Triple systems not containing a Fano configuration

ZOLTÁN FÜREDI ${ }^{1 \dagger}$ and MIKLÓS SIMONOVITS ${ }^{2 \ddagger}$
${ }^{1}$ Rényi Institute of Mathematics of the Hungarian Academy of Sciences
Budapest, P. O. Box 127, Hungary-1364.
and
Department of Mathematics, University of Illinois at Urbana-Champaign Urbana, IL61801, USA
(e-mail: furedi@renyi.hu, z-furedi@math.uiuc.edu)
${ }^{2}$ Rényi Institute of Mathematics of the Hungarian Academy of Sciences
Budapest, P. O. Box 127, Hungary-1364.
(e-mail: miki@renyi.hu)

Abstract

A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the points and lines of the finite projective plane of order 2. Proving a conjecture of T. Sós, the largest triple system on n vertices containing no Fano configuration is determined (for $n>n_{1}$). It is 2-chromatic with $\binom{n}{3}-\binom{\lfloor n / 2\rfloor}{ 3}-\binom{\lceil n / 2\rceil}{ 3}$ triples. This is one of the very few non-trivial exact results for hypergraph extremal problems.

1. Turán's problem

Given a 3 -uniform hypergraph \mathcal{F}, let $\operatorname{ex}_{3}(n, \mathcal{F})$ denote the maximum possible size of a 3 -uniform hypergraph of order n that does not contain any subhypergraph isomorphic to \mathcal{F}. Our terminology follows that of [16] and [10], which are comprehensive survey articles of Turán-type extremal graph and hypergraph problems, respectively. Also see the monograph of Bollobás [2].

There is an extensive literature on Extremal Graph Problems. Nevertheless, we know much less about the hypergraph extremal problems and we have even fewer exact results on hypergraphs. One of the main contributions of this paper is that we improve an earlier result of de Caen and Füredi [5], providing the exact solution of the Fano hypergraph extremal problem.

[^0]The tetrahedron, $K_{4}^{(3)}$, i.e., a complete 3-uniform hypergraph on four vertices, has four triples $\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, x_{2}, x_{4}\right\},\left\{x_{1}, x_{3}, x_{4}\right\},\left\{x_{2}, x_{3}, x_{4}\right\}$. The complete 3-partite triple system $K^{(3)}\left(V_{1}, V_{2}, V_{3}\right)$ consists of $\left|V_{1}\right|\left|V_{2}\right|\left|V_{3}\right|$ triples meeting all the three V_{i} 's. We also use the simpler notation $K^{(3)}\left(n_{1}, n_{2}, n_{3}\right)$ if $\left|V_{i}\right|=n_{i} . K^{(3)}(2,2,2)$ is sometimes called the octahedron. The Fano configuration \mathbb{F} (or Fano plane, or finite projective plane of order 2 , or Steiner triple system, $S T S(7)$, or blockdesign $S_{2}(7,3,2)$) is a hypergraph on 7 elements, say $\left\{x_{1}, x_{2}, x_{3}, a, b, c, d\right\}$, with 7 edges $\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, a, b\right\},\left\{x_{1}, c, d\right\}$, $\left\{x_{2}, a, c\right\},\left\{x_{2}, b, d\right\},\left\{x_{3}, a, d\right\},\left\{x_{3}, b, c\right\}$.

The Complete 4-graph, the Fano hypergraph, and the Octahedron

An averaging argument shows [12] that the ratio $\operatorname{ex}_{3}(n, \mathcal{F}) /\binom{n}{3}$ is a non-increasing sequence. Therefore

$$
\pi(\mathcal{F}):=\lim _{n \rightarrow \infty} \operatorname{ex}_{3}(n, \mathcal{F}) /\binom{n}{3}
$$

exists. This monotonicity implies that $\operatorname{ex}_{3}\left(5, K_{4}^{(3)}\right) \leq\left\lfloor\binom{ 5}{3} \operatorname{ex}_{3}\left(4, K_{4}^{(3)}\right) /\binom{4}{3}\right\rfloor=7$, thus

$$
\begin{equation*}
\operatorname{ex}_{3}\left(n, K_{4}^{(3)}\right) \leq .7\binom{n}{3} \quad \text { holds for every } \quad n \geq 5 \tag{1.1}
\end{equation*}
$$

We note that the determination of $\pi\left(K_{4}^{(3)}\right)$ is one of the oldest problems of this field, due to Turán [18], who published a conjecture in 1961 that this limit value is $5 / 9$, and Erdős [8] offered $\$ 1000$ for a proof. The best upper bound, $.5935 \ldots$, is due to Fan Chung and Linyuan Lu [6].

Concerning the octahedron, a very special case of an important theorem of Erdős [7] states that

$$
\begin{equation*}
\operatorname{ex}_{3}\left(n, K^{(3)}(2,2,2)\right)=O\left(n^{3-(1 / 4)}\right) \tag{1.2}
\end{equation*}
$$

i.e., in this case the limit $\pi=0$.

The limit $\pi(\mathcal{H})$ is known only for very few cases when it is non-zero. D. de Caen and Z. Füredi [5] proved that

Theorem A.

$$
\operatorname{ex}_{3}(n, \mathbb{F})=\frac{3}{4}\binom{n}{3}+O\left(n^{2}\right)
$$

The conjectured extremal graph

This was conjectured by Vera T. Sós [17]. She also conjectured that the following hypergraph, \mathcal{H}^{n}, gives the exact value of $\operatorname{ex}_{3}(n, \mathbb{F})$. Let $\mathcal{H}(X, \bar{X})$ be the hypergraph obtained by taking the union of two disjoint sets X and \bar{X} as the set of vertices and define the edge set as the set of all triples meeting both X and \bar{X}. For \mathcal{H}^{n} we take $|X|=\lceil n / 2\rceil$ and $|\bar{X}|=\lfloor n / 2\rfloor$, (i.e., they have nearly equal sizes). Then

$$
e\left(\mathcal{H}^{n}\right)=\binom{n}{3}-\binom{\lfloor n / 2\rfloor}{ 3}-\binom{\lceil n / 2\rceil}{ 3},
$$

which is $\frac{3}{4}\binom{n}{3}+O\left(n^{2}\right)$.
The chromatic number of a hypergraph \mathcal{H} is the minimum p such that its vertex set can be decomposed into p parts with no edge contained entirely in a single part. It is well known and easy to check that the Fano plane is not two-colorable, its chromatic number is 3 . Therefore $\mathbb{F} \nsubseteq \mathcal{H}(X, \bar{X})$. Thus \mathcal{H}^{n} supplies the lower bound for $\mathrm{ex}_{3}(n, \mathbb{F})$ in Theorem A, implying that $\pi(\mathbb{F}) \geq \frac{3}{4}$.

In this paper we prove the exact version of T. Sós' conjecture, even in a stronger form, describing the extremal hypergraph as well.

