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The most important thing:

Happy birthday, Endre!
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Streamlined?
Possible updated version on my homepage: www.renyi.hu/˜miki

This is basically identical with the one I used for my lecture (Endre
Szemerédi’s 70th birthday, Budapest, 2010 August)

The differences:
Several misprints are corrected.
Certain references are added.
Certain explanations are added, often IN BLACK.
Some repetitions (needed in the lecture) are eliminated
Stepping is (mostly) eliminated.
“Improved” colouring.

Disclaimer:
There is no way to mention all the important results. I do not even try here!
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Extremal graph theory Abstract

is one of the oldest areas of Graph Theory. In the 1960’s it started
evolving into a wide and deep, connected theory.

As soon as Szemerédi has proved his Regularity Lemma, several aspects
of the extremal graph theory have completely changed.

Several deep results of extremal graph theory became accessible only
through the application of this central result, the Regularity Lemma

Also, large part of Ramsey Theory is very strongly connected to
Extremal graph theory. Application of the Regularity Lemma in these area
was also crucial.

The first difficult result of in Ramsey–Turán theory was also proved
using (an earlier version of) the Regularity Lemma, by Szemerédi.

I will survey this area.
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Map to the lecture/slides
Some references, homepages

General asymptotics

Very superficially:

Szemeredi Regularity Lemma

How to use RL?

New developments
Hypergraphs

Algorithmic aspects
Subgraphs of random graphs

Classification of problems
Stability of extremal structures

Finer asymptotics, decomposition
Erdos−Stone−Simonovits

Introduction, Extremal graph theory in general

The Bollobas−Erdos construction
Conjectures

Ramsey−Turan problems
Ramsey−Turan problems
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Some references

KOMLÓS-SIMONOVITS, Szemeŕedi regularity lemma, and its

applications in graph theory, Combinatorics, Paul Erdős is eighty, Vol. 2

(Keszthely, 1993), 295–352, János Bolyai Math. Soc., Budapest, 1996;;

LOVÁSZ, LÁSZLÓ; SZEGEDY, BAL ÁZS: Szemeŕedi’s lemma for

the analyst. Geom. Funct. Anal. 17 (2007), no. 1, 252–270.

V. RÖDL, M. SCHACHT: Regularity Lemmas for graphs, Bolyai

volume, MS20. (Lov́asz Birthday)

N. ALON, E. FISCHER, M. KRIVELEVICH , M. SZEGEDY,

Efficient testing of large graphs, Combinatorica 20 (2000),451–476.

Kühn, Daniela and Osthus, Deryk: Embedding large subgraphs into

dense graphs. Surveys in combinatorics 2009, 137–167, London Math. Soc.

Lecture Note Ser., 365, Cambridge Univ. Press, Cambridge, 2009.

Regularity Lemmas and Extremal Graph Theory – p. 6



Some references II:
end of a long list

Yoshi Kohayakawa and Vojta Rödl: Szemerédi’s regularity lemma
and quasi-randomness, Recent Advances in Algorithmic Combinatorics (B.
Reed and C. Linhares-Sales, eds.), CMS Books Math./Ouvrages Math.
SMC, vol. 11, Springer, New York, 2003, pp. 289-351
. . .
. . .

T.C. TAO, A variant of the hypergraph removal lemma, preprint;
http://arxiv.org/abs/math.CO/0503572

T.C. TAO, Szemerédi’s regularity lemma revisited, preprint;
http://arxiv.org/abs/math.CO/0504472

What is left out, or just mentioned?
Sparse regularity lemma
Many applications
Connection to Quasi-randomness
Hypergraph regularity
. . . and many other things Regularity Lemmas and Extremal Graph Theory – p. 7



