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Paul Turán’s influence in combinatorics

Miklós Simonovits

Abstract. This paper is a survey on the topic in extremal graph theory influenced directly or
indirectly by Paul Turán. While trying to cover a fairly wide area, I will try to avoid most of
the technical details. Areas covered by detailed fairly recent surveys will also be treated only
briefly. The last part of the survey deals with random±1 matrices, connected to some early
results of Szekeres and Turán.
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1. Preface

Paul Turán was one of my professors who had the greatest influence, – not only on
me, on my way of thinking of Mathematics, of doing Mathematics, but – on my whole
mathematical surrounding.

Once I read that Hilbert was the last polyhistor in Mathe-
matics. This meant that after him not too many people had an
overview over the whole Mathematics. I do not really know if
this is true or not: I know only that “most” of the mathematicians
I know concentrate basically on one or two fields, while some of
my professors, like Erd̋os, Turán, and Rényi were covering sev-
eral parts of Mathematics. I think of Turán as a polyhistor in
Mathematics.

YES: Today only the best can excel in more than one branch.
Turán was one of them. His main work, his most important re-
sults concern primarily number theory, interpolation and approx-
imation theory, the theory of polynomials and algebraic equa-

tions, complex analysis, and Fourier analysis. He invented a new method in analysis,
called the power sum method [369], giving interesting results in themselves and ap-
plicable in several distinct branches of Mathematics. His results in combinatorics and
graph theory were definitelynot his most important results, still they were very impor-
tant in graph theory. He found theorems that later became the roots of whole theories.
Definitely this is the case with his – today already classical – graph theorem. Paul
Erdős wrote [121] that
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Turán had the remarkable ability to write perhaps only one paper or to state
one problem in various fields distant from his own; later others would pursue
his idea and a new subject would be born.

In this way Turán initiated the field of extremal graph theory. He started
this subject in 1941 (see [358] and [359]). . .

I should also mention here that – though the big breakthrough in the application
of probabilistic methods in combinatorics is due to Erdős – Turán’s new proof of the
Hardy–Ramanujan theorem [356] (later becoming the root of statistical number the-
ory) and the Szekeres–Turán proof of the existence of “almost Hadamard matrices"
[347] were important contributions.

I have just written that Paul Turán greatly influenced our way of thinking. Both
Erdős and Turán quite often set out from some particular problem and then built up a
whole theory around it. However, for Turán the motivation seemed to be much more
important. When he spoke about Mathematics, he went a long way to explain why
that problem he was speaking of was interesting for him. My impression was that
he preferred building theories, at the same time was cautious not to build too general
theories that might seem to be already vacuous.

I shall explain this through some “stories”.1

(a) I started working in extremal graph theory, basically at the end of my first year –
as a student – at the Eötvös Loránd University. This happened as follows: Vera Sós (the
wife of Turán) was our lecturer in “Mathematical Analysis” and in “Combinatorics and
Graph Theory”. (Our group of 26 first-year honours students in Mathematics had nine
50 minute lectures with her weekly. A year earlier she had also taught combinatorics
to the group of Bollobás.) After our first year she was definitely our most popular
lecturer. The second semester Vera decided to start a so called “special lecture” on
Graph Theory, as a continuation of her “introductory course”. Most probably most of
the dedicated students in Mathematics attended this course. Here she spoke – among
others – about Turán’s hypergraph conjecture. Next week three of us, (independently?)
Katona, Nemetz, and myself told her that we have proved some theorems in connection
with Turán’s hypergraph conjecture. Vera suggested to write them up, in Hungarian, in
the Matematikai Lapok, in a joint paper. First Katona and I wrote up the paper, but that
was not good enough for Vera, so Katona and Nemetz rewrote it, and finally the paper
[215] appeared and became one of our most cited papers.2 Having finished the paper,
I continued working on these types of questions, while Katona and Nemetz went into
other directions. So I proved several theorems which today would be called Turán type
results. I wrote them up in a “student paper” and submitted it to the “Students Research
Society” (Matematikai Diákkör) whose “professor” leaders were András Hajnal and

1 Telling stories is a very dangerous thing: the reader may think that I promised to write of Paul Turán
and instead I am speaking of Vera Sós, or even worse, of myself. No, No, No: I am speaking of our
excellent professors, Turán, Erdős, Vera Sós, András Hajnal, Rényi, Gallai . . . .

2 This was my first joint paper with Nemetz, and the second one of Katona, who finished his fourth
year at the university at that time.
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Vera Sós in those days. Most probably I won some prize, and the question was if
to publish my new results in some mathematical journal, say in Acta Math. Acad.
Hungarica. However, a little later Vera Sós informed me that “unfortunately” Gábor
Dirac had just published a paper on related topics [100]. So my second paper was
“killed”.

Anyway, slightly later I met Turán, and tried to inform him of my results, starting
in a “very abstract way”. Basically I defined a monotone propertyP and maximized
the number of edges in the family ofn-vertex graphs of propertyP . Turán suggested
to take the simpler but equivalent formulation that “We have a finite or infinite family
of excluded subgraphs. . . ”. Even today I stick to this “more transparent” formulation.

(b) Actually, the first time I met Turán – as a mathematics professor – was slightly
earlier. In the first semester Vera Sós taught us Analysis, however, one day she got flu,
had fever and had to stay home. So her husband, Turán came in to give the lecture, on
the Lagrange Mean Value Theorem. Despite the fact that in those days Vera was our
favourite lecturer, I was shocked by the spellbinding style of Turán, while speaking of
this relatively simple theorem.

Actually, I heard some opinions, according to which Turán was excellent for the
best students but sometimes difficult to follow for the less gifted ones.3 The reason for
this was that he not only proved the theorems but (a) explained the background very
carefully and (b) explained what would fail if we tried to prove it in some other ways.

(c) When I became a third year student, I started learning Function Theory (Theory
of Complex Analytic Functions), from Kató Rényi, the wife of Alfréd Rényi. I enjoyed
her lectures very much and having finished this two-semester course, for some reason I
dropped into the Mathematical Institute.4 There I met Gábor Halász and asked what he
was doing there. He answered that in 10 minutes there would be a seminar of Turán in
Number Theory and Complex Analysis, and he would give a lecture there. I happened
to be free, so I decided to attend Gábor’s lecture. I enjoyed that whole atmosphere
and the Mathematics there so much that I became a regular participant of the “Turán
seminar” for many, many years. And that was partly due to Halász, but primarily
to Turán. The seminar was interactive, very friendly, anyone could ask any (relevant
mathematical) questions, to help one to understand the details, and the background . . . .

(d) Several years later, as an assistant professor, once I entered Turán’s office. He
was reading a letter, which informed him about some new results (about the conver-
gence properties of power series on the unit complex disk). He started explaining it
to me. I asked him why that result was interesting and the answer was very convinc-
ing. Actually, I was “slightly frightened”: I felt that Turán could convince me of any
mathematical result being interesting, if he felt it interesting.

3 Unfortunately Turán have not given regular Number Theory courses those years. Here the “gifted”
would mean the best 10 students in our group.

4 I was a student and later an assistant professor . . . at the Eötvös University while this was a Research
Institute, part of the Academy, headed by Alfréd Rényi. Fortunately in those days the walking
distance between the two places was roughly five minutes.
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Kató Rényi, Turán, Vera Sós, Erdős (and
somebody covered by Vera?)

Knapowski, Erd̋os, Szekeres, and
Turán

We are often asked: what is the secret of Hungarian Mathematics that it is so good?
Of course, we have standard answers to this, despite the fact that the question itself
may be slightly dangerous.

It is nice to hear that our Mathematics is outstanding, but at the same time one
should keep checking in which areas can one be satisfied and where we have to do
something to improve “Hungarian Mathematics”.

I myself have at least three answers to this question. The first one is that in Hungary
there is a very strong tradition to support talented young students in Mathematics and
Physics (and most probably, in many other fields as well). We had our KöMaL: the
High School Mathematics Journal. Most of those who are today math professors in
Hungary still remember how much we owe to it and have gained from participating
in the contests organized in this surrounding.5 Also, there were organized math lec-
tures and meetings while we were still high school students. This is where I first met
Bollobás, Komlós, Halász, and many others when I was a second year high school
student.

Yet, definitely, one of the most important factors was that we had excellent pro-
fessors at the University. Excellent in Mathematics and excellent in conveying their
Mathematics to us. I myself, selecting those who really influenced my Mathematics,
(following the timeline) would list first Vera Sós, Paul Erdős and Paul Turán.6

1.1. Apologizing?

In this survey I will try to cover several areas, but not in too much detail. Often I will
start some topic, give a few theorems, and then refer the reader to other surveys or
papers.

5 Actually, Erd̋os and Turán learnt of each other from this journal.
6 If I wanted to extend this list, of course, I would add my mother, perhaps Hajós, definitely Hajnal,

Gallai, and Rényi. We met Rényi relatively late, when we became third year students, however,
when he started giving special lectures about Random Methods in Analysis, Random Methods in
Combinatorics, Introduction to Information Theory, again, all the best students were sitting there and
eagerly listening to him. He – similarly to Turán – also gave long explanations on the background
of the theorems he was speaking of.
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While writing this survey, I looked at several other surveys, of excellent authors,
and many of them started with apologizing sentences that there was no way to try to
be complete, and the author had to leave out several interesting and important results.
The same applies to this survey as well. In several cases – selecting a paper – I had to
restrict myself to including its first, or most characteristic results, and leave the other,
at least for me very important, results to the reader. One reason for this was that I tried
to write a readable survey. And the same is the reason why I was not afraid to repeat
some parts: be occasionally “redundant”.

When Turán died in 1976, his collected papers were published
in a three-volume book [368], which is an annotated edition of
his works in the sense that the grateful mathematical surround-
ing added mathematical notes to his papers. I myself was re-
sponsible for Graph Theory and Combinatorics. I wrote three
mini-surveys for [368]: one on “pure extremal graph theorems”,
another one on applications of extremal graph theorems in Anal-
ysis, Geometry (and Potential Theory), and the third one on
“random matrices”.This surveyincludes a large part of those
surveys, however, it goes much further: the new developments
in the field showing Turán’s influence in Discrete Mathematics

greatly surpass what I could write in those days. Here I include many results showing
these new developments (and leave out certain parts covered by other surveys of this
volume, see Katona e.g., [214]. I also cut short describing areas that are covered by the
very recent survey papers of the Erdős Centennial volume, e.g., Gowers [189], Rödl
and Schacht [303] or Füredi and myself [180], . . . .

Of course, the most important subject covered here (where Turán’s influence can
be seen) is Extremal Graph Theory. One basic source to provide a lot of information
is the book of Bollobás, Extremal Graph Theory [55]. There are many surveys cov-
ering distinct parts of this very large area. Among them are mine, e.g., [327], [328],
[330], [332] and there is a survey by Bollobás in the Handbook of Combinatorics [51].
Of course, the Handbook contains several further chapters basic to this field, just to
mention the chapters by Bondy [64] and by Alon [9]. I should also mention many ex-
cellent, more detailed further surveys related to this one, e.g., of Füredi [167], Keevash
[218], Kühn and Osthus [255].

Since the very recent survey of Füredi and myself [180] covers a huge and impor-
tant area of extremal graph theory, namely the so-called Degenerate Extremal Graph
Problems, here we shall concentrate on the non-degenerate cases, where the extremal
structures have positive density. In this non-degenerate case I will select five topics:

(a) New results attained with the help of the Szemerédi Regularity Lemma [349]
(for the older ones see, e.g., [249]). There are very many new developments
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in this area, which will be touched on only very briefly, in Section 6.2. Here I
mention only its connection to Property Testing [16] [14], . . . and to graph limits,
where I refer the reader to some papers of Christian Borgs, Jennifer Chayes,
László Lovász, Vera Sós, Kati Vesztergombi, e.g., [68, 69, 70], to the homepage
of Lovász, where many of these can easily be found, and to the very new book of
Lovász [263];

(b) Ramsey–Turán type results, where for the older results see the survey of Vera Sós
and myself [335], and for the many new interesting developments, see among
others Balogh and Lenz [39].