Theorem 1. There exists an n_{1} such that the following holds. If \mathcal{H} is a triple system on $n>n_{1}$ vertices not containing the Fano configuration \mathbb{F} and of maximum cardinality, then it is 2 -colorable. Thus $\mathcal{H}=\mathcal{H}^{n}$ and

$$
\operatorname{ex}_{3}(n, \mathbb{F})=\binom{n}{3}-\binom{\lfloor n / 2\rfloor}{ 3}-\binom{\lceil n / 2\rceil}{ 3} .
$$

This is an easy consequence of the following structure theorem.
Theorem 2. There exist a $\gamma_{2}>0$ and an n_{2} such that the following holds. If \mathcal{H} is a triple system on $n>n_{2}$ vertices not containing the Fano configuration \mathbb{F} and

$$
\operatorname{deg}(x)>\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}
$$

holds for every $x \in V(\mathcal{H})$, then \mathcal{H} is bipartite, $\mathcal{H} \subseteq \mathcal{H}(X, \bar{X})$ for some $X \subseteq V(\mathcal{H})$.
This result is a distant relative of the following classical theorem of Andrásfai, Erdős and T. Sós [1]. Let G be a triangle-free graph on n vertices with minimum degree $\delta(G)$.

$$
\begin{equation*}
\text { If } \delta(G)>\frac{2}{5} n \text {, then } G \text { is bipartite. } \tag{1.3}
\end{equation*}
$$

The blow up of a five-cycle C_{5} shows that this bound is the best possible. They further determined

$$
\delta(n, F):=\max \{\delta(G):|V(G)|=n, \quad G \text { is } F \text {-free } \chi(G) \geq \chi(F)\}
$$

for $F=K_{p}$. The general case is still open, although Erdős and Simonovits [9] determined a number of cases and showed, e.g., that K_{p} behaves uniquely: in the case $\chi(F)=p$, $F \neq K_{p}$ one has $\delta(n, F)-\delta\left(n, K_{p}\right) \geq n /\left(6 p^{2}\right)-o(n)$.

Using the method of [5] Mubayi and Rödl [14] determined the limit π for a few more 3 -uniform hypergraphs, for all of them $\pi=3 / 4$. It is very likely that the extremal hypergraphs are 2-colorable in those cases, too.

Turán [18] also conjectured that the 2-colorable triple system \mathcal{H}^{n} is the largest $K_{5}^{(3)}$ free hypergraph. Sidorenko [15] disproved this conjecture, in this sharp form, for odd values $n \geq 9$. But it is still conjectured that it is true for all even values and it seems that $\pi\left(K_{5}^{(3)}\right)=3 / 4$ holds as well. However this question seems to be extremely difficult.

The main idea of the proof

The proof of Theorem A in [5] has already contained the possibility to prove our Theorem 1, but it had to be improved in several places. One of these places was to introduce the colored multigraphs instead of the multigraphs.

Earlier Brown, Erdős and Simonovits proved several results on multigraph extremal problems, but the excluded graphs in [11] had special form (as in Bondy-Tuza [3]), see e.g. the survey paper [4]. A method called "augmentation" was developed there which implicitly is used here as well.

De Caen and Füredi [5] applied some multigraph extremal results of Füredi and Kündgen [11]. Now we shall use colored multigraph extremal results.

Theorem 1 was proved independently and in a fairly similar way by Keevash and Sudakov [13]. Our Theorem 2 is stronger. Theorems 4 and 5 in the next section deal with new type of problems.

2. Fano plane and the links

First we describe, how we can find a Fano plane in a triple system, using multigraphs. This will lead us to further investigation of multigraphs and colored multigraphs.

Definition. The graphs G_{1}, G_{2}, \ldots (with the common vertex set V) have 3 pairwise crossing pairs if there are four vertices $\{a, b, c, d\} \subseteq V$ and three graphs $G_{i_{j}}$ such that $a d, b c \in E\left(G_{i_{1}}\right), a c, b d \in E\left(G_{i_{2}}\right)$, and $a b, c d \in E\left(G_{i_{3}}\right)$.

Notation. If G_{1}, \ldots, G_{p} are (simple) graphs with the same vertex set V, then $G_{1, \ldots, p}$ denotes a colored multigraph on V in which we join two vertices $a, b \in V$ by an edge of color i if $a b \in E\left(G_{i}\right)$. Thus, $\operatorname{deg}_{G_{1}, \ldots, p}(x)=\sum_{1 \leq i \leq p} \operatorname{deg}_{G_{i}}(x)$.

The multiplicity of a pair $\{a, b\} \subset V$ is denoted by $\mu(a b)$ and it is the number of graphs among the G_{i} 's containing $a b$ as an edge. We have $0 \leq m \leq p$. Also, the set $\left\{i: a b \in E\left(G_{i}\right)\right\}$ is called the set of colors of the pair $a b$.

As usual, $e(G)$ stands for the number of edges of G (for multigraphs it is counted with multiplicity). $G[X]$ denotes the induced (multi)graph of G spanned by the subset of vertices X. When it is possible, we shall use simplified notations, discarding parentheses and commas.

Given a triple system \mathcal{H} with vertex set V and a vertex $x \in V$, the link graph $G(\mathcal{H}, x)$
is defined as the set of pairs $\{y, z\}$ such that $\{x, y, z\}$ is a hyperedge of \mathcal{H}. Two of our simple but crucial observations are that

Claim 3. Assume that $\mathbb{F} \nsubseteq \mathcal{H}$.

(a) If $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a hyperedge of \mathcal{H} and $S=\{a, b, c, d\}$ is disjoint from $\left\{x_{1}, x_{2}, x_{3}\right\}$, then consider the three link graphs $G_{i}:=G\left(\mathcal{H}, x_{i}\right)$. We have

$$
\begin{equation*}
G_{1}, G_{2} \text { and } G_{3} \text { have no } 3 \text { pairwise crossing pairs on } S \text {. } \tag{2.1}
\end{equation*}
$$

(b) Consider a vertex x and suppose that the link graph $G=G(\mathcal{H}, x)$ contains three vertex disjoint complete graphs with vertex sets U_{i}, i.e., $G\left[U_{i}\right] \equiv K\left(U_{i}\right)$. Then the triples of \mathcal{H} meeting each U_{i} can not form an octahedron:

$$
\begin{equation*}
\mathcal{H} \cap K^{(3)}\left(U_{1}, U_{2}, U_{3}\right) \quad \text { contains no } \quad K^{(3)}(2,2,2) \tag{2.2}
\end{equation*}
$$

As a matter of fact, in the last statement four triples of appropriate position in \mathcal{H} would already yield a Fano configuration.

However, the main idea in the proof of Theorem A from [5] was to consider a $K_{4}^{(3)}$ on $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in \mathcal{H} and to show that for the four links

$$
\sum_{i \leq 4} e\left(G\left(\mathcal{H}, x_{i}\right)\right) \leq 3\binom{n}{2}+O(n)
$$

In this paper our primary aim is to prove an exact form of this and describe the corresponding extremal structures. Beside this we shall also prove some colored multigraph extremal theorems.

Let $B(X, \bar{X})$ denote the colored multigraph on the n element vertex set V with a partition $V=X \cup \bar{X}$, colored in 1, 2, 3, and 4. Assume also that all edges in X have colors 1 and 2, all edges in \bar{X} have colors 3 and 4, and all edges joining X and \bar{X} have all the four colors.

Theorem 4. Let G_{1}, \ldots, G_{4} be four graphs on the common n-element vertex set V, for $n \geq 4$. If they do not contain 3 pairwise crossing pairs, then

$$
\begin{equation*}
\sum_{i \leq 4} e\left(G_{i}\right) \leq 2\binom{n}{2}+2\left\lfloor\frac{n^{2}}{4}\right\rfloor \tag{2.3}
\end{equation*}
$$

Further, for $n>7$, equality holds in (2.3) if and only if their union $G_{1,2,3,4}$ is isomorphic (up to permuting the colors) to $B(X, \bar{X})$ with $\| X|-|\bar{X}|| \leq 1$.

For $n=4,5,6$ there are other extremal configurations, for example one can add all the four colors to every edge of the 3 -partite Turán graph $T_{n, 3}$. The case $n=7$ remains open (concerning the uniqueness of extremal configurations).

Again, Theorem 4 is strongly related to a structure theorem, the strongest result in this paper:

Theorem 5. There exists a $\gamma_{4}>0$ such that the following holds. Let G_{1}, \ldots, G_{4} be
four graphs on the common n-element vertex set V, and let $G=G_{1,2,3,4}$. Suppose that they do not contain three pairwise crossing pairs and

$$
\operatorname{deg}_{G}(x)>\left(3-\gamma_{4}\right) n
$$

holds for every vertex $x \in V$. Then $G_{1,2,3,4}$ is a submultigraph of some $B(X, \bar{X})$ (up to permuting the colors $1,2,3,4)$.