Some homepages on Regularity

NOGA ALON: http://www.tau.ac.il/˜nogaa

YOSHI KOHAYAKAWA : http://www.ime.usp.br/˜yoshi

DERYK OSTHUS:
http://web.mat.bham.ac.uk/D.Osthus/bcc09dkdo2.pdf

Erdős homepage(s), e.g.
www.renyi.hu/˜p erdos

This contains Erd̋os’
papers up to 1989

My homepage: www.renyi.hu/˜miki

Some related papers,
Bollobás-Erdős-Simonovits-Szemerédi
Bollobás-Erdős-Hajnal-Sós,
Bollobás-Erdős-Hajnal-Sós-Simonovits
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Extremal Graph Theory

Gn, is always a graph on n vertices. Tn,p = Turán graph,
Kr(m1, . . . ,mr) is the complete r-partite graph with mi vertices in its ith

class.

ex(n,L) = max
L6⊆Gn

for L∈L

e(Gn)

Turán Theorem
Determine or estimate ex(n,L).
Describe the structure of extremal graphs
Describe the structure of almost extremal graphs

= Stability Results
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Erd ős-Stone-Sim.
Put

p := min
L∈L

χ(L) − 1.

Then

ex(n,L) =

(

1 −
1

p

)(

n

2

)

+ o(n2) as n → ∞.

Sharpness:
The Turán graph Tn,p provides the lower bound
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Erdős-Stone-Sim. (A)
This means that the asymptotics is independent of the fine structure of the
forbidden graphs, it depends only on the minimum chromatic number.

Another interpretation would be: the asymptotics is the same for a sample
graph L and its arbitrary blown-up versions L(t),

where blown-up means that each vertex ofL is replaced
by t new vertices and the new vertices are joined if the
originals were joined.

These two interpretations are the same for ordinary graphs but not
in some other settings. (Not for Ramsey-Turán!)

See also W. G. BROWN AND SIM :
Digraph extremal problems, hypergraph extremal problems, and the
densities of graph structures. Discrete Math. 48 (1984), no. 2-3, 147–162.
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Erd ős-Simonovits structural description of the
extremal graphs. Role of the Decomposition Class

GivenL, if Sn is L-extremal, then it has anoptimal vertex-partition
(U1, . . . , Up) such that

∑

e(Ui) = o(n2), (few horizontal edges)

the number ofvertices of horizontal degrees > εn is h = Oε(1).

Hereoptimal means that
∑

e(Ui) is minimal.

The general picture:

Exluded!
High horiz. 

degrees

W

W

W

1

2

3

The finer structure is governed by theDecomposition class M:

Definition of the Decomposition classM. M is in M = M(L) if there
are some L ∈ L and t for which L ⊂ M ⊗ Kp−1(t, . . . , t).
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Decomposition class explained (A)
If each L ∈ L is p + 1-chromatic, then M is the family of those bipartite M
that are obtained from some L ∈ L by p + 1-colouring L and then taking two
colour-classes and the bipartite subgraph defined by them.
Of course, it is enough to take the minimal M ’s.

If L has an edge e for which χ(M − e) = p then M = {K2} (one edge).
Here e is called colour-critical edge. This is the case for Kp+2, C2ℓ+1, the
Grötzsch-Mycelski graph, and many other graphs.

Theorem Critical edge. (Erdős for p = 2 implicitly, Sim. in this form
and for general p.) Tn,p is extremal forn > n0(L) if and only if χ(L) =
p + 1 andL has a critical edge.

The dodecahedron’s decomposition consists of
6 independent edges.
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Structure of (almost) extremal graphs
ERDŐS-SIM : Stability
The almost-extremal graphs are almost Tn,p

Distance of graphs, ρ(Gn,Hn): How many edges of Gn should be changed
to get a G′ isomorphic to Hn?

Put
p := min

L∈L
χ(L) − 1

If p > 1 and (Sn) is an extremal sequence for L, then

ρ(Sn, Tn,p) = o(n2) as n → ∞.

My favourite problem is:
When is Sn a p-chromatic K(n1, . . . , np) + edges?

i.e. one has to add only, not to delete edges. . .
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Classification of Extremal problems

Tn,p is extremal: K2 ∈ M. (There is a colour-critical edge in L.)
Linear error-term: M contains a tree (or forest)

ex(n,L) = e(Tn,p) + O(n).