(c) and also the Andrásfai–Erdős–Sós type theorems [24], Erdős–Simonovits [139],
Łuczak [268], Thomassen [355], . . .

(d) Applications in multicolor Ramsey problems, e.g., results of Łuczak [269], Gyár-
fás, Ruszinkó, Sárközy, and Szemerédi [194], Kohayakawa, Simonovits, Skokan
[231], and many others.

(e) Typical Structures: Erd̋os–Kleitman–Rothschild type theorems, [131], Erdős,
Frankl and Rödl [125], and Balogh, Bollobás, and Simonovits, e.g., [34], . . .

Again, there is no way to be complete here. Rather I chose to indicate the main
lines of some of these theories . . . . It is also very useful and informative to read the
corresponding problem-posing papers of P. Erdős [113] [119] [120], [123]. I should
also mention the book of Chung and Graham on Erdős problems [93].

In Section 16 I will discuss the theory of Random Matrices, but only shortly: a
relatively new and excellent survey of Van Vu [370] describes this area in detail. There
is also another reason: Subsection 16.2 on determinants is connected to Turán the most,
while in the next two parts on the probability of being singular and on the distribution
of eigenvalues of random matrices is where many new interesting results were proved
after Turán’s death. Yet, they are connected to Turán in a slightly weaker way.7

Overlapping with my older surveys is inevitable. Yet I will try to “overemphasize”
those parts that had to be left out from [180] and [331]. Some further related sur-
veys and pseudo-survey papers are Füredi [167], Sidorenko [318] Simonovits [330],
Simonovits and Sós [335], Kohayakawa and Rödl [229], Rödl and Schacht [303], and
many others.

2. Introduction

Today one of the most developed and fastest developing areas of Graph Theory is
Extremal Graph Theory and the parts of Graph Theory connected to it. There are
several reasons for this. One of them is that this is a real theory with many important,
highly non-trivial subfields and many related larger fields of combinatorics. I have
already mentioned some some of them. Further ones are

7 Yet I decided to include a short part on them, too.
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(a) Although Extremal Hypergraph theory is still an extremely hard field to achieve
new results in, several very interesting new theorems were proved for hyper-
graphs in the last decade.

(b) New tools were created, above all, Hypergraph Regularity Lemmas, and, con-
nected to them, Removal Lemmas and Counting Lemmas, and Graph Limit The-
ory.

(c) Computers were used to solve several extremal graph and hypergraph problems,
mostly using a new theory, the Razborov Flag Algebras [293, 296].

(d) Some parts of Theoretical Computer Science are connected to the above fields. I
mention here four such topics:

(i) Graph Property Testing, very strongly connected to applying Szemerédi
Regularity Lemma, (see e.g. papers of Alon and Shapira) [21], [16].

(ii) Applications of graph results, e.g., Degenerate Extremal Graph Theorems
in Computer Science.

(iii) Theory of quasi-random graphs (initiated in some sense by Thomason, [353],
then by Chung, Graham and Wilson [94] . . .

(iv) Application of random graph methods and expanders – that are strongly
connected to extremal graph theory – in Computer Science,8

(e) As to the tools used in Extremal Graph Theory, they are connected to the theory
of Random Graphs:

(i) it uses random graphs to get lower bounds,
(ii) it investigates extremal subgraphs of random graphs,

(iii) and it motivates the description of typical structures,
(f) It is connected among others, to Finite Geometry (also used for constructions

providing lower bounds in our problems), to Commutative Algebra, also used to
get lower bounds, . . . (Vera Sós wrote one of the first surveys on the connections
to Finite Geometries [339]).

Reading this “list” the reader immediately sees that describing the new develop-
ments in this area is much more than what such a survey paper can cover, even if
in many cases it only refers to other papers or surveys. So we shall try to provide a
“random tour” in this huge area.

Also, I plan to post on my homepage a slightly longer version of this survey, pro-
viding more details.

2.1. Structure of the paper

(a) We shall start with the Theory of Extremal Graphs. We shall describe the huge
development of the Theory of Extremal Graphs, primarily areas neglected in [332] and
[180].

8 For two “mini-surveys” see e.g. Spencer [341] and Alon [10].
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(b) Section 5 describes the theory of supersaturated graphs.
(c) In Section 13 I shall describe thoseapplications of extremal graph resultswhich

were initiated by Paul Turán, in the last years of his life. Also we shall describe other
applications of Turán’s theorem.

(d) These applications led also to the Ramsey–Turán Theory, described in more
detail in the survey paper of Vera Sós and myself [335]. There are quite a few new
developments in this field. I shall describe some of them in Section 10.

(e) There are several connections between Ramsey Theory and the theory of Turán
type problems. Section 12 contains some results on this.

(f) There is one more, very important area not to be forgotten: Erdős and Turán
greatly influenced our day’s mathematics just by asking about the density version of
Van der Waerden’s theorem. This is well described, at least its early period, in the book
of Graham, Rothschild and Spencer [190]. Many important details can be learned from
the paper of Vera Sós [340], papers of Gowers, Green, Tao, . . . I also will include a very
short section on this topic.

(g) Section 16 discusses a paper of Szekeres and Turán on the average of the square
of the determinants of random±1 matrices.

3. Turán type graph problems

Paul Turán’s graph theoretical and combinatorial results can roughly be classified as
follows:

(a) His classical extremal graph theorem [358, 359] and the analogous results of
Kővári, V. T. Sós and Turán [252] on the extremal number ofK2(a, b).

(b) His results on applications of his graph theorem, see [363, 364, 365, 366], and
also the papers of Erdős, Meir, V.T. Sós and Turán [132, 133, 134]9.

(c) Results on random±1 matrices, estimating the average of thekth power of their
determinants [347, 357, 360, 362].

(d) Beside this, it was Turán who asked the first general question in connection with
the crossing numbers (see e.g., one of his last papers [367], or Beineke and Wilson
[46]).

3.1. Turán’s graph theorem

In 1935 Erd̋os and Szekeres proved [149] that

Theorem 3.1.For everyk there exists annk such that if we fixnk points in the plane
arbitrarily (but in general position), then there are alwaysk of them spanning a convex
k-gon.

9 and a corrigendum to [134] (misprints).
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To prove this, they applied Ramsey’s theorem. Actually they did not know it, but
rediscovered it. Motivated by the Ramsey Theorem, Turán proved his famous theorem.
Before formulating it we introduce some notations.

Notation. Given a graph, hypergraph, the first subscript will almost always denote the
number of vertices:Gn, Sn, Hn will mostly denote graphs (digraphs, hypergraphs) of
n vertices.10 Mostly we shall restrict our considerations to ordinary graphs (without
loops and multiple edges). Given a graph (digraph, hypergraph)G, v(G) ande(G)
denote the number of vertices and edges respectively, andχ(G) is G’s chromatic num-
ber. Kp denotes the complete graph onp vertices,C` andP`, are the cycle and path
of ` vertices, respectively.Kp(n1, . . . , np) is the completep-partite graph withni ver-
tices in itsith class, andTn,p is the Turán graph ofn vertices andp classes, that is,
Tn,p = Kp(n1, . . . , np) where

∑
ni = n and|ni − n

p | < 1.
Given two graphsG andH, denote byG ⊗ H the graph obtained from vertex-

disjoint copies ofG andH by joining each vertex ofG to each one ofH. (Occasionally
we denote their disjoint union byG + H, and the disjoint union ofk copies ofH by
kH .)

Turán’s problem. Given p and n, how large can e(Gn) be if Gn does not contain
a Kp+1 ?

Clearly,Tn,p does not containKp+1. Turán’s theorem asserts thatTn,p is extremal
in the following sense:

Turán’s Theorem ([358] (1940)). For givenn and p any graph having more
edges thanTn,p or having exactly as many edges asTn,p but being different from it
must contain aKp+1, as a subgraph.

As Turán remarks, from this form one can easily verify that the maximum number
of edges a graphGn can have without containing aKp+1 is

1
2

(

1−
1
p

)

(n2 − r2) +

(
r

2

)

, if n ≡ r (modp) and 0≤ r < p. (3.1)

In this sense Turán’s theorem yields a complete solution of the posed question.11

How did Turán arrive at this theorem? In Ramsey’s theorem we ask (in some
sense): Assume we know thatGn contains nok independent vertices. For how large
p can we ensure the existence of aKp+1 in Gn? Turán replaced the condition thatGn

had nok independent vertices by a simpler condition that the graph had many edges.
He asked:

10 Very rarely we shall consider some “excluded” graphs and the subscript will just enumerate them.
11 Letters: Mostly we shall excludep + 1-chromatic graphs but there will be cases when we shift the

indices and excludep-chromatic graphs.
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Given a graphGn of e edges, how large mustKp+1 occur inGn? Or, in
other words, givenn and p, how large ane ensures the occurrence of a
Kp+1 in Gn?

The “complementary” form. A lesser known but equally useful form of Turán’s
theorem can be obtained by switching to the complementary graphGn = Hn. If Hn

has nop + 1 independent vertices, thene(Hn) ≥ e(Tn,p) and the equality implies that
Hn = Tn,p. (This is Theorem III in his original paper [358].)

On the history of Turán’s theorem. As Turán remarks in the “Added in Proof” of
[358], he has learnt from J. Kraus that W. Mantel has already proved his theorem in
the special casep = 3, [273]. It is interesting to realize that this theorem could have
been found by Mantel back in 1907, but he missed it. It is even more surprising that
P. Erd̋os missed finding this theorem in 1938. As a matter of fact, Erdős and E. Klein
have proved an analog result in [106]. Here Erdős investigated a number theoretical
question and arrived at the following graph theoretical result:

Theorem 3.2.If Gn contains noC4, thene(Gn) = O(n3/2).

At the same time, E. Klein gave a "finite geometric" construction showing that there
exist graphsGn with e(Gn) > cn3/2 edges and without containing 4-cycles. Turán,
proving his theorem, immediately posed several other analog problems (such as the
problem of excluded pathPk, excluded loops, the problem whenL is the graph deter-
mined by the vertices and edges of a regular polyhedron). This started a new line of
investigation. Erd̋os (as he stated many times), felt it was a kind of blindness on his
side not to notice these nice problems.

In 1949 Zykov [375] rediscovered Turán’s theorem, giving a completely different
proof. He used an operation which could be calledsymmetrizationand which was
later successfully used to prove many analog results. Since that many further proofs
of Turán’s theorem have been found. Some of them are similar to each other, some
are completely different. Thus e.g. proofs of Andrásfai [23] G. Dirac [100] and the
proofs of Katona, Nemetz and Simonovits [215] are somewhat similar, the proof of
Motzkin and Straus [277] seems to be completely new, though it is actually strongly
related to Zykov’s proof [375]. Most of these proofs led to interesting new generaliza-
tions. In other cases the generalizations were formulated first and only then were they
proved. This is the case of the proof of Erdős, and also with the proofs of Erdős and T.
Sós, Bollobás and Thomason, and Bondy, see [146], [60], [63]. Before turning to the
general case I state three of these results.

Dirac’s theorem. Assume thatn > p and e(Gn) > e(Tn,p). Then, for every
j ≤ p, Gn contains not only aKp+1 but aKp+2 with an edge missing, . . . , aKp+j+1

with j edges missing, assuming thatn > p + j + 1.

Observe that for eachj this immediately implies Turán’s theorem, since aKp+j+1−
(j edges) contains aKp+1.
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Erdős theorem ([118]). If Gn contains noKp+1 then there exists ap-chromatic
graphHn such that ifd1 ≤ d2 ≤ d3 ≤ ∙ ∙ ∙ ≤ dn andd∗1 ≤ d∗2 ≤ d∗3 ≤ ∙ ∙ ∙ ≤ d∗n are
the degree sequences ofGn andHn respectively, thend∗i ≥ di, (i = 1, 2, . . . , n).

This again immediately implies Turán’s theorem, by

2e(Gn) =
∑

di ≤
∑

d∗i = 2e(Hn) ≤ 2e(Tn,p).

Denote byN(x) the neighborhood ofx.