We prove this theorem with $\gamma_{4}=1 / 5$. Probably, it can be sharpened. However we cannot take a $\gamma_{4}>1 / 3$ as shown by the colored multigraph $4 T_{n, 3}$. If we color each edge of the 3 -partite Turán graph by all the 4 colors we get an example with $\delta=4\lfloor 2 n / 3\rfloor$.

3. Extremal noncrossing graphs

In this Section we prove some lemmas, then Theorem 4. As in [5], we first investigate the 4-element subsets of V.

Lemma 6. Let $G=G_{1,2,3,4}$ be a colored multigraph without 3 pairwise crossing pairs. Suppose that $n=4, V=\{a, b, c, d\}$. Then
(i) $e(G) \leq 20$, with equality if V can be split into two pairs, $V=X \cup \bar{X}$, so that the 4 edges of the complete bipartite graph $K(X, \bar{X})$ (in fact it is a C_{4}) belong to all the four graphs, however, X and \bar{X} do not belong to the same $E\left(G_{i}\right)$.
(ii) If $e(G)=19$, then G is obtained from the above example by deleting an edge.
(iii) If $\mu(a c)+\mu(a d)+\mu(b c)+\mu(b d) \geq 14$ then $a b$ and $c d$ get different colors.
(iv) $e\left(G_{1}\right)+e\left(G_{2}\right)+e\left(G_{3}\right) \leq 15$.

Proof. There are only finitely many configurations to check. A quick way to do it is as follows. Consider the 3 perfect matchings of $V=\{a, b, c, d\}, M^{1}=\{a b, c d\}, M^{2}=$ $\{a c, b d\}$ and $M^{3}=\{a d, b c\}$ and arrange the 24 possible edges of G into a 4×3 array of 'cells'. Namely, the cell in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column contains the intersection $E\left(G_{i}\right) \cap M^{j}$. A cell is called full if it contains 2 edges, otherwise it is incomplete. In this setting 3 crossing pairs corresponds to 3 full cells in different rows and columns.

The Matching Table

A very special case of Frobenius' theorem (in other words, the König-Egerváry theorem) states that if there are no 3 such cells, then all the full cells can be covered by 2 rows or 2 columns or by 1 column and 1 row. (We use these deeps theorems only to make the proof more transparent: for 4 vertices we do not really need this heavy artillery.)
Suppose $e(G) \geq 19$. Since $e(G)$ is the sum of the number of the edges in the 12 cells, there must be at least seven full cells. By Frobenius theorem, they are in 2 columns. So we may assume that all the four cells in the third column are incomplete. We arrived at the structure of G claimed in (i) and (ii).

Concerning (iii), to get the 14 edges, the columns of M^{2} and M^{3} must contain at least 6 full cells. Then Frobenius theorem gives that the first column, M^{1}, has only incomplete cells. This is exactly the assertion of (iii).

Finally, the proof of (iv) is similar to the proof of (i), but simpler.
We will frequently use the following obvious estimate for the degrees in a set of vertices $U \subset V$. (In fact, it is an identity, but we use it as an upper bound.)

$$
\begin{equation*}
\sum_{u \in U} \operatorname{deg}(u) \leq 2 \times e(U)+\sum_{x \in V \backslash U}\left(\sum_{u \in U} \mu(x u)\right) \tag{3.1}
\end{equation*}
$$

The type of a triangle (triple) $\{a, b, c\}$ is the list of the multiplicities of its pairs, $(\mu(a b), \mu(b c), \mu(c a))$. (Note that these triangles have nothing to do with our 3 -uniform hypergraphs, this section is about graphs, not hypergraphs.)

Lemma 7. Let $G=G_{1,2,3,4}$ be a colored multigraph without 3 pairwise crossing pairs. Suppose that $\delta(G)>(8 / 3) n$. Then G has no triangle of types $(4,4,4),(4,4,3),(4,3,3)$.

Proof. Suppose that $\mu(a b)=\mu(b c)=\mu(c a)=4$. Consider an $x \in V \backslash\{a, b, c\}$. Then $a b c x$ contains at most 20 edges (by Lemma 6 (i)), so $\mu(a x)+\mu(b x)+\mu(c x) \leq 8$. Adding up these inequalities for every x, (more exactly, applying (3.1) to $U=\{a, b, c\}$) we obtain

$$
\operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(c) \leq 2 \times 12+8(n-3)=8 n
$$

This contradicts our condition $\delta(G)>(8 / 3) n$. So from now on, we may suppose that there is no triangle of type $(4,4,4)$.

Suppose that $\mu(a b)=\mu(a c)=4, \mu(b c)=3$. Consider $V \backslash\{a, b, c\}$ and classify its vertices according to their sum of multiplicities:

$$
\begin{aligned}
& V_{\leq 7}:=\{x \in V \backslash\{a, b, c\}: \mu(a x)+\mu(b x)+\mu(c x) \leq 7\}, \\
& V_{\geq 8}:=\{x \in V \backslash\{a, b, c\}: \mu(a x)+\mu(b x)+\mu(c x) \geq 8\} .
\end{aligned}
$$

If $x \in V_{\geq 8}$ then $\{a, b, c, x\}$ contains at least 19 edges. So Lemma 6 (ii) gives that the edges of multiplicities 4 are contained in the 4 -cycle $a-b-x-c-a$. Thus the colors of $a x$ and $b c$ are distinct. Hence $\mu(a x)+\mu(b c) \leq 4$, implying $\mu(a x) \leq 1$. Thus

$$
\begin{equation*}
\operatorname{deg}(a) \leq 8+4\left|V_{\leq 7}\right|+\left|V_{\geq 8}\right| . \tag{3.2}
\end{equation*}
$$

This inequality, together with the lower bound on $\delta(G)$, implies that $\left|V_{\leq 7}\right|$ is large. However, then there are too few edges going to $\{a, b, c\}$, a contradiction. More formally, Lemma 6 (i) implies that $\mu(a x)+\mu(b x)+\mu(c x) \leq 9$. Apply (3.1) with $U=\{a, b, c\}$:

$$
\begin{equation*}
\operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(c) \leq 2 \times 11+7\left|V_{\leq 7}\right|+9\left|V_{\geq 8}\right| . \tag{3.3}
\end{equation*}
$$

Adding the double of (3.2) to the triple of (3.3) and using $\left|V_{\leq 7}\right|+\left|V_{\geq 8}\right|=n-3$, one gets

$$
11 \times(8 / 3) n<5 \operatorname{deg}(a)+3 \operatorname{deg}(b)+3 \operatorname{deg}(c) \leq 82+29\left(\left|V_{\leq 7}\right|+\left|V_{\geq 8}\right|\right)<29 n .
$$

This contradiction implies that there is no triangle of type $(4,4,3)$ either.
Finally, suppose that $\mu(a c)=\mu(b c)=3, \mu(a b)=4$. We show that $\mu(a x)+\mu(b x)+$ $\mu(c x) \leq 8$ for every $x \in V \backslash\{a, b, c\}$. Consider an $x \in V \backslash\{a, b, c\}$. Suppose that $\mu(a x)+$
$\mu(b x)+\mu(c x) \geq 9$. Then Lemma 6 (ii) can be applied. Thus there are (exactly) 3 edges of multiplicities 4 in $\{a, b, c, x\}$ forming a path. $a b$ could not be its middle edge, so the path is, say, $a-b-x-c$. Then the triangle $b x c$ is of type $(4,4,3)$, contradicting to our earlier observations. Apply (3.1) to $U=\{a, b, c\}$:

$$
3 \delta(G) \leq \operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(c) \leq 2 \times 10+8(n-3)=8 n-4
$$

This contradicts our condition $\delta(G)>(8 / 3) n$, completing the proof of Lemma 7 .
Define

$$
f(n):=2\binom{n}{2}+2\left\lfloor\frac{n^{2}}{4}\right\rfloor .
$$

Let \mathcal{M}_{n} be a multigraph obtained by taking four times the edges of a complete bipartite graph $K(X, \bar{X})$ on n vertices with an equipartition (X, \bar{X}) and by taking the other edges of K_{n} twice. Obviously, $e\left(\mathcal{M}_{n}\right)=f(n)$.