Example : Dodecahedron, Petersen, Icosahedron
(Askd by Turán, proved by Sim.)

C

B

A

GH

S

Q
E

R

F

K

H(n,p,s)

s−1

Superlinear error term: iff each M ∈ M has a cycle.

ex(n,L) > e(Tn,p) + cn1+α.

Example : Octahedron Regularity Lemmas and Extremal Graph Theory – p. 15



Density,ε-regularity
Density

d(X,Y ) =
e(X,Y )

|X||Y |
.

ε-regularity

Given a graph Gn and two disjoint vertex sets X ⊆ V , Y ⊆ V , the pair
(X,Y ) will be called ε–regular, if for every X∗ ⊂ X and Y ∗ ⊂ Y satisfying
|X∗| > ε|X| and |Y ∗| > ε|Y |,

|d(X∗, Y ∗) − d(X,Y )| < ε.
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The regularity lemma

As soon as Szemerédi has proved his Regularity Lemma, several aspects
of the extremal graph theory have completely changed.

Theorem≈ (Szemerédi) For everyε > 0 every graphGn has a vertex-
partition into a bounded number of classesU1, . . . , Uk of almost equal sizes
so that for all but at mostε

(

k
2

)

pairsi, j the bipartite graph (generated byGn)
is ε-regular
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The regularity lemma, precisely (A)

Theorem (Szemerédi) For everyε > 0 and integerk every graphGn

has a vertex-partition into the classesU1, . . . , Uk of almost equal sizes, for
someκ < k < K(ε, κ) so that for all but at mostε

(

k
2

)

pairsi, j the bipartite
graphs (generated byGn) areε-regular.

Originally there was an exceptional classU0 and all the other classes had
exactly the same size. The vertices of theU0 can be distributed among the
other classes, in the original version all the other classeswere of exactly the
same size.
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The meaning of the regularity lemma
All graphs can be approximated by generalized random graphs (in some
sense) where

Definition of Generalized Random Graphs:
Given an r × r matrix of probabilities, (pij)r×r and a vector (n1, . . . , nr)

take r groups of vertices, Ui and for each pair of vertices
xi ∈ Ui and xj ∈ Uj , join them independently, with probability pij.

U

Ur

1

U

U

j

i

ijp
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The reduced (or cluster) graph

Fix two parameters: ε and τ ≫ ε
Start with the Szemerédi partition U1, . . . , Up.
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The reduced (or cluster) graph

Excep−
tional

set

Build a graph on the classes: the vertices of Hν are the classes
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The reduced (or cluster) graph

tional
Excep−

set

Connect the pairs of classes (Ui, Uj) by a cluster-edge if they are classes
ε-regularly connected, with density d(Ui, Uj) > τ
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The reduced (or cluster) graph

Excep−
tional

set

Reduced Graph
The vertices of U0 are often distributed (randomly) in the others
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Where doesRegularity Lemma come
from?

There was an earlier “complicated” version

The quantitative Erdős–Stone problem: Given a graph Gn with

e(Gn) ≥

(

1 −
1

p

)(

n

2

)

+ cn2, (1)

define

m(n, p, c) = max{t : Kp+1(t, t, . . . , t) ⊂ Gn subject to (1)}.

Bollobás-Erdős
Bollobás-Erdős-Sim.
Chvátal-Szemerédi: This is where Endre beautified/replaced the

complicated Regularity Lemma.
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The “complicated” version (A)
To prove the famous Szemerédi theorem on arithmetic progressions Endre
used a more complicated Regularity Lemma:

It was applied to dense bipartite graphs G[A,B] where one had a
partition (U1, . . . , Uk) of A and for each i, B had a partition (Wi,1, . . . ,Wi,ℓ)

so that almost all pairs of classes (Ui,Wi,j) were ε-regular.
This was enough for the famous theorem

rk(n) = o(n),

i.e. for any fixed k,

Szemerédi: every infinite sequence of integers of positive upper density
contains a k-term arithmetic progression.