Erdős–T. Sós–Bollobás–Thomason theorem [60, 146]. If Gn is a graph with
e(Gn) > e(Tn,p), thenGn has a vertexx of, say, degreed, for which forGn−d :=
Gn − N(x), we havee(Gn−d) > e(Tn−d,p−1)

This theorem was slightly improved by Bondy [63]. This result implies Turán’s
theorem if we apply induction onp: Gn−d contains aKp yielding together withx a
Kp+1 in Gn. (Above I deliberately forgot the casee(Gn) = e(Tn,p), for the sake of
simplicity.)

3.2. General problem

Since 1941 a wide theory has developed around Turán’s theorem.

Let L be a finite or infinite family of graphs and letex(n,L) denote the
maximum number of edges a graphGn (without loops and multiple edges)
can have without containing anyL ∈ L as a subgraph. Further, letEX(n,L)
denote the family of graphs attaining this maximum. Given a familyL, de-
termineex(n,L) andEX(n,L).

WhenL = {L}, we shall replaceex(n, {L}) byex(n, L). The general asymptotics
onex(n,L) was given by

Theorem 3.3(Erdős and Simonovits [136], Erdős [114], [115] and Simonovits [321]).
For any familyL of excluded graphs, if

p(L) = min
L∈L

χ(L) − 1, (3.2)

then

ex(n,L) =

(

1−
1

p(L)

)(
n

2

)

+ o(n2) as n → ∞. (3.3)

Further, ifSn is any extremal graph forL, then it can be obtained fromTn,p by chang-
ing o(n2) edges.
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(The weaker result of Erd̋os and Simonovits, namely (3.3), is an easy consequence
of the Erd̋os–Stone theorem [148]. The most important conclusion of these theorems
is that the maximum number of edges and the structure of the extremal graphs depend
only very weakly on the actual familyL, it is asymptotically determined by the min-
imum chromatic number. A further interesting conclusion is that for anyL we can
find a singleL ∈ L such thatex(n,L) − ex(n, {L}) = o(n2). This is acompactness
type phenomenon asserting that there is not much difference between excluding many
graphs or just one appropriate member of the family.)

Remark 3.4.Several authors call the result according to which (3.2) implies (3.3) the
Erdős–Stone theorem, in my opinion, incorrectly. This “theorem” did not exist before
our first joint paper with Erd̋os [136]. It changed the whole approach to this field.
Finally, Erd̋os always considered it as an Erdős–Simonovits result.

3.3. Degenerate extremal graph problems

If L contains at least one bipartiteL, thenex(n,L) = o(n2), otherwise

ex(n,L) ≥ e(Tn,2) =

[
n2

4

]

.

This is why we shall call the casep(L) = 1 degenerate.
Here we arrive at the second – and again very important – graph paper of Turán. In

1954 Kővári, V. T. Sós and Turán proved the following result.

Kővári–T. Sós–Turán theorem [252].

ex(n, K2(p, q)) ≤
1
2

p
√

q − 1n2−(1/p) + O(n). (3.4)

We should remark that an important footnote on the first page of [252] states:

“As we learned, after giving the manuscript to the Redaction, from a letter
of P. Erd̋os, he has found independently most of the results of this paper.”

This theorem can be regarded as a sharpening of the Erdős–Stone theorem [148]
asserting that

ex(n, Kd(m, . . . , m)) =

(

1−
1

d − 1

)(
n

2

)

+ o(n2)

and yielding thatex(n, K2(m, m)) = o(n2). Both these theorems were motivated
by some topological problems. (3.4) is probably sharp for everyp ≤ q, apart from
the value of the multiplicative constant, however this is not known in general. As a
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construction of Erd̋os, Rényi and T. Sós [135] and of W. G. Brown [76] shows, (3.4) is
sharp forp = 1, 2, and 3. Forp = q = 2 even the value of the multiplicative constant
is sharp. A construction ofH by Hylten-Cavallius [204] shows that it is also sharp for
p = 2, q = 3. Further, the Mörs construction [278] on the analog matrix problem, and
the Füredi construction [171] show that (3.4) is sharp forp = 2 and allq ≥ 2. We
shall return to this question (that is, to the corresponding matrix problem) below.

Remark 3.5.It was a great surprise when it turned out thatex(n, K(3, 3)) ≈ 1
2n5/3:

by the lower bound given by Brown [76] we knew that the exponent 5/3 in (3.4) is
sharp, however, when Füredi [169] improved the upper bound, that showed that the
multiplicative constant12 of the Brown construction is the right one.

Another interesting degenerate problem is the problem when a pathPk is excluded.
As I learnt from Gallai, this was one of those problems asked by Turán (in a letter
written to Erd̋os) which started the new development in this field. The answer was
given much later by the

Erdős–Gallai theorem [126]. ex(n, Pk) ≤ k−2
2 n.

Clearly, ifn is divisible byk−1, the disjoint union ofn/(k−1) Kk−1’s shows that
the theorem is sharp. Ifn is not divisible, this construction yields onlyex(n, Pk) ≥
k−2

2 n − O(k2). The exact value ofex(n, Pk) was found by Faudree and Schelp, who
used it to prove some generalized Ramsey theorems [153]. Erdős and Gallai also
proved [126] that ifLk is the family of all the cycles of at leastk vertices, then
ex(n,Lk) = 1

2(k − 1)n + O(k2), and in some cases the extremal graphs are ex-
actly those graphs whose doubly connected components (blocks) areKk−1’s. Kopylov
[250] considered the problem of connected graphs withoutPk, and his results implied
the earlier ones. Balister, Győri, Lehel and Schelp [31] also have results sharpening
Kopylov’s theorems. The reader can find further information in [180].

It is worth mentioning that Erd̋os and T. Sós conjectured [113] that for every tree
Tk, ex(n, Tk) ≤ 1

2(k − 2)n. Ajtai, Komlós, Simonovits and Szemerédi proved (under
publication) this for all sufficiently largek:

Theorem 3.6(Ajtai, Komlós, Simonovits and Szemerédi [2], [3],[4]).There exists a
k0 such that fork > k0 andn ≥ k

ex(n, Tk) ≤
1
2
(k − 2)n.

We close this part with the following

Theorem 3.7(G. Dirac, [98]).If P` ⊆ G, andG is (at least) 2-connected, thenG also
contains aCm with m ≥

√
2`.
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3.4. Even cycles

An unpublished result of Erd̋os states that

ex(n, C2t) = O(n1+(1/t)). (3.5)

Two different generalizations of this result were given by Bondy and Simonovits [66],
and by Faudree and Simonovits [155]. I skip this area since it is fairly well described
in [180]. Let me discuss the Cube theorem. Turán asked that ifL denotes the graph
defined by the vertices and edges of a regular polyhedron, how large isex(n, L) ?
Erdős and Simonovits [138] proved that ifQ8 denotes the cube graph, then

Theorem 3.8(Cube theorem).ex(n, Q8) ≤ CQ ∙ n8/5 .

Actually if Q̃8 is obtained fromQ8 by joining two opposite vertices, thenex(n, Q̃8) =
O(n8/5), too. One intriguing open question is whether there exists ac > 0 such that
ex(n, Q8) > c ∙ n8/5, or at least,ex(n, Q̃8) > c ∙ n8/5.

Remark 3.9.As I mentioned above, this topic is also discussed in much more details
in the recent survey of Füredi and Simonovits [180]. The same applies to large part of
the next subsection.

3.5. Finite geometric constructions

If the extremal graph problem forL in consideration is non-degenerate, andp is de-
fined by (3.2) thenTn,p yields an asymptotically extremal sequence in the sense that
Tn,p contains noL ∈ L and has asymptotically maximum number of edges. The
extremal graph is often (but not always, see [329], [325]) obtained fromTn,p by

(a) first slightly changing the sizes of the classes, that is, replacingTn,p by aKp(n1, . . . , np),
whereni = n

p + o(n);

(b) then addingo(n2) edges to thisKp(n1, . . . , np).
(c) The assertion that this is not always the case means that sometimes we need a

third step too, namely, to deleteo(n2) edges in a suitable way, see [329].
In this sense the non-degenerate case is relatively easy:(Tn,p) is an asymptotically

extremal sequence of graphs. The extremal structures in the degenerate cases seem to
be much more complicated in the sense that in most cases we do not have lower and
upper bounds differing only in a constant multiplicative factor. Thus for example we
do not know whether the upper bound in the cube theorem is sharp, or that the upper
bound given by the K̋ovári–T. Sós–Turán theorem is sharp for anyp, q ≥ 4. We do not
even know the existence of a positive constantc such that

ex(n, K2(4, 4))
n2−(1/3)+c

→ ∞.

Still, whenever we know that our upper bound for a bipartiteL is sharp, we always
use either explicitly or in an equivalent form some finite geometric construction, or
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some algebraic construction very near to it. I have already mentioned some of these
constructions, namely that of E. Klein in [106], of Erdős, Rényi and T. Sós [135] for
graphs withoutC4, and that of Hylten-Cavallius for graphs not containingK2(2, 3).
Two further very important constructions are the Brown construction [76] for graphs
not containingK2(3, 3) and the Benson [48] construction (see also the Singleton con-
struction [336]) of graphs not containingC3, C4, C5, C6 andC7, and of graphs not
containingC3, . . . , C11. These constructions of Benson show that (3.5) is sharp for
t = 3 andt = 5, while W. G. Brown’s construction shows that the Kővári–T. Sós–
Turán theorem is sharp forp = q = 3 (and therefore for allp = 3, q ≥ 3), apart from
the value of the multiplicative constants.

Remark 3.10.Since [180] is a much more detailed survey, however mostly restricted
on the Degenerate Extremal Graph Problems, and since these finite geometric prob-
lems mostly refer to degenerate cases, we suggest to the interested reader to read the
corresponding parts from [180]. Here we mention only that several constructions using
finite geometries or related methods were found since Turán died. Perhaps Mörs [278],
Füredi [171], Ball and Peppe [32], and Wenger [371], should be mentioned here, and
several slightly different constructions of Lazebnik, Ustimenko, and their school (see
e.g., [256, 257, 258]) and also the breakthrough results of Kollár, Rónyai, and Tibor
Szabó, [235] and Alon, Rónyai and Szabó [18] (see also [9] and [180]).

3.6. A digression: the extremal matrix problems

If Gn is a graph, the condition thatGn does not contain anyL ∈ L implies that if we
consider the adjacency matrixA of Gn and av(L) × v(L) symmetrical submatrix of
A,12 then this submatrix cannot be the adjacency matrix ofL. If for everyL ∈ L we
add toL all those graphs which are obtained fromL by addition of edges, and denote
by L̂ the resulting family of forbidden graphs, then the extremal graph problems forL
andL̂ are the same, further the exclusion of everyL ∈ L̂ is equivalent to the exclusion
of their adjacency matrices as symmetrical submatrices ofA.

The number of edges ofGn is half of the 1’s in the adjacency matrix, thus each
extremal graph problem generates an equivalent problem for 0-1 matrices, where the
number of 1’s is to be maximized. Sometimes this approach is very useful, e.g., enables
us to find continuous versions of graph theorems. However, in our case there is an even
better matrix theoretical approach. Assume thatGn is a bipartite graph withn vertices
in its first class andm vertices in the second one. Then we often representG by an
n×m 0-1 matrix, and e.g. the exclusion ofK2(p, q) in G is equivalent to the condition
that taking arbitraryp rows andq columns ofA, at least one of the correspondingp×q
entries of the matrix will be 0, further, taking arbitraryq rows andp columns the same
holds.

12 where symmetric submatrix means that if we take somejth row of A then we also take the corre-
spondingjth column and vice versa.
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Now, as one can read on the first page of the Kővári, T. Sós and Turán paper,
K. Zarankiewicz raised the following interesting question: given a 0-1 matrixA, of
n rows andn columns, and an integerj, how large should the number of 1’s be to
guarantee thatA contains a minor of orderj consisting merely of 1’s? If the solution
of this problem is denoted bykj(n), then one main result of the K̋ovári, T. Sós, and
Turán paper asserts in a somewhat more complicated but sharper form that

kj(n) = O(n2−(1/j)). (3.6)

Further, they show that limn→∞ k2(n)/n3/2 = 1. Then they point out that their matrix
results imply

ex(n, K2(p, p)) ≤
1
2

p
√

p − 1 ∙ n2− 1
p + O(n). (3.7)

Some historical remarks. (a) The authors of [252] mention the general of excluding aNote 1: Should this
be "mention the
general problem"?

p×q submatrix of 1’s and that they restrict the discussion to the Zarankiewicz problem,
wherea = b.