Lemma 8. Let \mathcal{M} be a multigraph with maximum edge-multiplicity at most 4. If \mathcal{M} has no triangle of types $(4,4,4),(4,4,3),(4,3,3)$, then $e(\mathcal{M}) \leq f(n)$. Here equality holds only if $\mathcal{M} \equiv \mathcal{M}_{n}$.

This is the part, where we do not use colors.
Proof of Lemma 8. We just copy the proof of the Turán-Mantel theorem using induction from $n-2$ to n. The cases $n=1,2,3$ are obvious.

If there is no edge of multiplicity 4 , then $e(\mathcal{M}) \leq 3\binom{n}{2} \leq f(n)$ (for $n \geq 3$) and we are done. Now suppose that $\mu(a b)=4$ and let $A:=\{x: \mu(b x) \geq 3\}$ and $B:=\{y: \mu(a y) \geq 3\}$. Our condition implies that $A \cap B=\emptyset$, thus

$$
\begin{align*}
\operatorname{deg}(a)+\operatorname{deg}(b) & \leq 4|A|+2(n-1-|A|)+4|B|+2(n-1-|B|) \\
& =4 n-4+2(|A|+|B|) \leq 6 n-4 \tag{3.4}
\end{align*}
$$

Use induction for $\mathcal{M} \backslash\{a, b\}$. We have

$$
e(\mathcal{M})=e(\mathcal{M} \backslash\{a, b\})+\operatorname{deg}(a)+\operatorname{deg}(b)-4 \leq f(n-2)+6 n-8=f(n)
$$

If here equality holds then equality holds in (3.4) too. This implies that $A \cup B=V(\mathcal{M})$ and every edge of the form $b x$ with $x \in A$ has multiplicity 4 . Thus every edge in A has multiplicity at most 2 . The same holds for B, implying

$$
e(\mathcal{M}) \leq 2\binom{|A|}{2}+2\binom{|B|}{2}+4|A||B| \leq f(n)
$$

In the case of equality every $A-B$ edge must have multiplicity four, thus \mathcal{M} is isomorphic to \mathcal{M}_{n}.

Proof of Theorem 4.

Let $e(n)$ be the maximum of $e(G)$, where $G:=G_{1,2,3,4}$. We prove by induction that $e(n)=f(n)$ for every $n \geq 4$. By Lemma 6 (i) we have $e(4)=20$.

A standard averaging argument shows that the sequence $e(n) /\binom{n}{2}$ is monotone decreasing (non-increasing). This gives that $e(5) \leq\binom{ 5}{2} e(4) /\binom{4}{2}=33.33 \ldots$. We claim that $e(5)=32$. Suppose, on the contrary, that $V=\{a, b, c, d, e\}$ and $e(G)=33$ with no three crossing pairs. Since $e(4)=20$, we have that every degree of G is at least $33-e(4)=13$, so the degree sequence of G is $(13,13,13,13,14)$. Thus every four-element subset of V contains at least 19 edges. Then Lemma 6 (ii) implies that every four-element set $X \subset V$ contains a unique disjoint pair of edges $P_{1}(X), P_{2}(X)$ with total multiplicities at most 4. Suppose that $\mu\left(P_{1}\right) \leq \mu\left(P_{2}\right)$. Suppose that $P_{1}(X)=\{a, b\}$ for $X=\{a, b, c, d\}$ with $\mu(a b):=\mu \leq 2$. Consider the sets $X=V \backslash\{c\}, V \backslash\{d\}$, and $V \backslash\{e\}$, we get that $P_{2}(X)=d e, c e$, and $c d$, respectively. We get $\mu(d e), \mu(c e)$, and $\mu(c d) \leq 4-\mu$. Hence $e(G) \leq \mu+3(4-\mu)+6 \times 4=36-2 \mu$. This is at most 32 for $\mu=2$, a contradiction. So the last case to consider is, when $\mu\left(P_{1}(X)\right) \leq 1$ for every X. In this case every $X \subset V$, $|X|=4$ contains a unique pair with multiplicity at most 1 . However, this is impossible.

From now on we suppose that $n \geq 6$ and that $e(G)$ is maximal, i.e., $e(G)=e(n)$. Consider, first, the case when G has no triangle of types $(4,4,4),(4,4,3),(4,3,3)$. Then Lemma 8 implies that $e(G) \leq f(n)$ and in case of equality the edges of multiplicity 4 form a complete bipartite graph. Then Lemma 6 (i) implies that G is isomorphic to a $B(X, \bar{X})$.

Consider the other case when G has a triangle of edge-multiplicities at least 4, 3 and 3. Lemma 7 gives that there exists a vertex x of small degree

$$
\begin{equation*}
\operatorname{deg}(x) \leq\left\lfloor\frac{8}{3} n\right\rfloor \leq 2 n-2+2\left\lfloor\frac{n}{2}\right\rfloor \tag{3.5}
\end{equation*}
$$

Applying induction to $G \backslash\{x\}$ we have

$$
\begin{equation*}
e(G) \leq e(n-1)+\operatorname{deg}(x) \leq f(n-1)+2(n-1)+2\left\lfloor\frac{n}{2}\right\rfloor=f(n) \tag{3.6}
\end{equation*}
$$

finishing the proof of $e(n)=f(n)$.
Now suppose that $e(G)=e(n)$ and $n \geq 8$. For $n \geq 10$ and for $n=8$ the inequality (3.5) is sharp, so (3.6) gives $e(G)<f(n)$. Thus in these cases $e(G)=e(n)$ implies that G is isomorphic to a $B(X, \bar{X})$.

Finally, in case of $n=9, e(G)=e(n), \delta(G)=2(n-1)+2\lfloor n / 2\rfloor=(8 / 3) n$ we can return to the proof of Lemma 7. One can sharpen it in the following way: if $\delta(G)=(8 / 3) n$ and it contains a triangle of types $(4, \geq 3, \geq 3)$, then G is isomorphic to $4 T_{n, 3}$. The details are omitted.

4. The structure of 4 noncrossing graphs

In this section first we prove two lemmas, then Theorem 5.
Lemma 9. Let $G=G_{1,2,3,4}$ be a colored multigraph without 3 pairwise crossing pairs. If $n \geq 5$ then there is an edge of multiplicity at most 2 .

Proof. There are only finitely many configurations to check. A quick way to do it is as follows. Suppose, on the contrary, that every pair has multiplicity at least 3. We may also
suppose that each edge has multiplicity exactly 3 (if not, delete some extra multiplicities) and that $n=5, V=\{a, b, c, d, e\}$. Consider the restriction of G to $\{a, b, c, d\}$ and the 4×3 cells we can form from its homogeneous matchings (i.e., on both of its edges the set of colours is the same). (See the Figure in Section 3.) The number of the edges in a column is the sum of the multiplicities of the two corresponding edges, so each column contains exactly 6 edges. Thus each column contains at least two full cells. As we have seen, Frobenius theorem implies that the full cells can be covered by 2 rows; two columns or a column and a row would not suffice. The possibility of an empty cell is also excluded. Thus in two rows we have the 6 full cells and in the other two rows we have 1 edge in each cell. Then two of the G_{i} 's are K_{4} 's, a third one is a triangle, and the fourth is the complementary star of 3 edges. We have, e.g., that all the 6 edges of the K_{4} generated by $\{a, b, c, d\}$ have colors 1 and 2 , and $a b, a c, b c$ have color 3 and $a d, b d, c d$ have color 4.