This was used in many early applications, not the “new” regularity
lemma. Regularity Lemmas and Extremal Graph Theory – p. 25



Chvátal, V.; Szemerédi, E.
Notes on theErdős–Stonetheorem.

Let m = m(c, d, n) be the largest natural number such that every graph with
n vertices and at least 1

2
n2(1 − 1

d
) + cn2 edges contains a Kd+1(m, . . . ,m)).

Erdős–Stone : m(c, d, n) → ∞. Very weak estimate
Erdős–Bollobás: m ≥ η(d, c) log n.

Theorem (Bollobás, Erdős, Sim.) For some positive constanta,

m(c, d, n)

log n
≥

a

d log(1/c)
.

Conjecture (Bollobás, Erdős, Sim.) For some positive constantb,

t(c, d, n)

log n
≥

b

log(1/c)
.
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Chvátal, V.; Szemerédi, E.
Notes on theErdős–Stonetheorem. (cont)

Erdős–Stone : m(c, d, n) → ∞. Very weak estimate
Erdős–Bollobás: m ≥ η(d, c) log n.

Theorem (Bollobás, Erdős, Sim.) For some positive constanta,

m(c, d, n)

log n
≥

a

d log(1/c)
.

Conjecture (Bollobás, Erdős, Sim.) For some positive constantb,

m(c, d, n)

log n
≥

b

log(1/c)
.

Chvátal Szemerédi: J. London Math. Soc. (2) 23 (1981), no. 2, 207–214;
Proves the B-E-S conjecture:

lim
n→∞

m(c, d, n)

log n
≥

1

(500 log(1/c))
.
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Success?
Several deep results of extremal graph theory became accessible only
through the application of this central result. Some proofs are more
“transparent” if we use the Regularity Lemma, though they can be proved
also without it.

Ramsey-Turán of K4

Let RT (n,L, o(n)) denotes the maximum edge-density of a
graph-sequence Gn with L 6⊆ Gn and with independence
number α(Gn) = o(n). Determine RT (n,K4, o(n)).

(Many similar questions were solved by Erdős-Brown-Sós.)

Independent matching (Ruzsa-Szemerédi), f(n, 6, 3)

Brown, Erdős, and T. Sós asked (among others):
How many triples can a 3-uniform hypergraph have without
containing 6 vertices and 3 edges on this 6-tuple?

Opens up a gate for elementary proofs of rk(n) = o(n)?
Regularity Lemmas and Extremal Graph Theory – p. 28



The secret of success of the
Regularity Lemma

It makes possible to reduce

embedding into deterministic structures
to

embedding into randomlike objects

Embedding into a random object is mostly easier.
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Ramsey Theory
Also, large part of Ramsey Theory is very strongly connected to Extremal
Graph theory. Application of the Regularity Lemma in these area was also
crucial.
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Stability (Expanded)

1. The extremal problem
We have a property P, and consider the extremal problem of Gn 6∈ P.
We conjecture that Sn is an extremal graph (hypergraph, . . . ).

2. What is the stability?
The almost extremal structures (for P) are very similar to the extremal
ones.

3. Applying the stability method, to prove exact results

(a) Pick a very important, characteristic property A of the conjectured
extremal structure Sn. (Examples: p-chromatic, . . . )

(b) Show that if a graph (hypergraph, . . . ) Gn 6∈ (P ∪ A) then e(Gn) is
much smaller than e(Sn).

(c) So we may assume that the extremal graphs Sn have property A.
(d) Knowing that they have property A, we prove the exact conjecture.
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Füredi lecture:
The regularity lemma would immediately imply the
Erdős-Simonovits Stability results if we knew the stability for Kp+1.

Direct proofs for this stability

Lovász-Sim.:
On the number of complete subgraphs of a graph. II. Studies in pure

mathematics, 459–495, Birkhäuser, Basel, 1983.
On the number of complete subgraphs of a graph. Proceedings of

the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen,
1975), pp. 431–441. Congressus Numerantium, No. XV, Utilitas Math.,
Winnipeg, Man., 1976.