(b) Kővári, T. Sós and Turán used a finite geometric construction to prove that
k2(n) ≥ n3/2− o(n3/2). However, they did not use finite geometric language. Neither
did Erd̋os, describing E. Klein’s construction [106].

(c) Here again we should make a historical remark. According to [252]

“S. Hartman, J. Mycielski and C. Ryll-Nardzewski have proved that

c1n
4/3 ≤ k2(n) ≤ c2n

3/2 (1.2)

with numericalc1 andc2”.

Of course the Erd̋os–Klein result from 1938 was sharper, though it was formu-
lated for graphs, and therefore formally it did not imply the Hartman–Mycielski–Ryll-
Nardzewski result.

Two more historical notes should be made. Above we made a sharp distinction
between degenerate and non-degenerate extremal graph problems. The germ of this
distinction can be found in [252]. In Section 3 the authors write: “Let us call attention
to a rather surprising fact”. And this fact is thatex(n, K2(p, p)) = O(n2−(1/p)),

while to ensure a fairly similar graph, namelyKp+1, we need≈ 1
2

(
1− 1

p

)
n2 edges,

which is much more. Further, in Section 6 the authors formulate the conjecture that
kj(n) ≥ cjn

2−(1/j), which is equivalent with the conjecture that (3.4) is sharp.
The reader more interested in this topic is referred to the survey of R. K. Guy [193]

and to the paper of Mörs [278] completely solving the case of the Zarankiewicz prob-
lem when a 2× p submatrix of ann × m 0-1 matrix is excluded.
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4. Some non-degenerate extremal problems

Let Rk denote the graph determined by the vertices and edges of a regular polyhe-
dron.13 Clearly,R4 = K4 is the tetrahedron graph,R6 = K3(2, 2, 2) is the octahedron
graph,R8 = Q8 is the cube graph andR12, D20 = R20 are the icosahedron graphs
and the dodecahedron graphs. As we have mentioned, Turán raised the question: how
many edges canGn have without containingRk as a subgraph? ForK4 Turán’s theo-
rem yields the answer. For the cubeQ8 Theorem 3.8 describes the situation. For the
dodecahedron and the icosahedron Simonovits [325, 324] gave a sharp answer. (It is
strange that the simplest polyhedron, namely the cube, creates the most trouble.) To
formulate some results, we need a definition.

Definition 4.1.H(n, p, s) := Tn−s+1,p ⊗ Ks−1: we join each vertex ofKs−1 to each
vertex ofTn−s+1,p.

It turns out that in very many cases this graph is the (only?) extremal graph. Below
first I will give some examples, and then, in Section 4.1 a very general theorem on
the symmetric extremal graph sequences, and finally, in Section 4.2, a few further
examples.

Why is H(n, d, s) a good candidate to be extremal? The simpler, shorter answer
is thatH(n, p, s) is a simple generalization ofTn,p. But then comes the question:
why is (Tn,p) a good candidate to be the extremal graph sequence for various extremal
problems? The answer is

Theorem 4.2(Simonovits, critical edge, [321]).If p(L) is defined by (3.2), and some
L0 ∈ L has an edgee for which

χ(L0 − e) = p, (4.1)

then there exists ann0, such that forn > n0 Tn,p is extremal forL, moreover, it is the
only extremal graph (for each fixedn > n0).

On the other hand, if (3.2) holds and for infinitely manyn Tn,p is extremal forL,
then there is anL ∈ L and an edgee in L for whichχ(L − e) = p.

Remarks 4.3.(a) Erd̋os had some results from which he could have easily deduced
the above result forp = 2.

(b) The above theorem has the corollary that ifTn,p ∈ EX(n,L) for infinitely many
n, then forn > n0 there are no other extremal graphs.

(c) In those days I formulated the meta-theorem:

“Meta-Theorem” 4.4. If we can prove some results forL = Kp+1, then most proba-
bly we can extend them to anyL with critical edges.

13 Herek = 4, 6, 8, 12, 20 is the number of vertices.
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This can be seen in the Kolaitis, Prömel and Rothschild paper [234], which extends
the main results of Erd̋os, Kleitman and Rothschild [131], and in many, many other
cases of which we list only Mubayi [279], Babai, Simonovits and Spencer [28], Prömel
and Steger, [291], Balogh and Butterfield [37] . . . .

Figure 1.O6-extremal, Grötzsch, octahedron, dodecahedron, icosahedron.

One interesting immediate corollary of Theorem 4.2 is the following.

Theorem 4.5.Tn,2 is (the only) extremal graph forL = C2k+1 for n > n0(k).

The value ofex(n, C2k+1) can be read out from the works of Bondy [62], Woodall [373],
and Bollobás [55] (pp. 147–156) concerning (weakly) pancyclic graphs for alln
andk. It implies that the bound forn0(k) is 4k in Theorem 4.5. Füredi and Gun-
derson [172] gave a new streamlined proof based on works of Kopylov [250] and
Brandt [71] and completely described the extremal graphs. They are unique forn /∈
{3k − 1, 3k, 4k − 2, 4k − 1} (for 2k + 1 ≥ 5).

Another related result is that of Tomasz Dzido [103]. According to
this, if we consider the even wheelW2k := K1⊗C2k−1 – where we know
by Theorem 4.2 that for sufficiently largen Tn,3 is the only extremal
graph, Dzido also proves that

Theorem 4.6 (Dzido, even wheels [103]).For all n > 6k − 10,
ex(n, W2k) = ex(n, K4).

Theorem 4.2 immediately yields the extremal number for the 4-color-critical graphs,
among others for the Grötzsch graph seen on Figure 1.

Theorem 4.7(Grötzsch extremal [321, 325, 330]).Let Γ11 be the Grötzsch graph on
Figure 1. Forn > n0, Tn,3 is the only extremal graph.

Theorem 4.8(Dodecahedron theorem [325]).For n > n0, H(n, 2, 6) is the only ex-
tremal graph for the dodecahedron graphD20 = R20.

Theorem 4.9(Icosahedron theorem [324]).For n > n0 H(n, 3, 3) is the only extremal
graph for the icosahedron graphR12.
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Let us return to the questions:
(α) “When isH(n, p, s) extremal forL?”, and
(β) “When isH(n, p, s) the only extremal graph forL, for n > nL?”
In [330] I asked if there are cases whenH(n, p, s) is an extremal graph but there

are infinitely many other extremal graphs as well. Now I know that YES, there are.
(We skip the details). The next question is: why isH(n, p, s) an extremal graph in
many cases? In particular, why isH(n, 2, 6) extremal forD20? Of course, for such
questions there are no clear cut answers, yet I try to answer this later, see Remark 4.22.

The octahedron graph problem was solved (or, at least reduced to the sufficiently
well-described problem ofex(n, C4)) by Erdős and Simonovits.

Theorem 4.10(Octahedron theorem [137]).If Sn is extremal forR6, then one can find
an extremal graphAm for C4 and an extremal graphBn−m for P3 of 1

2n + O(
√

n)
vertices each, such thatSn = Am ⊗ Bn−m.

Clearly,Bn−m is either a set of(n−m)/2 independent edges or a set of1
2(n−m−1)

independent edges and an isolated vertex.
Some very similar theorems can be found in Griggs, Simonovits and Thomas [192],

see Section 15.1, and some general results onL = Kp(a, b, c, . . . , c) in [137].
In the late 1960s and early 1970s some basic techniques were found, mainly by

Erdős and Simonovits, to prove non-degenerate extremal graph theorems. Often sharp
solutions are given in terms of the solution of some degenerate problems. This is the
case in the Octahedron theorem (which is the simplest case of some more general the-
orems [137]). The reason of this phenomenon is discussed in detail in [326], [327] and
[329]. Further, many particular extremal graph results can mechanically be deduced
from a fairly general theorem of Simonovits [325]. This is the case e.g. with Moon’s
theorem, [275] or with the dodecahedron theorem. In some other cases, e.g, in the case
of the icosahedron, this deduction is possible but not too easy.

Questions related to this will be discussed in the next subsection.

4.1. How to solve non-degenerate extremal problems?

Given a familyL of forbidden subgraphs, beside the subchromatic numberp(L) de-
fined in (3.2) the so called “Decomposition family” ofL is the second most important
factor influencingex(n,L) andEX(n,L). So first we define it, then give a few ex-
amples and show how it influences the extremal structures.

Definition 4.11 (DecompositionM of L). Given a familyL of forbidden subgraphs,
with a p defined by (3.2), we collect inM those graphsM for which there exists an
L ∈ L, such thatM ⊗ Kp−1(v(L), . . . , v(L)) containsL. 14

14 To get finite familiesM whenL is finite, we may also assume thatM is minimal for the considered
property, or at leastM ⊆ L.
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In other words,M ∈ M if putting15 it into a classAi of a largeTn,p, the resulting
graph contains someL ∈ L. The extremal graph problem ofM is always degenerate,
sincep + 1-coloring someL0 ∈ L and taking subgraphs spanned by any two color-
classes ofL0 we get (several) bipartiteM ∈M.

In the general results of Erdős [114, 115] and myself [321] we proved that com-
paring an extremal graph forL andTn,p, the error terms are determined up to some
multiplicative constants, byex(n,M(L)).

EXAMPLES

(a) If L = {Kp+1}, thenM(L) = {K2}. More generally, if there is anL ∈ L of
minimum chromatic number:χ(L) = p(L) + 1, and there is a critical edgee ∈ E(L),
i.e.,χ(L − e) = p, thenM = {K2}.

(b) If L = {D20}, the Dodecahedron graph, then 6K2 ∈ M(L)
where 6K2 is the graph consisting of 6 independent edges. However,
M(D20) contains alsoC5 + P4 + K2, see the figure.

(c) If L = {R12}, the Icosahedron graph, thenP6, 2K3 ∈M(L).
(d) The decomposition class ofL = {K3(a, b, c) consists of

K(a, b), if a ≤ b ≤ c.

Remark 4.12.The Decomposition family does not (always) deter-
mine the extremal graphs. Thus e.g.,K(2, 2, 2) andK(2, 2, 3) have the same decom-
position, however, by [137], their extremal numbers are different.

4.2. Some further examples

If the decompositionM(L) contains a tree (or forest), then the remainder terms in the
general theorems become linear. A subcase of this, whenM(L) contains a path (or a
subgraph of a path) is described in my paper [325].

Giving a lecture in Štǐrin (1997) I wanted to illustrate the general power of these
results to solve extremal graph problems. So I selected one excluded graph from
Łuczak’s lecture, another one from Nešetřil’s lecture, seen in Figure 2. I called in
[330] these graphs shown in Figure 2 accordingly Łuczak and Nešetřil graphs.

Theorem 4.13(Łuczak-extremal).For n > n0, H(n, 4, 2) is the only extremal graph
for the Łuczak graphL10.

Theorem 4.14(Nešeťril-extremal).For n > n0, H(n, 2, 2) is the only extremal graph
for the Nešetřil-graphN12.

Theorem 4.15 (Hn,p,k-theorem).(i) Let L1, . . . , Lλ be given graphs with
minχ(Li) = p + 1. Assume that omitting anyk − 1 vertices of anyLi we obtain

15 “putting” means selectingv(M) vertices in this class and joining them so that the resulting subgraph
is isomorphic toM .
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Figure 2. Some excluded subgraphs.

a graph of chromatic number≥ p + 1, butL1 can be colored inp + 1 colors so that
the subgraph ofL1 spanned by the first two colors is the union ofk independent edges
and (perhaps) of some isolated vertices. Then, forn > n0(L1, . . . , Lλ), Hn,p,k is the
(only) extremal graph.

(ii) Further, there exists a constantC > 0 such that ifGn contains noLi ∈ L and

e(Gn) > e(Hn,p,k) −
n

p
+ C,

then one can deletek − 1 vertices ofGn so that the remainingGn−k+1 is p-colorable.