Consider $a b c e$. Its colors form the same structure that we have seen on $a b c d$. The triangle $a b c$ has colors 1,2 and 3 , so $a e, b e, c e$ must form a star of color 4. Then, in $a b d e$ the edges $a d, d b$, $b e$ and $e a$ have color 4 , but $a b$ does not, contradicting the fact that each color class is a K_{4}, a triangle, or a star of 3 edges.

Lemma 10. Let $G=G_{1,2,3,4}$ be a colored multigraph without 3 pairwise crossing pairs. Suppose that $\delta(G)>(11 n-8) / 4$. If G has no triangle of type $(4,4,3)$ neither $(4,3,3)$, then it has no triangle with multiplicities $(3,3,3)$ either.

Proof. Suppose that $\mu(a b)=\mu(a c)=\mu(b c)=3$. If for all $x \in V \backslash\{a, b, c\}$ we have $\mu(a x)+\mu(b x)+\mu(c x) \leq 8$, then (3.1) leads to

$$
3 \delta(G) \leq \operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(c) \leq 8 n-6,
$$

a contradiction.
So there exists a vertex d joined with at least 9 edges to $a b c$. If $\mu(a d)=4$, then consider the $a b d$ triangle. Our condition implies that its third side, $b d$ has multiplicity at most 2 . Considering $a c d$ we obtain $\mu(c d) \leq 2$. Thus $\mu(a d)+\mu(b d)+\mu(c d) \leq 8$, a contradiction.

Thus $\mu(a d) \leq 3$, implying $\mu(a d)=\mu(b d)=\mu(c d)=3$. Now we repeat the above argument. If every $x \in V \backslash\{a, b, c, d\}$ is joined to $a b c d$ by at most 11 edges, then applying (3.1) to $U=\{a, b, c, d\}$ we get the contradiction

$$
\begin{aligned}
11 n-8<4 \delta(G) & \leq \operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(c)+\operatorname{deg}(d) \\
& \leq 2 \times 18+11(n-4)=11 n-8 .
\end{aligned}
$$

Thus there exists an $e \in V$ with $\mu(a e)+\mu(b e)+\mu(c e)+\mu(d e) \geq 12$. Our condition implies again that the multiplicities of these edges are 3. So all edges of abcde have multiplicities exactly 3 . However this contradicts Lemma 9, completing the proof of Lemma 10.

Proof of Theorem 5.

Let $G^{3,4}$ be the graph formed by the edges with multiplicities 3 and 4. Let $d^{(i)}(x)$ be the number of pairs $x y$ with multiplicities i (in G) and $d^{3,4}(x):=d^{(3)}(x)+d^{(4)}(x)$. In this
proof we abbreviate $\operatorname{deg}_{G}(x)$ to $\operatorname{deg}(x)$. For any x we have

$$
\begin{aligned}
\operatorname{deg}(x) & =\sum_{i \leq 4} i d^{(i)}(x) \\
& \leq 4\left(d^{(4)}(x)+d^{(3)}(x)\right)+2\left(d^{(2)}(x)+d^{(1)}(x)+d^{(0)}(x)\right) \\
& =2 d^{3,4}(x)+2(n-1)
\end{aligned}
$$

Thus

$$
\begin{equation*}
d^{3,4}(x) \geq \frac{1}{2} \operatorname{deg}(x)-(n-1)>\frac{1-\gamma_{4}}{2} n \geq \frac{2}{5} n . \tag{4.1}
\end{equation*}
$$

Here in the last step we used that $\gamma_{4}=1 / 5$.
Lemmas 7 and 10 give that $G^{3,4}$ is triangle free, and (4.1) gives that its minimum degree exceeds $2 n / 5$. Then the result of Andrásfai, Erdős and T. Sós [1], i.e., (1.3) can be applied. Hence this graph is bipartite.

Let X, \bar{X} be the parts of the bipartite graph $G^{3,4}$. We may suppose that $|\bar{X}| \leq n / 2$. Then (4.1) gives

$$
\begin{equation*}
\frac{1}{2} \delta(G)-n<|\bar{X}| \leq \frac{n}{2} \leq|X|<2 n-\frac{1}{2} \delta(G) \tag{4.2}
\end{equation*}
$$

Let Q be the induced subgraph $G^{2}[X]$, the subgraph induced by the edges of multiplicity 2 in X. We claim that this graph is connected, moreover, it has diameter 2.

Claim 11. For every $a, b \in X$ there exists a vertex $x \in X$ with $a x, b x \in E(Q)$.

Proof. Let

$$
N:=\{c: c \in X, \quad \mu(a c)+\mu(b c)=4\} .
$$

Apply (3.1) to $U=\{a, b\}$.

$$
\begin{aligned}
2 \delta(G) & \leq \operatorname{deg}(a)+\operatorname{deg}(b) \leq 2 \times 2+3(|X|-2)+|N|+8|\bar{X}| \\
& <3(|X|+|\bar{X}|)+5|\bar{X}|+|N| \leq 5.5 n+|N| .
\end{aligned}
$$

Then $\delta(G)>(11 / 4) n$ implies that $N \neq \emptyset$.

Claim 12. Suppose that $a, b, c \in X$ and suppose that ab has colors 1 and 2. Then $b c$ cannot have color 3 (neither color 4).

Proof. Suppose on the contrary, that $b c$ has color 3, and let

$$
N:=\{x: x \in \bar{X}, \quad \mu(a x)+\mu(b x)+\mu(c x) \geq 11\} .
$$

Apply (3.1) to $U=\{a, b, c\}$.

$$
\begin{align*}
\operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(c) & \leq 2 \times 6+6(|X|-3)+12|N|+10(|\bar{X}|-|N|) \\
& =6 n+2|N|+4|\bar{X}|-6 \tag{4.3}
\end{align*}
$$

Now $\delta>(8 / 3) n$ and $|\bar{X}| \leq n / 2$ imply that $|N|>3$. Fix a vertex $x \in N$ and let y be another arbitrary vertex in N. We have

$$
\mu(a x)+\mu(b x)=(\mu(a x)+\mu(b x)+\mu(c x))-\mu(c x) \geq 11-4=7
$$

and similarly, $\mu(a y)+\mu(b y) \geq 7$. Apply Lemma 6 (iii) to the $a-x-b-y$ - a cycle. It gives that the colors of $x y$ are different from the colors of $a b$. Similarly, we get that $\mu(x b)+\mu(x c) \geq 7$, and also $\mu(y b)+\mu(y c) \geq 7$. Applying Lemma 6 (iii) again to $x-b-y-c-x$, one obtains that the colors of $x y$ are different from the colors of $b c$, too. Thus $x y$ can have at most one color. We obtain

$$
\operatorname{deg}(x) \leq 4|X|+(|N|-1)+2(|\bar{X}|-|N|)<2 n+2|X|-|N|
$$

Adding the double of this to (4.3) we get

$$
\begin{aligned}
5 \delta(G) & \leq 2 \operatorname{deg}(x)+\operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(c) \\
& <2(2 n+2|X|-|N|)+6 n+2|N|+4|\bar{X}|=14 n .
\end{aligned}
$$

This contradicts $\delta>(14 / 5) n$, finishing the proof of Claim 12.
By Claim $11 Q$ is connected, so the above Claim 12 implies that it is homogeneous, i.e., all of its edges get the same pair of colors, say colors 1 and 2. Then the Claim also implies that all pairs of $G[X]$ can have only colors 1 and 2 .

