Fano-free triple systems

In this section we prove Theorem 2 and then Theorem 1.

To avoid the use of o(1), o(n), we define γ2, γ5, γ6, γ7 and n2, . . . , n7. Each of these

γi = γ(γ1, . . . , γi−1) and ni = n(γi) are explicitly computable so that γi → 0 whenever

all previous γj → 0.

Proof of Theorem 2.

Let V be the set of vertices of H. Add up the degrees of H for all x ∈ V . We obtain

e(H) =
1

3

∑

x∈V

degH(x) >

(

3

4
− γ2

)(

n

3

)

.
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Here the right hand side is at least .7
(

n
3

)

for γ2 ≤ 1/20. Thus (1.1) implies that H contains

a four element set W1 := {x1, x2, x3, x4} with a complete subhypergraph K
(3)
4 on it.

Consider the link graphs G(H, xi) and restrict them to V1 := V \W1, Li := G(H, xi)[V1],

L = L1,2,3,4. This way we have deleted some edges corresponding to the triples meeting

W1 in at least 2 vertices, so e(Li) ≥ degH(xi) − 3(n − 4) − 3. Altogether

e(L) =
∑

i≤4

e(Li) ≥
∑

i≤4

degH(xi) − 12(n− 4) − 12 > (3 − 5γ2)

(|V1|
2

)

. (5.1)

Here the last inequality holds for every n > 24/γ2.

Let γ5 � γ2, say γ5 =
√

10γ2 (we suppose that γ2 is sufficiently small).

Claim 13. There exists a subset V2 ⊆ V1 with |V2| ≥ (1 − γ5)n, such that

degG(x) > (3 − γ5)|V2| (5.2)

holds for every x ∈ V2, where Gi := Li[V2] and G := G1,2,3,4.

Proof. Let V 0 := V1. Define a procedure for k = 0, 1, 2 . . . to obtain the sets V k and

graphs Lk := L[V k] as follows. If one can find a vertex vk ∈ V k such that

degLk(vk) ≤ (3 − γ5)|V k|,
then let V k+1 := V k \ {vk}. If no such vertex exists then the procedure stops. Suppose

the last set defined was V p and call it V2. By (2.1) the graphs Gi do not have 3 crossing

pairs, so Theorem 4 implies (for γ5 ≤ 1/5) that

∑

i≤4

e(Gi) ≤ 3

(|V2|
2

)

+
1

2
|V2|, (5.3)

Using the notation q := |V1| (= n − 4) we obtain from (5.1) and (5.3) that

(3 − 5γ2)

(

q

2

)

<
∑

i≤4

e(Li) ≤
∑

q≥k>q−p

(3 − γ5)k + e(G)

≤ (3 − γ5)

((

q + 1

2

)

−
(

q − p + 1

2

))

+ 3

(

q − p

2

)

+
1

2
(q − p).

Rearranging we get

γ5p(2q − p + 1) <
1

2
(q + 5p) + 5γ2

(

q

2

)

.

This gives for n > n0(γ2) that γ5pq < 5γ2q
2, i.e., p < (5γ2/γ5)q = 1

2γ5q. This implies

|V2| = q − p > (1 − γ5)(q + 4) = (1 − γ5)n for n > 10/γ2. �

By (5.2) we can apply Theorem 5 to G. We obtain the disjoint sets X and X such that

G ⊆ B(X, X). We also have, like in (4.2), that

1 − γ5

2
|V2| ≤ |X |, |X| ≤ 1 + γ5

2
|V2|. (5.4)

Without loss of generality we may suppose that X contains only edges of colors 1 and 2

(that is, no edges of G3 neither of G4), while G[X ] has edges only of colors 3 and 4.
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Let Q be the graph on X formed by the edges of G with two colors. We claim that for

every x ∈ X

degQ(x) > (1 − 5γ5)|X |. (5.5)

Indeed, we have a lower bound (5.2) for degG(x). On the other hand, x has exactly

degQ(x) neighbors in X joined by an edge of multiplicity 2, the other vertices of X are

joined by edges with multiplicities at most 1. Thus

(3 − γ5)(|X | + |X |) < degG(x) ≤ 2 degQ(x) + (|X | − degQ(x)) + 4|X|.