This theorem is strongly connected with Theorem 4.2. [325] and [330] contain
much more general theorems than the above ones, these are just illustrations of the
general results. Without going too much into detail, I define a sequence of symmetric
graphs and provide a fairly general theorem.

Definition 4.16.G(n, p, r) is the family of graphsGn, whereV (Gn) can be partitioned
into p + 1 classesU1, . . . , Up andW with

∣
∣
∣
∣|Ui| −

n

p

∣
∣
∣
∣ < r, |W | < r

whereG[Ui] is the vertex-disjoint union of the connected, pairwise isomorphic sub-
graphs ofGn, the “blocks”Bi,j . Further, eachx ∈ W is joined – for eachi = 1, . . . , p
– to each blockBi,j in the same way: the isomorphismsψi,j : Bi,1 → Bi,j are fixed
andx ∈ W is joined to ay ∈ Bi,1 iff it is joined to eachψi,j(y).

Theorem 4.17.If M(L) contains a pathPτ then there exists anr such that for every
sufficiently largen, G(n, p, r) contains an extremal graphSn ∈ EX(n,L).

This theorem helps to prove many extremal graph results. Some other results of
[325] ensure the uniqueness of the extremal graphs, too. One reason why these results
are easily applicable in several cases is that they apply not only to ordinary extremal
graph problems but to extremal graph problems with “chromatic conditions”.
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Assume that instead of only excluding subgraphs fromL we also have some addi-
tional conditions onGn:

Consider a graph propertyP and assume thatGn ∈ P . Does this change
the maximum in a Turán type problem?

Denote byex(n,L,P) the maximum ofe(Gn) under the condition thatGn has no
subgraphs fromL and satisfiesP . Mostly we think of “chromatic properties” (see
Definition 4.18).

Clearly, if noL-extremal graph has propertyP , thenex(n,L, P ) < ex(n,L). If
the condition is thatχ(Gn) > t, for somet > p, that will only slightly diminish the
maximum: we can take a fixed graphHv of high chromatic number and high girth and
then considerHv + Tn−v,p.16

Definition 4.18 (Chromatic conditions). The chromatic propertyCs,t is the family of
graphs from which one cannot deletes vertices ofL to get at-chromatic graph.

Theorem 4.19.Assume thatL, s, t are given, andex(n,L, Cs,t) is the maximum num-
ber of edges anL-freeGn ∈ Cs,t can have. IfM(L) contains a pathPτ then there
exists anr such that for every sufficiently largen, G(n, p, r) contains an extremal
graphSn ∈ EX(n,L, Cs,t).

Theorem 4.17 can be used to solve the extremal graph problem “algorithmically”,
sinceW andBi,` have bounded sizes. The details are omitted.

Below we describe an algorithm to solve extremal graph problems: This algorithm
works if we know the appropriate information onL.

Algorithm 4.20 (The stability method). (a) We look for a propertyP which we feel
is an important feature of the conjectured extremal graphsSn.

(b) Show that ifGn does not contain someL ∈ L and does not have the propertyP ,
thene(Gn) is significantly smaller than the conjectured extremal number.

(c) This shows that all the extremal graphs have propertyP . Using this extra infor-
mation we prove the conjectured structure of the extremal graphs.

Example 4.21.If the decomposition classM contains anM consisting ofr indepen-
dent edges, then we can immediately see that if anyBi,` has at least two vertices (and
therefore, being connected, has an edge), then the symmetric graph sequences con-
tain someL, a contradiction. Hence the blocksBi,` reduce to vertices. Therefore any
x ∈ W is either joined to each vertex ofUi or to none of them. Now it is not too diffi-
cult to see that the extremal graphs must be (almost) theH(n, p, k) graphs: The only
difference which can occur is that the vertices of degreen − O(1) do not necessarily
form a complete subgraph.

16 There is an exception whenL contains some trees.
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Remark 4.22.So we have seen that if the decomposition classM(L) contains anM
consisting of independent edges, then we have can apply the theorems from [325] and
have a good chance to haveH(n, p, s) as the extremal graph.

Following this line, one can easily deduce Theorem 4.15 from Theorem 4.19. The
next few results follow from these theorems.

Theorem 4.23(Petersen-extremal graphs).For n > n0, Hn,2,3 is the (only) extremal
graph for the Petersen graphP10.

(An alternative proof of this can be derived from Theorem 4.30 of the next section.)
I close this part with two cases when Theorem 4.17 is applicable but the extremal

graph is not aH(n, p, s). Both results follow from Theorem 4.15.17 Let Lk,` denote
the graphs withk vertices and̀ edges.

Theorem 4.24(Simonovits [323]).Let k be fixed and̀ := e(Tk,p) + b, for 1 ≤ b ≤
k/(2p). If n is sufficiently large, then

ex(n,Lk,`) = e(Tn,p) + b − 1.

A theorem of Erd̋os, Füredi, Gould, and Gunderson determines
ex(n, F2k+1), whereF2k+1 := (kK2) ⊗ K1: k triangles with one com-
mon vertex. Clearly, here the Decomposition class contains akK2, hence
Theorem 4.17 is applicable. Yet the extremal graph is not aH(n, 2, s),
since even one vertex completely joined to aT2k,2 creates anF2k+1. (For

evenk, the extremal graph is obtained from aTn,2 by putting twoKk’s into its first
class.)

4.3. Andrásfai–Erdős–Sós type theorems

We have seen thatex(n,L) − ex(n,L) = O(n) if P is thatχ(Gn) is high. The
situation completely changes if we try to maximizedmin(Gn), instead ofe(Gn).

Theorem 4.25(Andrásfai–Erd̋os–Sós [24]).If Gn does not containKp, andχ(Gn) ≥
p, then

dmin(Gn) ≤

(

1−
1

p − 4
3

)

n + O(1).

Comparing this with Turán’s theorem, wheredmin(Tn,p−1) ≈ (1 − 1
p−1)n, we see

that because of the extra conditionχ(Gn) ≥ p, the maximum ofdmin(Gn) dropped by
cpn, for somecp ≈ 1

3p2 > 0. Below we shall need

17 They can be obtained directly, by much simpler arguments, as well.
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Definition 4.26(Blowing up a graph). Given a graphMv, its blown-up versionM [a1, . . . , av]
is a graph where each vertexxi ∈ V (Mv) is replaced by a setXi of ai independent
vertices (and theseXi’s are disjoint) and we join au ∈ Xi and aw ∈ Xj if the original
verticesxi andxj were joined inMv. If a1 = ∙ ∙ ∙ = av = a, then we use the simpler
notationM [a].

To generalize Theorem 4.25, Erdős and Simonovits [139] defined

ψ(n, L, t) := max{e(Gn) : L 6⊆ Gn andχ(Gn) ≥ t},

whereL is a fixed excluded graph,t is fixed, andn → ∞. Using this language and
including some further results of [24], we can say that

Theorem 4.27(Andrásfai–Erd̋os–Sós [24]).

ψ(n, Kp, p) =

(

1−
1

p − 4
3

)

n + O(1). (4.2)

For n > n0, the extremal graphSn for this problem is a product:Sn = Tm,p−3 ⊗
C5[a1, a2, . . . , a5], where the parametersm and ai should be chosen to maximize
e(Sn) among these structures.

Fig. 3:
Extremal
structure.

The above description ofSn almost completely determines its
structure: ifTm,p−3 = Kp−3(m1, . . . , mp−3), then

ai =
n

3n − 4
+ O(1) and mi =

3n

3n − 4
+ O(1).

To formulate a more general and sharper result, assume thatNote 2: Please
insert a reference to
Figure 3 in the text L has a critical edge: ane for whichχ(L − e) < χ(L). (4.3)

Theorem 4.28(Erdős–Simonovits [139]).If χ(L) = p andL has a critical edge, then,
for n > n0(L),

ψ(n, L, p) ≤ ψ(n, Kp, p).

Actually, equality may hold only forL = Kp.

Theorem 4.29(Erdős–Simonovits [139]).Let χ(L) = p and L 6= Kp satisfy (4.3).
Then, forn > n0(L),

ψ(n, L, p) ≤

(

1−
1

p − 3
2

)

n + O(1). (4.4)
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Of course, this theorem does not cover the case of the Petersen graph: it has no
critical edge. Figure 2 shows that one can delete 3 independent edges fromP10 to get
a bipartite graph. Moreover, ifT (v, p, s) is the graph obtained fromTn,p by puttings
independent edges into the first class ofTn,p, then Figure 2 shows thatP10 ⊆ T12,2,3.
So the “stability” ofP10-extremal graphs is covered by

Theorem 4.30(Simonovits [330]).For everyv (andt ≤ v/2) there exists aK = K(v)
such that if

dmin(Gn) >
2
5
n + K

andTv,2,t 6⊂ Gn, then one can deleteK vertices ofGn to get a bipartite graph.

Remarks 4.31.(a) Theorem 4.30 is sharp, as shown byC5[1
5n]. Clearly,δ(C5[1

5n]) ≥
2
5n − 2 andTv,2,t 6⊂ C5[1

5n]. Further, replacingTv,2,t by any graphL ⊆ Tv,2,t we get
the same sharpness ifK3 ⊆ L, sinceC5[1

5n] contains noK3.
(b) Moreover, Theorem 4.30 is sharp also forP10: one can relatively easily show

thatP10 cannot be embedded intoC5[1
5n].

(c) The theorem isnot sharpif χ(L) = 3 andL ⊆ C5[μ] for someμ.18

1,41,2

3,5

A

B

C

Fig. 4: Hajnal
construction.

The real question was ifψ(n, K3, t) ≤ ctn + o(n) for some
constantsct → 0 ast → ∞. In other words, is it true that if
the chromatic number tends to∞, we can push down the degree
density arbitrarily?

In [24] it was conjectured that YES, however, it turned out
in the Erd̋os and Simonovits paper [139] that NO. This follows
from Construction 4.33 of A. Hajnal below.19 For this we shall
need the definition of the Kneser graphKN(2k + `, k). Its ver-
tices are thek-subsets of a(2k + `)-element setU and we join

X, Y ⊆ U if X ∩ Y = ∅. It is easy to colorKN(2k + `, k) with ` + 2 colors. The
Petersen graphP10 = KN(5, 2) is the simplest non-trivial Kneser graph.

Theorem 4.32(Kneser conjecture, Lovász theorem [262]).

χ(KN(2k + `, k)) = ` + 2. (4.5)

Construction 4.33(A. Hajnal, in [139]). Letk, `, h → ∞, ` = o(k), k = o(n). Our
graphHn hasn ≈ 3h vertices partitioned into three groupsA, B, andC, where

H[A] = KN(2k + `, k), |B| ≈ 2h, |C| ≈ h.

(Casek = 2, ` = 1 can be seen in Figure 4).

18 C2μ+1 ⊆ C5[μ] for μ > 1.
19 I think that this construction was found by Hajnal, but now that I reread our paper, I cannot exclude

that it was found by Erd̋os and Hajnal.
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(a) Each vertexv of KN(2k + `, k) is a subset of{1, . . . , 2k + `}: call its elements
the “names” ofv. The vertices ofB are partitioned into 2k + ` subclassesBj . j =
1, 2, . . . , 2k + ` of approximately equal sizes. We join the vertices ofBj to those
vertices ofA whose nameset containsj. Finally, join each vertex fromC to each one
of B.

Let us verify the implicitly or explicitly stated properties ofHn. χ(Hn) ≥ ` + 2,
by (4.5).Hn contains noK3, because there are no edges betweenC andA, so all the
triangles have to be inA ∪ B. However,A does not containK3’s, and by the “name
rule”, if x, y ∈ A are connected, then they have no common neighbors inB. Finally,
if k, `, n → ∞, k = o(n), ` = o(k), thendmin(Hn) ≥ n/3− o(n), since the vertices
x ∈ A have

d(x) ≈
k

2k + `

2n

3
, (4.6)

because of the name rule, while for the vertices ofB (4.6) is trivial; for anx ∈ C,
d(x) = 2

3n − o(n).