Füredi: His lecture here, using the Zykov symmetrization (see also
Erdős, . . . ) proved the stability directly for Kp. This implies the
Erdős-Simonovits Stability results, via the Regularity Lemma
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Origins of property testing?

Bollobás-Erdős-Simonovits-Szemerédi

Is it true that if one cannot delete εn2 edges from Gn then C2ℓ+1 ⊆ Gn

for some ℓ = Oε(1)?

Solved in two ways:

with Regularity Lemma
without Regularity Lemma

This is an early application of property testing, asked by Erdős: those days
property testing did not exist.

See also
Komlós: Covering odd cycles. Combinatorica 17 (1997), no. 3, 393–400.
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Ramsey-Turán problems
Simplest case:

Problem (Erdős-Sós). Given a sample graphL and we assume that

L 6⊆ Gn and α(Gn) ≤ m,

what is the maximum ofe(Gn)? RT(n,L,m)

Problem (Erdős-Sós). Given a sample graphL and and a sequence of
graphs,(Gn), and we assume that

L 6⊆ Gn and α(Gn) = o(n),

what is the maximum ofe(Gn)? RT(n,L, o(n))
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Ramsey-Turán problems II

Erdős-Sós: they determine RT(n,K2k+1, o(n)). (odd case)

TheoremK4 (Szemerédi)

RT(n,K4, o(n)) =
n2

8
+ o(n2).

Bollobás-Erdős

Erdős-Hajnal-Sós-Szemerédi: they determine RT(n,K2k, o(n)).

(even case)
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How to prove ...

Consider the regular partition
take the reduced graph
Show that it does not contain a K3

Show that the densities cannot (really) exceed 1

2

apply Turán’s theorem
Regularity Lemmas and Extremal Graph Theory – p. 36



Ramsey-Turán problems IV
Continuation, among others, multigraph technique

Erdős-Hajnal-Sim.-Sós-Szemerédi I

– Erdős-Hajnal-Sim.-Sós-Szemerédi II
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Erdős–Sós: For hypergraph questions
completely new phenomena occur
Hypergraph extremal density (r-uniform):

π = π(L) = lim sup

{

e(Hn)
(

n
r

) : L 6⊆ Hn

}

Ramsey-Turán:

λ = λ(L) = lim sup

{

e(Hn)
(

n
r

) : L 6⊆ Hn and α(Hn) = o(n)

}

,

where α(H) = maximum number of independent vertices in H.
Erdős and Sós asked if there exist r-uniform hypergraphs L for which
π(G) > λ(G) > 0.

Frankl + Rödl Combinatorica 8 (1988), no. 4, 323–332, existence
Sidorenko: On Ramsey-Turán numbers for 3-graphs. J. Graph

Theory 16 (1992), no. 1, 73–78. Construction L = 3-uniform hypergraph,
V (L) = {1, 2, · · · , 7} and E(L) = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 5},
{2, 6, 7}, {3, 4, 5}, {3, 6, 7}, {4, 6, 7}, {5, 6, 7}} satisfies π(G) > λ(G) > 0.

Mubayi + Rödl Supersaturation for Ramsey-Turán problems.
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Ramsey-Turán problems: open problems

Problem (Erdős-Sós). Is it true that

RT(n,K3(2, 2, 2), o(n)) = o(n2)?

(Related constructions of Rödl)

Problem (Sim.). Is it true, that for anyL, “the”

RT(n,L, o(n))

-extremal sequence (???) can be approximated by ageneralized random
graph sequence where all the probabilities are0, 1

2
, 1.

Motivation: Is there always a Bollobás-Erdős type construction that is

asymptotically extremal?
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My meta-conjecture

Matrix graphs

“Conjecture”:
Whenever we try to prove a result where the extremal structure is
described by a 0-1 matrix-graph, then the Regularity Lemma can be
eliminated from the proof.
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A counterexample?

Ruzsa-Szemerédi: f(n, 6, 3) = o(n2)

Why is this important?

– Füredi: Solution of the Murty-Simon (Plešnik) conjecture:

The maximum number of edges in a minimal graph of diameter 2. J. Graph
Theory 16 (1992), no. 1, 81–98.