The only thing left to show is that the edges of $G[\bar{X}]$ do not have color 1 (neither 2). Suppose on the contrary that $x, y \in \bar{X}$ and $x y$ has color 1 . Consider

$$
N:=\{a: a \in X, \quad \mu(a x)+\mu(a y) \geq 7\} .
$$

Apply (3.1) to $U=\{x, y\}$.

$$
\begin{equation*}
\operatorname{deg}(x)+\operatorname{deg}(y) \leq 4|\bar{X}|-4+6|X|+2|N|<4 n+2|X|+2|N| . \tag{4.4}
\end{equation*}
$$

Then the upper bound (4.2) on $|X|$ implies that $|N|>\frac{3}{2} \delta(G)-3 n$, so $|N|>n / 5 \geq 2$.
Fix a vertex $a \in N$ and apply Lemma 6 (iii) to $a-x-b-y-a$ with $b \in N$. We get that $a b$ cannot have color 1 , so it has only at most one color (namely, 2). Thus

$$
\operatorname{deg}(a) \leq 4|\bar{X}|+2|X|-2-(|N|-1)<2 n+2|\bar{X}|-|N|
$$

Adding the double of this to (4.4), we get the contradiction

$$
4 \delta(G) \leq 2 \operatorname{deg}(a)+\operatorname{deg}(x)+\operatorname{deg}(y)<8 n+2(|X|+|\bar{X}|)+2|\bar{X}| \leq 11 n
$$

5. The structure of Fano-free triple systems

In this section we prove Theorem 2 and then Theorem 1.
To avoid the use of $o(1), o(n)$, we define $\gamma_{2}, \gamma_{5}, \gamma_{6}, \gamma_{7}$ and n_{2}, \ldots, n_{7}. Each of these $\gamma_{i}=\gamma\left(\gamma_{1}, \ldots, \gamma_{i-1}\right)$ and $n_{i}=n\left(\gamma_{i}\right)$ are explicitly computable so that $\gamma_{i} \rightarrow 0$ whenever all previous $\gamma_{j} \rightarrow 0$.

Proof of Theorem 2.

Let V be the set of vertices of \mathcal{H}. Add up the degrees of \mathcal{H} for all $x \in V$. We obtain

$$
e(\mathcal{H})=\frac{1}{3} \sum_{x \in V} \operatorname{deg}_{\mathcal{H}}(x)>\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{3} .
$$

Here the right hand side is at least . $7\binom{n}{3}$ for $\gamma_{2} \leq 1 / 20$. Thus (1.1) implies that \mathcal{H} contains a four element set $W_{1}:=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with a complete subhypergraph $K_{4}^{(3)}$ on it. Consider the link graphs $G\left(\mathcal{H}, x_{i}\right)$ and restrict them to $V_{1}:=V \backslash W_{1}, L_{i}:=G\left(\mathcal{H}, x_{i}\right)\left[V_{1}\right]$, $L=L_{1,2,3,4}$. This way we have deleted some edges corresponding to the triples meeting W_{1} in at least 2 vertices, so $e\left(L_{i}\right) \geq \operatorname{deg}_{\mathcal{H}}\left(x_{i}\right)-3(n-4)-3$. Altogether

$$
\begin{equation*}
e(L)=\sum_{i \leq 4} e\left(L_{i}\right) \geq \sum_{i \leq 4} \operatorname{deg}_{\mathcal{H}}\left(x_{i}\right)-12(n-4)-12>\left(3-5 \gamma_{2}\right)\binom{\left|V_{1}\right|}{2} . \tag{5.1}
\end{equation*}
$$

Here the last inequality holds for every $n>24 / \gamma_{2}$.
Let $\gamma_{5} \gg \gamma_{2}$, say $\gamma_{5}=\sqrt{10 \gamma_{2}}$ (we suppose that γ_{2} is sufficiently small).
Claim 13. There exists a subset $V_{2} \subseteq V_{1}$ with $\left|V_{2}\right| \geq\left(1-\gamma_{5}\right) n$, such that

$$
\begin{equation*}
\operatorname{deg}_{G}(x)>\left(3-\gamma_{5}\right)\left|V_{2}\right| \tag{5.2}
\end{equation*}
$$

holds for every $x \in V_{2}$, where $G_{i}:=L_{i}\left[V_{2}\right]$ and $G:=G_{1,2,3,4}$.
Proof. Let $V^{0}:=V_{1}$. Define a procedure for $k=0,1,2 \ldots$ to obtain the sets V^{k} and graphs $L^{k}:=L\left[V^{k}\right]$ as follows. If one can find a vertex $v^{k} \in V^{k}$ such that

$$
\operatorname{deg}_{L^{k}}\left(v^{k}\right) \leq\left(3-\gamma_{5}\right)\left|V^{k}\right|
$$

then let $V^{k+1}:=V^{k} \backslash\left\{v^{k}\right\}$. If no such vertex exists then the procedure stops. Suppose the last set defined was V^{p} and call it V_{2}. By (2.1) the graphs G_{i} do not have 3 crossing pairs, so Theorem 4 implies (for $\gamma_{5} \leq 1 / 5$) that

$$
\begin{equation*}
\sum_{i \leq 4} e\left(G_{i}\right) \leq 3\binom{\left|V_{2}\right|}{2}+\frac{1}{2}\left|V_{2}\right| \tag{5.3}
\end{equation*}
$$

Using the notation $q:=\left|V_{1}\right| \quad(=n-4)$ we obtain from (5.1) and (5.3) that

$$
\begin{aligned}
\left(3-5 \gamma_{2}\right)\binom{q}{2} & <\sum_{i \leq 4} e\left(L_{i}\right) \leq \sum_{q \geq k>q-p}\left(3-\gamma_{5}\right) k+e(G) \\
& \leq\left(3-\gamma_{5}\right)\left(\binom{q+1}{2}-\binom{q-p+1}{2}\right)+3\binom{q-p}{2}+\frac{1}{2}(q-p)
\end{aligned}
$$

Rearranging we get

$$
\gamma_{5} p(2 q-p+1)<\frac{1}{2}(q+5 p)+5 \gamma_{2}\binom{q}{2}
$$

This gives for $n>n_{0}\left(\gamma_{2}\right)$ that $\gamma_{5} p q<5 \gamma_{2} q^{2}$, i.e., $p<\left(5 \gamma_{2} / \gamma_{5}\right) q=\frac{1}{2} \gamma_{5} q$. This implies $\left|V_{2}\right|=q-p>\left(1-\gamma_{5}\right)(q+4)=\left(1-\gamma_{5}\right) n$ for $n>10 / \gamma_{2}$.

By (5.2) we can apply Theorem 5 to G. We obtain the disjoint sets X and \bar{X} such that $G \subseteq B(X, \bar{X})$. We also have, like in (4.2), that

$$
\begin{equation*}
\frac{1-\gamma_{5}}{2}\left|V_{2}\right| \leq|X|,|\bar{X}| \leq \frac{1+\gamma_{5}}{2}\left|V_{2}\right| \tag{5.4}
\end{equation*}
$$

Without loss of generality we may suppose that X contains only edges of colors 1 and 2 (that is, no edges of G_{3} neither of G_{4}), while $G[\bar{X}]$ has edges only of colors 3 and 4 .