Remark 4.34.When we described this construction originally, the Kneser conjecture
was still unproved: we used a much weaker assertion (an unpublished argument of
Szemerédi, based on a theorem of Kleitman) thatχ(KN(2k + `, k)) → ∞. Soon the
Kneser conjecture was proved by Lovász [262], then an alternative proof was given by
Bárány [44] and then many nice results were proved, of which we mention here just
one, due to Schrijver [315], describing the color-critical subgraphs ofKN(m, k).

There are many interesting related results in this area. We mention here only a few
of them:

Theorem 4.35(Häggkvist [197], Guoping Jin [207]).

ψ(n, K3, 4) =
11
29

n + O(1).

The sharpness of this result follows from an “optimally” blown-up version of the
Grötzsch graph, where “optimally” means thatn vertices are partitioned into 11 classes
U1, . . . .U11 and the classes are joined as in the Grötzsch graph, however the propor-
tions are chosen so that the number of edges be maximized, which happens when each
degree is approximately the same. Improving earlier an result of Thomassen [355],
Łuczak proved

Theorem 4.36(Łuczak [268]).For everyε > 0 there exists anL = L(ε) such that if
Gn is triangle-free anddmin(Gn) > (1

3 + ε)n, thenGn is contained in some blown-up
version of a triangle freeHm for somem ≤ L(ε).
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As Erd̋os and myself, using the construction of Hajnal, pointed out, such a result
does not hold belown/3, more precisely, with anε < 0. The results above leave open
the caseε = 0 which was very recently answered by Brandt and Thomassé [74], who
also completely described the structure of triangle free graphsGn with dmin(Gn) >
n/3. Their results imply

Theorem 4.37.All graphsGn with dmin(Gn) > 1
3n are 4-colorable.

4.4. The structure of denseL-free graphs

Below we shall writeG → H if H contains a homomorphic image ofG, or, in other
words, a blown-up versionH(t) of H containsG. To avoid too technical arguments,
we restrict ourselves to the 3-chromatic case. For a graphL we define

ξ(L) = max
{
m : m is odd andL → Cm

}

= max
{
m : m is odd andL ⊆ Cm[v(L)]

}
.

Note that ifχ(L) = 3, thenξ(L) cannot be larger thangirthodd(L), the length of the
shortest odd cycle contained inL. Finally, byβ(G) we denote the minimum number
of edges that must be deleted fromG to make it bipartite.

In this section we study the structure ofL-free graphs of large minimum degree for
a general 3-chromatic graphL. Our main result can be stated as follows.

Theorem 4.38(Łuczak and Simonovits [271]).Let L be a 3-chromatic graph. Then
for everyα, η > 0, there exists ann0 such that for everyL-free graphG with v(G) =
n ≥ n0 and

dmin(G) >

⌈
2n

ξ(L) + 2

⌉

+ ηn , (4.7)

we haveβ(G) ≤ αn2.
Furthermore, for everyα > 0 there exist an̄η > 0 and ann̄0 such that eachL-free

graphG with v(G) = n ≥ n̄0 and

dmin(G) >

⌈
2n

ξ(L) + 2

⌉

− η̄n , (4.8)

contains a subgraphG′ with at leaste(G) − αn2 edges such thatG′ → Cξ(L)+2.

Similar but sharper results were proved by Győri, Nikiforov and Schelp for the
special case whenL is an odd cycle.

Theorem 4.39(Győri, Nikiforov and Schelp [196]).If a non-bipartite graphGn has
minimum degreedmin(Gn) ≥ n/(4k + 2) + ck,m, whereck,m does not depend on
n and n is sufficiently large, and ifC2s+1 ⊂ Gn for somek ≤ s ≤ 4k + 1 then
C2s+2j+1 ⊂ Gn for everyj = 1, . . . , m.
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They describe the structure of all graphs onn vertices withdmin(Gn) ≥ n/(4k + 2)
not containing odd cycles longer than 2k+1. In particular they prove that these graphs
can be made bipartite by deletion of a fixed number of edges or vertices.

Further sources to read:Alon and Sudakov [22].

5. Problem of supersaturated graphs

5.1. Counting complete subgraphs

For the sake of simplicity we restrict ourselves to the case whenL has only one mem-
berL. By definition, if e(Gn) = ex(n, L) + 1, thenGn contains anL. It is rather
surprising that generallye(Gn) > ex(n, L) ensures much more than just oneL. The
first result in this direction is an unpublished theorem of Rademacher (1941) according

to which a graphGn with
[

n2

4

]
+ 1 edges contains at leastbn

2c copies ofK3. This was

immediately generalized by

Theorem 5.1(Erdős [109]).There exists a constantc > 0 such that ife(Gn) =
[

n2

4

]
+

k, 1 ≤ k ≤ cn, thenGn contains at leastkbn
2c copies ofK3.

Tn,2,k shows that this result is sharp, apart from the value ofc. Indeed,e(Tn,2,k) =[
n2

4

]
+ k and it has onlykbn

2c triangles. Later Erd̋os extended this result toKp+1

and graphsGn with e(Tn,p) + k edges [117]. Many similar results were proved by
Erdős [117, 112], Moon and Moser [276], Bollobás [53, 54], Lovász and Simonovits,
[264, 265].

For complete graphs, Lovász and Simonovits proved a conjecture of Erdős and for-
mulated a general conjecture in [264, 265] which they could prove only for special
values ofk = e(Gn) − ex(n, Kp+1), namely, whenk ∈ [1, εn2].20 Later, in several
steps it was solved by Fisher [158, 159], Razborov [295], Nikiforov [286] and finally,
“completely”, by Reiher [297].

We have already mentioned the “meta-theorem” that if one can prove a result for
Kp, then one can also prove it for graphs with critical edges. One example of this is

Theorem 5.2 (D. Mubayi, [279]: critical edges).Let L be p + 1-chromatic with a
critical edge. Letc(n, L) be the minimum number of copies ofL produced by the
addition of an edge toTn,p. There existn0(L) andδ(L) such that every graphGn of
ordern > n0 with e(Gn) = ex(n, Kp+1) + k edges contains at leastkc(n, L) copies
of L, providedk ≤ δn.

The proof uses the graph removal lemma and the Erdős–Simonovits stability theo-
rem.

20 More precisely, when for someq ≥ p, e(Tn,q) < e(Gn) < e(Tn,q) + εqn
2.
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5.2. General sample graphs

Turning to the general case we fix an arbitraryL and call a graphGn supersaturated
if e(Gn) > ex(n, L). The problem is, at least how many copies ofL must occur in a
Gn with ex(n, L) + k edges. Erd̋os and Simonovits [140] proved that

Theorem. For everyc > 0 there exists ac∗ > 0 such that ife(Gn) > ex(n, L) +
cn2 andv = v(L), thenGn contains at fewestc∗nv copies ofL.

Further sources to read: The reader interested in further information is suggested
to read the papers of Lovász and Simonovits on structural stability [265], Erdős and
Simonovits, [140], or Brown and Simonovits [85], or my survey [328].

5.3. Razborov’s method, flag algebras

Given a graphGn, we may count the occurrences of several possible subgraphs in
it. Denote byc(L, Gn) the number of occurrences ofL in Gn. Inequalities for such
“counting functions” were the basic tools in several cases, see e.g. [252], [276] [265].
The connection between Supersaturated Graph theorems and proofs of ordinary ex-
tremal graph problems was discussed e.g. in [328]. In the last few years Razborov has
developed a new method which enables the researcher to apply computers to prove
inequalities between counting functions on a graph. This method turned out to be very
successful and popular. To describe it and its applications would go far beyond our
scope. I just mention one of the first papers of A. Razborov [293] and his very recent
survey [296] on this topic, or Keevash [218].

5.4. The general case, bipartite graphs

As we have mentioned, the theory of supersaturated graphs started with Rademacher’s
theorem, and the first few papers in the field counted complete subgraphs of super-
saturated graphs, [117], [100] . . . . (Perhaps one exception should be mentioned here:
counting walks in graphs, e.g. Blakley and Roy [49], that was found independently
also by [282], [260]. Counting walks is important e.g., if we wish to get information
on the eigenvalues of a graph.)

The theory of supersaturated graphs is completely different for (a) the case when
the excluded graph,L is bipartite, and (b) when it is not. The case when it is bipartite
is described in detail in [180], and from other viewpoints, in my survey, [328], so I
will describe the situation here only very shortly.

For e(Gn) ≤ ex(n, L), of course, it may happen thatGn contains no copies ofL.
As soon as we go aboveex(n, L), we immediately have very many copies. Yet, to
give a precise description is hopeless, even for one of the the simplest cases, forC4:
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we do not know enough of the finite geometries to tell how manyC4 must occur inGn

if e(Gn) = ex(n, C4) + 1.
Erdős and I conjectured (see [328]) that ifχ(L) = 2 then for everyε > 0 there exists

anη(ε) > 0 such that ife(Gn) > (1 + ε)ex(n, L), thenGn contains at leastηnv(L)

copies ofL. We also formulated a weaker conjecture, asserting that – for any fixedL
– there exist a (small)η > 0 and aC > 0 such that ife(Gn) > Cex(n, L), thenGn

contains at leastηnv(L) copies ofL. It is also mentioned (implicitly?) in [328] that
these conjectures mean that the random graph has the fewest copies ofL.21 Sidorenko
[319], [320] considered dense graph sequences, turned the corresponding inequalities
into integrals, the error terms disappeared, and he formulated more explicitly that for
a given number of edges the Random Graph has the least copies ofL.

Today this has become one of the most important conjectures in this area. The
simplest case when the conjecture is unknown is whenL is obtained from aK(5, 5)
by deleting edges of aC10. We could mention here several results, however basically
we refer the reader to [180] and mention only Simonovits, [328], Conlon, Fox and
Sudakov [95].

Remark 5.3.Earlier we always first proved an extremal graph theorem and then the
corresponding supersaturated graph theorem. Today this is not quite so: Fork ≥ 4 we
do not really know any reasonable upper bound onex(n, Q2k) (for thek-dimensional
cube), while the corresponding Erdős–Simonovits–Sidorenko conjecture is proved by
Hatami [199]. This may seem to be surprising, however, the Sidorenko conjecture is
aboutdensegraphs.

5.5. Ramsey-supersaturated?

The general question would be (though not the most general one) that if we have a
sample graphL andn > n0, and wer-color Kn, at least how many monochromatic
subgraphs must occur.22 The simplest case is to determine

min
(
c(Kp, Gn) + c(Kp, Gn)

)
.

ForK3 the answer is relatively easy, see Goodman [184]. Erdős conjectured [110] that
the minimum is achieved by the Random Graph. This was disproved by Thomason
[354]. (See also [205].)

6. Regularity lemma

When the Szemerédi Regularity Lemma [349] “arrived”, first it seemed somewhat too
complicated. The reason for this was that in those days most graph theorists felt uneasy

21 In those days quasi-random graphs were “non-existent”, today we know that from this point of view
the random and the quasi-random graphs are indistinguishable.

22 A related question is, how many monochromatic forbidden subgraphs appear near the Ramsey
bound, see e.g., Rosta and Surányi, [307], Károlyi and Rosta [212], . . . .
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about having this “approximation type statements”.23

Today we know that (a) it is not that complicated and that (b) it is one of themost
importanttools in Extremal Graph Theory. This is not the place to explain it. Surveys
like Komlós and Simonovits [249], [248] describe sufficiently well the usage of the
Regularity Lemma in our setting, for “dense graph sequences”,24 several excellent
newer surveys are also available, like Kohayakawa and Rödl [229], Rödl and Schacht
[302], Gerke and Steger [183], and many others. Yet, for the sake of completeness we
formulate it.

6.1. The original regularity lemma

Definition 6.1 (ε-regular pairs). The pair of two disjoint vertex sets,A, B ⊆ V (G) is
ε-regular inG, if for everyX ⊆ A andY ⊆ B satisfying|X| > ε|A| and|Y | > ε|B|,
we have ∣

∣
∣
∣
e(X, Y )
|X||Y |

−
e(A, B)
|A||B|

∣
∣
∣
∣ < ε. (6.1)

Theorem 6.2(Szemerédi Regularity Lemma).For everyκ > 0 andε > 0 there exists
a k0 = k0(ε, κ) such that for each graphGn, V (Gn) can be partitioned intok ∈
(κ, k0) vertex sets(U1, . . . , Uk), of ≤ dn/ke vertices (each), so that for all butε

(
k
2

)

pairs (Ui, Uj) (1 ≤ i < j ≤ k) the subgraphG[Ui, Uj ] induced byUi, Uj is ε-regular.