Diameter-critical if the deletion of any edge increases the diameter.

Theorem 1(Füredi). Let Gn be a simple graph of diameter 2 on n > n0 vertices,
for which the deletion of any edge increases the diameter. Then e(Gn) ≤ ⌊1

4
n2⌋

with equality holding if and only if G ∼= K⌈n

2
⌉,⌊n

2
⌋.

Many open problems.
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Extremal Subgraphs of random graphs

Babai-Sim.-Spencer, J. Graph Theory 14 (1990), no. 5, 599–622.

Theorem BSS (Simplified) There is a constantp0 < 1

2
such that

if Rn is a random graph with edge-probabilityp > p0 andBn is the largest
bipartite subgraph of it,Fn is the largestK3-freesubgraph, thenFn = Bn

(more precisely,Fn is bipartite!)

many generalizations

Here we really needed the regularity lemma

Generalizations to sparse random graphs, where the sparse
regularity lemma is needed
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What about sparse structures?

Kohayakawa-Rödl lemma

Regularity Lemma is applied typically to dense graphs. (Gn) is sparse if
e(Gn) = o(n2). Kohayakawa-Rödl extends Regularity Lemma to some
sparse graph sequences, typically to non-random subgraphs of sparse
random graph sequences.
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Connection to quasi-randomness

A sequence of graphs is p-quasi-random iff it has a (sequence of) regular
Szemerédi partitions, with densities tending to p.

Some of our theorems (Sim.-Sós, on quasirandomness) do not contain
anything related to Regularity Lemma . Can one prove it without using the
Regularity Lemma ?
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Some new results
Gyárfás-Ruszinkó-Sárközy-Szemerédi
Ramsey, three colours, paths

Kohayakawa-Sim.-Skokan
Ramsey, three colours, odd cycles

Balogh-Bollobás-Sim.
Typical structure of L-free graphs

Łuczak-Sim.-Skokan
many colours, odd cycles
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Property Testing?

Bollobás-Erdős-Simonovits-Szemerédi
Alon-Krivelevich. . .
Alon-Schapira

Alon, Noga; Fischer, Eldar; Krivelevich, Michael; Szegedy, Mario:
Efficient testing of large graphs. Combinatorica 20 (2000), no. 4, 451–476.

Lovász-Balázs Szegedy: Szemerédi’s lemma for analyst,
Geom. Funct. Anal. 17 (2007) (1) 252–270.

ábor Elek, . . .

It turns out that property testing and Regularity Lemma are extremely
strongly connected to each other, see e.g. Alon-Shapira
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Algorithmic aspects?

Alon-Duke-Leffmann-Rödl-Yuster:
The algorithmic aspects of the Regularity Lemma, Proc. 33 IEEE FOCS,
Pittsburgh, IEEE (1992), 473-481.

see also J. of Algorithms 16 (1994), 80-109.

Strange situation:

Given a partition, it is co-NPC to decide if it is ε-regular,
However,

One can produce and ε-regular partition in polynomial time:

Theorem ADLRY (A constructive version of the Regularity Lemma ) For
everyε > 0 and every positive integert there is an integerQ = Q(ε, t) such that
every graph withn > Q vertices has anε-regular partition intok + 1 classes,
wheret ≤ k ≤ Q.
For every fixedε > 0 and t ≥ 1 such a partition can be found inO(M(n))
sequential time, whereM(n) is the time for multiplying two n × n matrices
with 0, 1 entries over the integers. Regularity Lemmas and Extremal Graph Theory – p. 47



What about hypergraphs?

connected to
– Counting lemma
– Removal lemma

The results are much more complicated than for ordinary graphs
– Weak hypergraph regularity lemma
– Strong version
– Counting lemma
– Removal lemma

The applications are also much more complicated
– Rödl, Nagle, Skokan, Schacht,. . .
– Tim Gowers, Terrence Tao
– Ben Green

Disclaimer again: I have not tried to cover everything!
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The most important thing, again:

Happy birthday, Endre!
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