Rearranging, we get

degQ(x) > (1 − 2γ5)|X | − (1 + γ5)(|X | − |X |).

This and ||X | − |X || ≤ 2γ5

1−γ5

|X | (a corollary of (5.4)) give (5.5).

We will prove that H[X ] and H[X] contain almost no triples. Later we shall see that

they have no triples at all. First we show that

Claim 14. There exists a γ6 = O((γ5)
1/8) and a subset X1 ⊂ X such that |X1| >

(1 − γ6)n/2 and H has at most γ6n
3 triples in X1.

Proof. Let k := d1/
√

5γ5e. Let Y ⊂ X , |Y | ≥ 5kγ5|X | and consider Q[Y ]. (5.5) implies

that every vertex of Q[Y ] has degree at least |Y | − 5γ5|X | ≥ k−1
k |Y |. This implies (say,

via Turán’s theorem) that Y contains a k-set U1 ⊂ Y inducing a complete subgraph of

Q. Applying this to another Y disjoint from U1 we get U2. Iterating this procedure one

can cover a “large” part of X by disjoint k-sets U1, . . . , Um such that for X1 = ∪i≤mUi,

we have |X − X1| ≤ 5kγ5|X |. Moreover, the complete graphs K[U1], K[U2], . . . , K[Um]

are all subgraphs of Q.

Let 1 ≤ a < b < c ≤ m and consider H[Ua, Ub, Uc], the set of hyperedges of H meeting

all Ua, Ub and Uc in 1 element. According to our earlier observation (2.2) we have that

this hypergraph is K(3)(2, 2, 2)-free. We can apply Erdős’ theorem to it, i.e., (1.2) implies

that

e(H[Ua, Ub, Uc]) ≤ O(k11/4).

Altogether we have that

e(H[X1]) =
∑

1≤a<b<c≤m

e(H[Ua, Ub, Uc]) +
∑

1≤a<b≤m

e(H[Ua, Ua, Ub]) +
∑

a

e(H[Ua])

≤
(

m

3

)

O(k11/4) + m(m − 1)

(

k

2

)

k + m

(

k

3

)

= O(|X1|3/k1/4) = O(n3γ
1/8
5 ). �

A procedure (similar to the one leading to (5.2) and to Claim 13, but here we have to

delete vertices of ‘large’ degrees) gives the following

Claim 15. There exists a γ7 = O((γ6)
1/2) and a subset X2 ⊂ X1 such that |X2| >

(1 − γ7)n/2 and for every x ∈ X2 the degree of x in H[X2] is at most γ7n
2. �
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Claim 16. X2 contains no triple from H.

Proof. Suppose, on the contrary, that {y1, y2, y3} ∈ H, y1, y2, y3 ∈ X2. Consider the

link graphs Li := G(H, yi), and let Gi be the restriction of Li to V \X2.

Let Z be an arbitrary 4-tuple of vertices in V \X2. Consider G1[Z], G2[Z] and G3[Z].

These 3 graphs do not contain 3 pairwise crossing pairs, by (2.1). Then Lemma 6 (iv)

implies that e(G1[Z])+e(G2[Z])+e(G3[Z]) ≤ 15 instead of the maximum possible 3×
(

4
2

)

.

There are
(

n−|X2|−2
2

)

4-tuples Z ⊂ X2 containing any edge, hence
(

n − |X2| − 2

2

)

× (e(G1) + e(G2) + e(G3))

=
∑

Z⊆V \X2

(e(G1[Z]) + e(G2[Z]) + e(G3[Z]))

≤ 15×
(

n − |X2|
4

)

Therefore

e(G1) + e(G2) + e(G3) ≤
5

2
×
(

n − |X2|
2

)

.

There are at most (|X2| − 1)(n − |X2|) edges of Li joining X2 to its complement. By

Claim 15 we also have that Li has at most γ7n
2 edges in X2. Altogether we get

degH(y1) + degH(y2) + degH(y3) < 3γ7n
2 + 3|X2|(n − |X2|) +

5

2

(

n − |X2|
2

)

.