The meaning of this “lemma” is that any graph can be approximated by a “gener-
alized random graph”. Its applicability comes from the fact that embedding certain
structures into random-like graphs is much easier than into arbitrary graphs. This
approximation helps us to prove (instead of statements on “embedding into arbitrary
graphs”) the simpler assertions on “embedding into generalized random graphs”.

The Regularity Lemma completely changed that part of graph theory we are con-
sidering here. There are many excellent introductions to its applications. One of the
first ones was that of Komlós and myself [249], or its extension [248].

Remarks 6.3.(a) The Regularity Lemma can be applied primarily when a graph se-
quence(Gn) is given with positive edge density:e(Gn) > cn2, for some fixedc > 0.

(b) For ordinary graphs it has several weaker or stronger versions, and one could as-
sert that if one knows the statement, the proofs are not that difficult: the breakthroughs
came from finding the right Regularity Lemma versions.

(c) For hypergraphs the situation completely changes: the regularity lemmas are
much more complicated to formulate and often their proofs are also very painful (?).
For a related survey see the PNAS paper of Rödl, Nagle Skokan, Schacht and Ko-
hayakawa [298] and the “attached” Solymosi paper [337], and Gowers, [188], and Tao
[351].

23 Harary, e.g., did not like assertions containing statements like “forn > n0” . . . .
24 wheree(Gn) > cn2 for some constantc > 0 asn → ∞.
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(d) Regularity Lemmas are connected with “removal lemmas”, and “counting lem-
mas”. However, for ordinary graphs they are easy, while for hypergraphs they are
much deeper.

(e) Regularity Lemmas can be applied to sparse graph sequences(Gn) as well,
[225, 228] assuming that the graphsGn satisfy some technical assumptions, according
to which they do not have too dense subgraphs. Subgraphs of random graphs satisfy
this condition, therefore Sparse Regularity Lemmas were applicable in several cases
for non-random subgraphs of sparse random graphs.

(f) Regularity Lemmas were “invented” to ensure small subgraphs of given prop-
erties of a graphGn. Later Komlós, G. N. Sárközy, and Szemerédi started using it to
ensure spanning subgraphs. This is what the “Blow-Up Lemmas” were invented for,
see Komlós, [245], Komlós, Sárközy and Szemerédi, [240]. Later they worked out al-
gorithmic versions of the blow-up lemma too [242] (see also Rödl and Ruciński [300])
and hypergraph versions (Keevash, [217]) were established. We return to this topic in
Subsection 6.6.

(g) There are many cases where Regularity Lemmas are used to give a first proof
for some theorems, but later it turns out that the “regularity lemma” can be eliminated.

(h) Regularity Lemmas play a crucial role in the theory of quasi-randomness, in
“property testing”, and in the theory of graph limits.

6.2. Some newer regularity lemmas

In [249] we tried to give an easy introduction to the applications of the Regularity
Lemma. We have described the earliest applications, the Alon, Duke, Lefmann, Rödl
and Yuster paper [13] about the algorithmic aspects of the Regularity Lemma, which
helps to turn existence theorems using the Regularity Lemma into algorithms, the
Frieze and Kannan version [164] which helps to make algorithms faster, since it uses
a weaker Regularity Lemma, however, with much fewer classes. Beside [164], see
also[?]. The weak Regularity Lemma in my opinion also connects the combinatorialNote 3: The

reference
{MatrixMultip} is
missing from the
Bibliography

approach to Mathematical Statistics, above all, to Principal Component Analysis.
There are also continuous versions of Regularity Lemmas. Here we refer the reader

to the paper of Lovász and B. Szegedy [266] and to the book of Lovász [263]. Many
further remarks and references could be added here but we have to cut it short.

6.3. Regularity Lemma for sparse graphs

The Kohayakawa–Rödl version of the Szemerédi Regularity Lemma uses a “technical”
assumption that the consideredGn does not contain subgraphsGm of much higher
density thanGn. Very recently Alex Scott proved a new version of the Regularity
Lemma, for sparse graphs [316]. Yet this has not solved all the problems. As Scott
points out, it may happen in the applications of the Scott Lemma that most of the
edges are in the “wrong place”. We skip the details. On the connection of random
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graph models and Regularity Lemmas, we mention Bollobás and Riordan [59].

6.4. Regularity lemma and quasi-randomness

Quasi-randomness informally means that

(Q) We consider graph sequences(Gn) and look for “properties”Pi that are
obvious for the usual random graphs (say, from the binomial distribution
Rn,p) and equivalent to each other.

Here there are two notions relatively near to each other: the pseudo-random and
the quasi-random graphs. The investigations in this area were initiated by Andrew
Thomason (see e.g. his survey [353]) and were motivated (partly?) by Ramsey prob-
lems. Chung, Graham and Wilson [94] showed that if we weaken the error terms,
then there are six properties satisfying (Q). Vera Sós and I proved that there is another
propertyPR equivalent to quasi-randomness:

Theorem 6.4(Simonovits–Sós [333]).A graph sequence(Gn) is p-quasi-random in
the Chung–Graham–Wilson sense iff for everyκ and ε > 0 there exist two integers
k(ε, κ) andn0(ε, κ) such that forn > n0 V (Gn) has a (Szemerédi) partition intok
classesU1, . . . , Uk (where|Ui − n/k| ≤ 1, κ < k < k(ε, κ)) where all but at most
εk2 pairs1 ≤ i < j ≤ k areε–regular with densitiesd(Ui, Uj) satisfying

|d(Ui, Uj) − p| < ε.

Several extensions exist for sparse graph sequences and hypergraph sequences, how-
ever, we do not discuss them in detail. For the sparse case see, e.g., Kohayakawa and
Rödl [229]. For hypergraph extensions (which are much more technical) see, e.g.,
Keevash [217].

6.5. Regularity lemma and property testing

Property testing is among the important “Computer Science motivated” areas. It is
perhaps two steps away from Turán’s results, yet I write very shortly about it. Assume
that we have a graph propertyP . We would like to decide if a graphGn ∈ P or not.
However, we may ask only a few questions about pairsxy if they are edges ofGn or
not? For example, we would like to decide ifGn contains a givenL or not. Obviously,
we cannot decide this for sure – using only a few questions – unless we allow some
errors in the answer: if we can change a few edges inGn to get aG̃n ∈ P then we
accept a YES. Some of the earliest questions of this type came from Paul Erdős, though
in somewhat different form. In the papers of Alon and Shapira it turned out that – in
the reasonable cases – one can decide the question if one can decide it by applying
the regularity lemma toGn and then considering the densities between the partition
classes.
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6.6. Blow-up lemma

In many cases we embed a small graphL into a large one,Gn. There are some ex-
ceptions, when we wish to find inGn a Hamiltonian cycle, or a spanning tree of given
structure, . . . . In these cases mostly (a) we have to assume some sparseness condition
onL, say a bound ondmax(L). (b) Even if we can embedL into Gn, if v(L) = n, then
we have to struggle with finding places for the last few vertices.

To solve this problem Komlós, G. Sárközy and Szemerédi [240] established a spe-
cial “extension” of the Regularity Lemma, called theBlow-Up Lemma. Komlós has a
survey [245] on early successes of the Blow-Up Lemma. This survey very nicely de-
scribes the classification of embedding problems25 and lists several conjectures solved
with the help of the Blow-Up Lemma.

We call a pair(X, Y ) of vertex-sets inGn (ε, τ )-super-regular if|X| ≈ |Y |, it is ε-
regular,d(X, Y ) ≥ τ and the minimum degree ofG(X, Y ) is also at least(d(X, Y )−
ε)|X|.26

Theorem 6.5(Blow-Up Lemma, short form).For everyδ, Δ > 0 there exists anε0 > 0
such that the following holds. Given a graphHν , and a positive integerm, andGn

and Un are obtained by replacing every vertex ofHν by m or m − 1 vertices, and
replacing the edges ofHν with (ε, δ)-super-regular pairs and by complete bipartite
graphs, respectively. IfLn ⊆ Un anddmax(Ln) ≤ Δ, thenLn ⊆ Gn.

The meaning of this is that if we do not have large degrees inLn and small degrees
in Gn and we apply the Regularity Lemma toGn, and replace each of theε-regular
τ -dense pairs by complete bipartite graphs, then, if we can embedLn into the so
obtainedUn, then we can embedLn into the original, much sparserGn as well.

The basic idea was (i) first to use a randomized greedy embedding algorithm for
most of the vertices of the graph to be embedded and (ii) then take care of the remain-
ing ones by applying a König–Hall type argument [240].

The Blow-Up Lemma successfully solved several open problems, see e.g., Kom-
lós, Sárközy, and Szemerédi, proving the Pósa–Seymour conjecture, [246], the Alon–
Yuster conjecture [243], . . . . Here the Pósa–Seymour conjecture asks about ensuring
the kth power of a Hamiltonian cycle (meaning that we have a Hamiltonian cycle,
where all the vertices are joined whose distance on thisH is at mostk).

The randomization was later eliminated by Komlós, Sárközy and Szemerédi and the
embedding became an algorithmic one [242]. An alternative “derandomized” proof
was also given by Rödl and Ruciński [300]. This approach turned out to be extremely
successful. The blow-up lemma was also extended to hypergraphs, see Keevash [217].

When using the Regularity Lemma, or the Blow-Up Lemma, we often apply some
“classical” result to the Cluster Graphs. Here we often need the famous

25 fixed sizeL, o(n) sizeL, v(L) = cn, v(L) = n
26 We could define this basic notion also slightly differently.
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Theorem 6.6(Hajnal–Szemerédi [244]).If n is divisible byp and

dmin(Gn) ≥

(

1−
1
p

)

n,

thenV (Gn) can be covered by vertex-disjoint copies ofKp.

When Hajnal and Szemerédi proved this conjecture of Erdős, that was an enormous
technical achievement, but I do not think that most people in the surrounding new that
this would also be an important “tool”.

Further sources to read: Several related results discuss how one can get rid of ap-
plying the Blow-Up Lemma (or variants of the Regularity Lemma, see, e.g. Levitt,
Sárközy and Szemerédi [247]). Kühn and Osthus have a related survey [255], and
Rödl and Rucínski another one [301]. See also Alon, Rödl and Ruciński [19], B,
Csaba [96].

7. Arithmetic structures and combinatorics

This will be the shortest section of this survey. Clearly, writing of the influence of
Turán in Discrete Mathematics one cannot avoid the Erdős–Turán conjecture, nowa-
days Szemerédi’srk(n)-theorem. This asserts that

Theorem 7.1(Szemerédi [348]).For any fixedk, if a sequenceA of integers does not
containk-term arithmetic progressions, then it has onlyo(n) elements in[1, n].

This theorem was very strongly connected to combinatorics. Szemerédi proved and
used an earlier, weaker version of his Regularity Lemma, to prove Theorem 7.1. Vera
Sós has a paper describing the origins of this conjecture [340] (based on the letters
exchanged by Erd̋os and Turán, during the war).

Remarks 7.2.(a) Szemerédi’s theorem is one of the roots of many results that connect
Combinatorics (Graph Theory?) and Combinatorial Number Theory. Beside this it
also connects Ergodic Theory and Combinatorial Number Theory, since Fürstenberg
[181] gave an ergodic theoretic proof of it, then Fürstenberg, Katznelson [182] and
others gave several generalizations, using ergodic theoretic methods. The reader is
recommended to read e.g. the corresponding chapter of the book of Graham, Roth-
schild and Spencer [190]. At the same time, there are fascinating approaches to this
field using deep analysis, due to Gowers, and others,27 see recent papers of Gowers
[186], or an even newer paper of Gowers [189] on these types of problems, on arith-
metic progressions.