Let Q be the graph on X formed by the edges of G with two colors. We claim that for every $x \in X$

$$
\begin{equation*}
\operatorname{deg}_{Q}(x)>\left(1-5 \gamma_{5}\right)|X| \tag{5.5}
\end{equation*}
$$

Indeed, we have a lower bound (5.2) for $\operatorname{deg}_{G}(x)$. On the other hand, x has exactly $\operatorname{deg}_{Q}(x)$ neighbors in X joined by an edge of multiplicity 2 , the other vertices of X are joined by edges with multiplicities at most 1. Thus

$$
\left(3-\gamma_{5}\right)(|X|+|\bar{X}|)<\operatorname{deg}_{G}(x) \leq 2 \operatorname{deg}_{Q}(x)+\left(|X|-\operatorname{deg}_{Q}(x)\right)+4|\bar{X}| .
$$

Rearranging, we get

$$
\operatorname{deg}_{Q}(x)>\left(1-2 \gamma_{5}\right)|X|-\left(1+\gamma_{5}\right)(|\bar{X}|-|X|)
$$

This and $||\bar{X}|-|X|| \leq \frac{2 \gamma_{5}}{1-\gamma_{5}}|X|$ (a corollary of (5.4)) give (5.5).
We will prove that $\mathcal{H}[X]$ and $\mathcal{H}[\bar{X}]$ contain almost no triples. Later we shall see that they have no triples at all. First we show that

Claim 14. There exists a $\gamma_{6}=O\left(\left(\gamma_{5}\right)^{1 / 8}\right)$ and a subset $X_{1} \subset X$ such that $\left|X_{1}\right|>$ $\left(1-\gamma_{6}\right) n / 2$ and \mathcal{H} has at most $\gamma_{6} n^{3}$ triples in X_{1}.

Proof. Let $k:=\left\lceil 1 / \sqrt{5 \gamma_{5}} \mid\right.$. Let $Y \subset X,|Y| \geq 5 k \gamma_{5}|X|$ and consider $Q[Y]$. (5.5) implies that every vertex of $Q[Y]$ has degree at least $|Y|-5 \gamma_{5}|X| \geq \frac{k-1}{k}|Y|$. This implies (say, via Turán's theorem) that Y contains a k-set $U_{1} \subset Y$ inducing a complete subgraph of Q. Applying this to another Y disjoint from U_{1} we get U_{2}. Iterating this procedure one can cover a "large" part of X by disjoint k-sets U_{1}, \ldots, U_{m} such that for $X_{1}=\cup_{i \leq m} U_{i}$, we have $\left|X-X_{1}\right| \leq 5 k \gamma_{5}|X|$. Moreover, the complete graphs $K\left[U_{1}\right], K\left[U_{2}\right], \ldots, K\left[U_{m}\right]$ are all subgraphs of Q.

Let $1 \leq a<b<c \leq m$ and consider $\mathcal{H}\left[U_{a}, U_{b}, U_{c}\right]$, the set of hyperedges of \mathcal{H} meeting all U_{a}, U_{b} and U_{c} in 1 element. According to our earlier observation (2.2) we have that this hypergraph is $K^{(3)}(2,2,2)$-free. We can apply Erdős' theorem to it, i.e., (1.2) implies that

$$
e\left(\mathcal{H}\left[U_{a}, U_{b}, U_{c}\right]\right) \leq O\left(k^{11 / 4}\right)
$$

Altogether we have that

$$
\begin{aligned}
e\left(\mathcal{H}\left[X_{1}\right]\right) & =\sum_{1 \leq a<b<c \leq m} e\left(\mathcal{H}\left[U_{a}, U_{b}, U_{c}\right]\right)+\sum_{1 \leq a<b \leq m} e\left(\mathcal{H}\left[U_{a}, U_{a}, U_{b}\right]\right)+\sum_{a} e\left(\mathcal{H}\left[U_{a}\right]\right) \\
& \leq\binom{ m}{3} O\left(k^{11 / 4}\right)+m(m-1)\binom{k}{2} k+m\binom{k}{3} \\
& =O\left(\left|X_{1}\right|^{3} / k^{1 / 4}\right)=O\left(n^{3} \gamma_{5}^{1 / 8}\right) .
\end{aligned}
$$

A procedure (similar to the one leading to (5.2) and to Claim 13, but here we have to delete vertices of 'large' degrees) gives the following

Claim 15. There exists a $\gamma_{7}=O\left(\left(\gamma_{6}\right)^{1 / 2}\right)$ and a subset $X_{2} \subset X_{1}$ such that $\left|X_{2}\right|>$ $\left(1-\gamma_{7}\right) n / 2$ and for every $x \in X_{2}$ the degree of x in $\mathcal{H}\left[X_{2}\right]$ is at most $\gamma_{7} n^{2}$.

Claim 16. $\quad X_{2}$ contains no triple from \mathcal{H}.

Proof. Suppose, on the contrary, that $\left\{y_{1}, y_{2}, y_{3}\right\} \in \mathcal{H}, y_{1}, y_{2}, y_{3} \in X_{2}$. Consider the link graphs $L_{i}:=G\left(\mathcal{H}, y_{i}\right)$, and let G_{i} be the restriction of L_{i} to $V \backslash X_{2}$.

Let Z be an arbitrary 4-tuple of vertices in $V \backslash X_{2}$. Consider $G_{1}[Z], G_{2}[Z]$ and $G_{3}[Z]$. These 3 graphs do not contain 3 pairwise crossing pairs, by (2.1). Then Lemma 6 (iv) implies that $e\left(G_{1}[Z]\right)+e\left(G_{2}[Z]\right)+e\left(G_{3}[Z]\right) \leq 15$ instead of the maximum possible $3 \times\binom{ 4}{2}$. There are $\binom{n-\left|X_{2}\right|-2}{2} 4$-tuples $Z \subset X_{2}$ containing any edge, hence

$$
\begin{aligned}
\binom{n-\left|X_{2}\right|-2}{2} & \times\left(e\left(G_{1}\right)+e\left(G_{2}\right)+e\left(G_{3}\right)\right) \\
& =\sum_{Z \subseteq V \backslash X_{2}}\left(e\left(G_{1}[Z]\right)+e\left(G_{2}[Z]\right)+e\left(G_{3}[Z]\right)\right) \\
& \leq 15 \times\binom{ n-\left|X_{2}\right|}{4}
\end{aligned}
$$

Therefore

$$
e\left(G_{1}\right)+e\left(G_{2}\right)+e\left(G_{3}\right) \leq \frac{5}{2} \times\binom{ n-\left|X_{2}\right|}{2}
$$

There are at most $\left(\left|X_{2}\right|-1\right)\left(n-\left|X_{2}\right|\right)$ edges of L_{i} joining X_{2} to its complement. By Claim 15 we also have that L_{i} has at most $\gamma_{7} n^{2}$ edges in X_{2}. Altogether we get

$$
\operatorname{deg}_{\mathcal{H}}\left(y_{1}\right)+\operatorname{deg}_{\mathcal{H}}\left(y_{2}\right)+\operatorname{deg}_{\mathcal{H}}\left(y_{3}\right)<3 \gamma_{7} n^{2}+3\left|X_{2}\right|\left(n-\left|X_{2}\right|\right)+\frac{5}{2}\binom{n-\left|X_{2}\right|}{2}
$$

Here the right hand side is at most $\left(\frac{17}{16}+O\left(\gamma_{7}\right)\right) n^{2}$ (because $\left|X_{2}\right|>\left(1-\gamma_{7}\right) \frac{n}{2}$), while for the left hand side we have the lower bound condition $3 \times\left(\frac{3}{8}+O\left(\gamma_{2}\right)\right) n^{2}$. This contradiction verifies our claim, that X_{2} contains no hyperedges.

Analogously, there exists an $X_{3} \subseteq \bar{X}$ containing no hyperedges such that $\left|X_{3}\right|>$ $\left(1-\gamma_{7}\right) \frac{n}{2}$.

Claim 17. For an arbitrary $x \notin\left(X_{2} \cup X_{3}\right)$ consider the linkgraph $L:=G(\mathcal{H}, x)$. Either $L\left[X_{2}\right]$ or $L\left[X_{3}\right]$ contains no edge.

If, say, $L\left[X_{2}\right]$ has no edge, then we can add x to X_{3} and repeat applying Claim 17 till no vertex is left. This Claim will finish the proof of Theorem 2.