Here the right hand side is at most
(

17
16 + O(γ7)

)

n2 (because |X2| > (1 − γ7)
n
2 ), while

for the left hand side we have the lower bound condition 3 ×
(

3
8 + O(γ2)

)

n2. This con-

tradiction verifies our claim, that X2 contains no hyperedges. �

Analogously, there exists an X3 ⊆ X containing no hyperedges such that |X3| >

(1 − γ7)
n
2 .

Claim 17. For an arbitrary x 6∈ (X2 ∪X3) consider the linkgraph L := G(H, x). Either

L[X2] or L[X3] contains no edge.

If, say, L[X2] has no edge, then we can add x to X3 and repeat applying Claim 17 till

no vertex is left. This Claim will finish the proof of Theorem 2.

Proof of Claim 17. Suppose, on the contrary, that L has edges in both X2 and X3.

Since e(L) > ( 3
4 − γ2)

(

n
2

)

and there are at most O(γ7n
2) edges of L not contained in

X2 ∪X3 and there are at most n2/4 edges meeting both X2 and X3 we obtain that there

are at least

1

2

((

3

4
− γ2

)(

n

2

)

− O(γ7n
2) − 1

4
n2

)

=

(

1

16
− O(γ7)

)

n2

edges contained in one of the sides, say in X3. Then L[X3] also contains a matching
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a1b1, a2b2, . . . , ambm of size

m >

(

1

8
− O(γ7)

)

n.

Let cdx ∈ H, c, d ∈ X2. Consider the three-element sets meeting cd and two of the

matching edges, aibi, ajbj . If all of these 8 triples belong to H, then by (2.2) one can

extend to a Fano plane the triples xcd, xaibi, xajbj . Actually, not more than 6 of these

8 triples can belong to H. Thus at least 2
(

m
2

)

such triples are missing from H, especially

missing from those containing c or d. We obtain

2 ×
(

3

4
− γ2

)(

n

2

)

< degH(c) + degH(d) < 2 ×
((

n

2

)

−
(|X2| − 1

2

))

− 2

(

m

2

)

.

Here the right hand side is at most 2 ×
(

47
64

) (

n
2

)

+ O(γ7)n
2, a contradiction if γ7 is

sufficiently small. �

Since γ2 = O(γ2
5 ) = O(γ2×8

6 ) = O(γ2×8×2
7 ), Theorem 2 is true for all sufficiently small

γ2 (and n > n0(γ2)).

The Proof of Theorem 1.

Knowing Theorem 2, it is a standard calculation. Let g(n) := e(Hn) =
(

n
3

)

−
(

bn/2c
3

)

−
(

dn/2e
3

)

. First, we prove by induction that for every n

ex3(n, F) ≤ g(n) +

(

n2

3

)

. (5.6)

(Here n2 is a constant from Theorem 2.) Indeed, this inequality obviously holds for

n ≤ n2. For n > n2 suppose that e(H) = ex3(n, F). If min deg(H) > ( 3
4 − γ2)

(

n
2

)

then we

can apply Theorem 2. In this case H is 2-colorable, and e(H) ≤ g(n). Otherwise, there

exists a vertex x of small degree

degH(x) ≤
(

3

4
− γ2

)(

n

2

)

< g(n) − g(n − 1) =
3

4

(

n

2

)

+ O(n).

Applying induction to e(H \ {x}), we get

e(H) ≤ g(n − 1) +

(

n2

3

)

+ degH(x) ≤ g(n) +

(

n2

3

)

verifying (5.6) for all n.

Now suppose that n > n1, where n1 = (n2)
2/γ2. If min deg(H) > ( 3

4 − γ2)
(

n
2

)

then, as

we have seen, Theorem 2 finishes the proof. Otherwise, there exists a vertex x of small

degree

degH(x) ≤
(

3

4
− γ2

)(

n

2

)

.

Applying (5.6) to e(H \ {x}), we get

e(H) ≤ g(n − 1) +

(

n2

3

)

+ degH(x)

≤ g(n − 1) +

(

n2

3

)

+

(

3

4
− γ2

)(

n

2

)

< g(n − 1) +
3

4

(

n

2

)

< g(n).
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Thus the extremal H is 2-colorable. �
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