Proof of Claim 17. Suppose, on the contrary, that L has edges in both X_{2} and X_{3}. Since $e(L)>\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}$ and there are at most $O\left(\gamma_{7} n^{2}\right)$ edges of L not contained in $X_{2} \cup X_{3}$ and there are at most $n^{2} / 4$ edges meeting both X_{2} and X_{3} we obtain that there are at least

$$
\frac{1}{2}\left(\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}-O\left(\gamma_{7} n^{2}\right)-\frac{1}{4} n^{2}\right)=\left(\frac{1}{16}-O\left(\gamma_{7}\right)\right) n^{2}
$$

edges contained in one of the sides, say in X_{3}. Then $L\left[X_{3}\right]$ also contains a matching
$a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{m} b_{m}$ of size

$$
m>\left(\frac{1}{8}-O\left(\gamma_{7}\right)\right) n
$$

Let $c d x \in \mathcal{H}, c, d \in X_{2}$. Consider the three-element sets meeting $c d$ and two of the matching edges, $a_{i} b_{i}, a_{j} b_{j}$. If all of these 8 triples belong to \mathcal{H}, then by (2.2) one can extend to a Fano plane the triples $x c d, x a_{i} b_{i}, x a_{j} b_{j}$. Actually, not more than 6 of these 8 triples can belong to \mathcal{H}. Thus at least $2\binom{m}{2}$ such triples are missing from \mathcal{H}, especially missing from those containing c or d. We obtain

$$
2 \times\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}<\operatorname{deg}_{\mathcal{H}}(c)+\operatorname{deg}_{\mathcal{H}}(d)<2 \times\left(\binom{n}{2}-\binom{\left|X_{2}\right|-1}{2}\right)-2\binom{m}{2} .
$$

Here the right hand side is at most $2 \times\left(\frac{47}{64}\right)\binom{n}{2}+O\left(\gamma_{7}\right) n^{2}$, a contradiction if γ_{7} is sufficiently small.

Since $\gamma_{2}=O\left(\gamma_{5}^{2}\right)=O\left(\gamma_{6}^{2 \times 8}\right)=O\left(\gamma_{7}^{2 \times 8 \times 2}\right)$, Theorem 2 is true for all sufficiently small $\gamma_{2}\left(\right.$ and $\left.n>n_{0}\left(\gamma_{2}\right)\right)$.

The Proof of Theorem 1.

Knowing Theorem 2, it is a standard calculation. Let $g(n):=e\left(\mathcal{H}^{n}\right)=\binom{n}{3}-\binom{\lfloor n / 2\rfloor}{ 3}-$ $\binom{\lceil n / 2\rceil}{ 3}$. First, we prove by induction that for every n

$$
\begin{equation*}
\operatorname{ex}_{3}(n, \mathbb{F}) \leq g(n)+\binom{n_{2}}{3} \tag{5.6}
\end{equation*}
$$

(Here n_{2} is a constant from Theorem 2.) Indeed, this inequality obviously holds for $n \leq n_{2}$. For $n>n_{2}$ suppose that $e(\mathcal{H})=\operatorname{ex}_{3}(n, \mathbb{F})$. If $\min \operatorname{deg}(\mathcal{H})>\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}$ then we can apply Theorem 2. In this case \mathcal{H} is 2-colorable, and $e(\mathcal{H}) \leq g(n)$. Otherwise, there exists a vertex x of small degree

$$
\operatorname{deg}_{\mathcal{H}}(x) \leq\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}<g(n)-g(n-1)=\frac{3}{4}\binom{n}{2}+O(n) .
$$

Applying induction to $e(\mathcal{H} \backslash\{x\})$, we get

$$
e(\mathcal{H}) \leq g(n-1)+\binom{n_{2}}{3}+\operatorname{deg}_{\mathcal{H}}(x) \leq g(n)+\binom{n_{2}}{3}
$$

verifying (5.6) for all n.
Now suppose that $n>n_{1}$, where $n_{1}=\left(n_{2}\right)^{2} / \gamma_{2}$. If $\min \operatorname{deg}(\mathcal{H})>\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}$ then, as we have seen, Theorem 2 finishes the proof. Otherwise, there exists a vertex x of small degree

$$
\operatorname{deg}_{\mathcal{H}}(x) \leq\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2} .
$$

Applying (5.6) to $e(\mathcal{H} \backslash\{x\})$, we get

$$
\begin{aligned}
e(\mathcal{H}) & \leq g(n-1)+\binom{n_{2}}{3}+\operatorname{deg}_{\mathcal{H}}(x) \\
& \leq g(n-1)+\binom{n_{2}}{3}+\left(\frac{3}{4}-\gamma_{2}\right)\binom{n}{2}<g(n-1)+\frac{3}{4}\binom{n}{2}<g(n) .
\end{aligned}
$$

Thus the extremal \mathcal{H} is 2 -colorable.

6. Acknowledgements

The authors are greatful to the referees for their careful work.

References

[1] Andrásfai, B., Erdős, P. and T. Sós, V. (1974) On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Math. 8 205-218.
[2] Bollobás, B. (1978) Extremal Graph Theory, Academic Press, London.
[3] Bondy, A. and Tuza, Z. (1997) A weighted generalization of Turán's theorem. J. Graph Theory 25 267-275.
[4] Brown, W. G. and Simonovits, M. (2002) Multigraph extremal problems. in: Paul Erdős and his Mathematics, Springer Verlag, pp. 1-46.
[5] de Caen, D. and Füredi, Z. (2000) The maximum size of 3-uniform hypergraphs not containing a Fano plane. J. Combin. Theory Ser. B 78 274-276.
[6] Chung, F. R. K. and Lu, Linyuan (1999) An upper bound for the Turán number $t_{3}(n, 4)$. J. Combin. Theory Ser. A 87 381-389.
[7] Erdős, P. (1964) On extremal problems of graphs and generalized graphs. Israel Journal of Math. 2 183-190.
[8] Erdős, P. (1981) On the combinatorial problems which I would most like to see solved. Combinatorica 1 25-42.
[9] Erdős, P. and Simonovits, M. (1973) On a valence problem in extremal graph theory. Discrete Math. 5 323-334.
[10] Füredi, Z. (1991) Turán type problems. in: Surveys in Combinatorics 1991, edited by A. D. Keedwell, Cambridge University Press. pp. 253-300,
[11] Füredi Z. and Kündgen, A. (2002) Turán problems for integer-weighted graphs. J. Graph Theory 40 195-225.
[12] Katona, G., Nemetz, T. and Simonovits, M. (1964) On a problem of Turán in the theory of graphs. Mat. Lapok 15 228-238.
[13] Keevash, P. and Sudakov, B. The exact Turán number of the Fano plane. To appear in Combinatorica.
[14] Mubayi, D. and Rödl, V. (2002) On the Turán number of triple systems. J. Combin. Th. Ser. A 100 136-152.
[15] Sidorenko, A. (1995) What we know and what we do not know about Turán numbers. Graphs and Combin. 11 179-199.
[16] Simonovits, M. (1997) Paul Erdős' influence on extremal graph theory. in: The Mathematics of Paul Erdős II, (eds R.L. Graham, J. Nešetřil), Algorithms and Combinatorics, Vol. 14, Springer Verlag, 148-192.
[17] T. Sós, V. (1976) Some remarks on the connection of graph theory, finite geometry and block designs. in: Teorie Combinatorie, Tomo II., Accad. Naz. Linzei, Roma, pp. 223-233.
[18] Turán, P. (1961) Research problems. MTA Mat. Kutató Int. Közl. 6 417-423.

[^0]: \dagger Research supported in part by a Hungarian National Science Foundation grant OTKA T 032452, and by a National Science Foundation grant DMS 0140692.
 \ddagger Research supported by the Hungarian National Science Foundation grants OTKA T 026069, T 038210, and T 0234702.