27 This approach originates from Roth.
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(b) Historically it may be interesting to read the first, fairly weak results of Erdős
and Turán on this topic, in [150]. They start with proving thatr3(n) < 1

2n. Then they
prove a slight improvement, and formulate a conjecture of Szekeres which turned out
to be false.

One of the most famous conjectures of Erdős was

Conjecture 7.3.If A = (a1, . . . , an, . . . ) is a sequence of integers with

∑ 1
ai

= ∞,

then, for anyk, A contains ak-term arithmetic progression.

One motivation of this conjecture is that it would imply

Theorem 7.4(Green–Tao [191]).For arbitrary k there existk-term arithmetic pro-
gressions in the set of primes.

Further sources to read: Elek and Szegedy on the nonstandard methods in this area,
[104, 105].

8. Multigraph and digraph extremal problems

Here I formulate only the digraph problem, which includes the multigraph case. Letr
be fixed and consider digraphs in which for any two vertices at mostr arcs of the same
orientation can join them. (Hence the number of arcs joining two vertices is at most
2r.) The problem is obvious:

For a given family
−→
L of digraphs what is the maximum number of arcs a

digraph
−→
Dn can possess without containing any

−→
L ∈

−→
L?

The concepts ofex(n,
−→
L ) andEX(n,

−→
L ) are defined in the obvious way. Brown

and Harary [84] started investigating multigraph extremal problems. Several general
theorems were proved by W. G. Brown, P. Erdős and M. Simonovits [78], [79], [80],
[81]. Some results concerning directed multi-hypergraphs can also be found in a paper
of Brown and Simonovits [85]. For the Erdős conference in 1999 we wrote a longer
survey on the topic [86]. The caser = 1, at least, the asymptotics ofex(n,

−→
L ) in this

case, is sufficiently well described. Below we formulate only one theorem, indicating
that the whole theory of digraph extremal problems is strongly connected to the theory
of matrices with nonnegative integer entries.

Brown–Erdős–Simonovits theorem [78]. Let us consider digraphs where any
two vertices are joined by at most one arc in each direction. Let

−→
L be a given family
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of forbidden digraphs. Then there exists a0-1 matrix A (of sayt rows and columns)
such that:

(a) If we partitionn vertices intot classesU1, . . . , Ut, and for i 6= j join each
vertex ofUi to each vertex ofUj , by an arc oriented fromUi, to Uj , iff ai,j = 1,
and put transitive tournaments into the classesUi iff ai,i = 1 (otherwise these are
independent vertices) then the resulting digraph does not contain subdigraphs from
−→
L .

(b) One can partitionn vertices intot classesU1, . . . , Ut in such a way that the
resulting digraphs

−→
Dn form an almost extremal sequence:e(

−→
Dn)/ex(n,

−→
L ) → 1

(and
−→
Dn contains no forbidden subdigraphs).

The meaning of this theorem is that forr = 1 we can always find an almost ex-
tremal graph sequence of fairly simple structure, where the structure itself excludes
the containment of forbidden subgraphs.

Example 8.1.(a) Letr = 1. LetL3 be the following digraph:a is joined tob andc by
two arcs of opposite directions andb is joined toc by one arc. The extremal structure
is a

−→
Gn obtained fromTn,2 replacing each edge by two arcs of opposite direction. Any

tournament
−→
T n is also an almost-extremal graph, and there are many other extremal

graphs, see [86].
(b) There are digraph families for which the structure in Figure 5 (a) is extremal, and

for some other family
−→
L the structures in Figure 5 (b)–(e) forms an extremal sequence,

respectively.

2n/7 2n/7

3n/7

Figure 5. (a) Excluded (b), (c), (d) and (e) extremal structures for someL.

Brown, Erd̋os, and myself had conjectures asserting that most of the results for
r = 1 can be generalized to any fixedr, however, most of our conjectures were “killed”
by some counter-examples of Sidorenko [317] and then of Rödl and Sidorenko [304].

9. Hypergraph extremal problems

Just to emphasize that we are speaking of hypergraphs, hyperedges, . . . , we shall use
script letters, and occasionally an upper index indicates ther-ity: H(r)

n denotes an
r-uniform hypergraph onn vertices.
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Given two positive integersh andr, we may considerh-uniformr-multi-hypergraphs,
that is,h-uniform hypergraphs, where the edges may have some multiplicities≤ r.
Obviously, given a family of such multi-hypergraphs,ex(n,L) is defined as the max-
imum number ofh-tuples (counted with multiplicity) such a multi-hypergraph onn
vertices can have without containing some members ofL as submulti-hypergraphs.
Some results on such general extremal graph problems were obtained by W. G. Brown
and M. Simonovits [85], but for the sake of simplicity we shall confine our considera-
tions tor = 1, that is, to ordinaryh-uniform hypergraphs. Even forh = 3 most of the
problems we meet prove to be hopeless or at least extremely hard. Therefore we shall
mostly restrict our considerations to 3-uniform hypergraphs.

9.1. Degenerate hypergraph problems

Let K(h)
h (m) be the followingh-uniform hypergraph: it hashm vertices partitioned

into disjointm-tuplesU1, . . . , Uh, and the edges are thoseh-tuples which have exactly
one vertex from eachUi.

Theorem 9.1 (Erdős’ theorem [111]).There exist two constantsc = ch > 0 and
A = Ah such that

nh−cm−(h−1)
< ex(n,K(h)

h (m)) < Anh−m−(h−1)
.

Fig. 6:
Octahedron
hypergraph.

Clearly,K(2)
2 (m) = K2(m, m), and the above theorem is a gen-

eralization of the K̋ovári–T. Sós–Turán theorem. For the sake ofNote 4: Please
insert a reference to
Figure 6 in the text

simplicity, Theorem 9.1 was given only for the case when the sizes
of classes of the excludedh-uniform h-partite graph were equal.
One annoying feature of this theorem is that we do not have match-
ing lower and upper bounds for the exponents even in the simplest
hypergraph caseh = 3 andm = 2.28 At this point, it is worth
defining two different chromatic numbers of hypergraphs.

Definition 9.2 (Strong-Weak chromatic number). A hypergraphH
is stronglyt-colorable, ifV (H) can bet-colored so that each hyper-

edge uses each color at most once; the strong chromatic numberχs(H) is the smallest
sucht.

A hypergraphH is weakt-colorable if we cant-color its vertices so that each of
them gets at least 2 colors;χ(H) is the smallest sucht.

This way we see, by Theorem 9.1, that forr-uniform hypergraphsex(n,L(r)) =
o(nr) if and only if there is anH(r) ∈ L(r) that is stronglyr-colorable. This extends
from r = 2 to r > 2, which we already knew from Section 3.3.

28 This is the octahedron hypergraph, defined by the triangles of an octahedron.
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Let Lk,t denote the family of 3-uniform hypergraphs ofk vertices andt edges.
Brown, Erd̋os and T. Sós [82] started investigating the functionf(n, k, t) = ex(n,Lk,t).29

The problem of finding good estimates off(n, k, t) is sometimes relatively simple, for
some other values ofk andt it seems to be extremely hard. One case which they could
not settle was iff(n, 6, 3) = o(n2). Ruzsa and Szemerédi [311] proved the following
surprising result.

Ruzsa–Szemerédi theorem. Let rk(n) denote the maximum number of integers
one can choose in[1, n] so that nok of them form an arithmetic progression.30 Then
there exists a constantc > 0 such that

cnr3(n) < f(n, 6, 3) = o(n2).

It is known that

Theorem 9.3(Behrend [45], and Roth [309]).

n
1− c√

log n < r3(n) < c∗
n

log logn
.

The upper bound was recently improved by Tom Sanders [312] to

r3(n) < c∗∗n
(log logn)5

logn
.

So, among others, the Ruzsa–Szemerédi theorem is surprising, since it shows the
nonexistence of anα ∈ (1, 2) such thatC1n

α < f(n, 6, 3) < C2n
α. Another surpris-

ing feature is that it implies thatr3(n) = o(n), which was considered a beautiful result
of K. F. Roth [308, 309], though superseded by the famous result of Szemerédi:

Theorem 9.4(Szemerédi on arithmetic progressions [348]).For every fixedk, asn →
∞, rk(n) = o(n).

For some related generalizations, see Alon and Shapira [20].

9.2. The “simplest” hypergraph extremal problem?

Next we turn to a hypergraph extremal problem which has a very simple extremal
structure. G. O. H. Katona conjectured and Bollobás proved that

29 The same question was investigated in some sense by Dirac [100] and in several papers of Erdős,
and of Simonovits, see also Griggs, Simonovits and Thomas [192].

30 We have already considered this problem in Section 7.
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Theorem 9.5(Bollobás [52]).If H(3)
3n is a 3-uniform hypergraph withn3 + 1 triples,

then it contains three triples where one contains the symmetric difference of the other
two.

This can be viewed as a possible generalization of Turán’s theorem:K3 has three
pairs and the symmetric difference of two of them is contained in the third one. To
understand a statement like Theorem 9.5, one always has to consider the conjectured
extremal structure. Now this is the complete 3-partite 3-uniform hypergraph with (al-
most) equal class sizes. For us it is much more interesting that such a simple nice-
looking extremal problem exists for hypergraphs.

9.3. Turán’s hypergraph conjecture

We finish this part with the famous unsolved problem of P. Turán [361]:
Given ap, we define the completeh-uniformp-graphK(h)

p as theh-uniform hyper-
graph onp vertices and with all the

(
p
h

)
hyperedges. What is the maximum number of

hyperedges in anh-uniform hypergraphH(h)
n if it does not containK(h)

p as a subhyper-
graph?

For h = 3 Turán formulated some plausible conjectures. The conjectured extremal
hypergraphs differed in structure for the cases ifp was even or odd. For the sake of
simplicity we formulate them only forp = 4 andp = 5.

(a) Forp = 4 let us consider the 3-uniform hypergraph obtained by partitioningn
vertices into 3 classesU1, U2 andU3 as equally as possible and then taking all the
triples of form (x, y, z) wherex, y, andz belong to different classes; further, take
all the triplets(x, y, z) wherex andy belong to theith class andz to the(i + 1)th,
i = 1, 2, 3, andU4 := U1.

Figure 7. The conjectured extremal hypergraphs forK(3)
4 andK(3)

5 .

(b) For p = 5 Turán had a construction with 4 classes and another one with 2
classes. The one with 2 classes is simple: we take all the triples having two vertices inNote 5: Please

insert a reference to
Figure 7 in the text

one class and the third vertex in the other class. V. T. Sós observed that the construction
with 2 classes can be obtained from the construction with 4 classes by moving some
triples in some simple way. Later J. Surányi found a construction showing that Turán’s
conjecture forp = 5 is false forn = 9. As far as I know Kostochka has found a
generalization of Surányi’s construction: counter-examples for everyn = 4k+1. Still
Turán’s conjecture may be asymptotically sharp.
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(c) Let us return to the case ofL = K(3)
4 . Even in this simple case Turán’s con-

jecture seems to be very hard, even if we look only for asymptotics, that is, for
lim ex(n,K(3)

4 )/n3. There are no counter-examples to the conjecture, however, first
Katona, Nemetz and Simonovits [215] have found some other constructions, slightly
different from Turán’s one, and only forn = 3k+1 andn = 3k+2. Later W. G. Brown
[77] gave another construction withoutK(3)

4 and with the same number of triples, hav-
ing 6 classes, depending on one parameter and containing Turán’s construction as a
special case. Finally Kostochka [251] has found a construction witht parameters, 3t
classes, for arbitraryt, and having the same number of triples as Turán’s one, without
containingK(3)

4 . His construction was a generalization of Brown’s one. In these new
constructionsn = 3k, which seems to be the most interesting case. Next Fon der
Flaass [160] gave a characterization of all of Kostochka’s (3,4)-graphs, “explaining”
why the Kostochka constructions do work. Recently Andrew Frohmader [166] found
some new constructions. As to numerical estimates, see e.g. Chung and Lu [92].

Some people include intersection results into extremal hypergraph theory. I prefer
to distinguish between them. Yet, I will include here a very famous problem of Erdős
and Rado.

Problem 1 (Delta-systems, [130], [124].). Let us call a system of sets,A1, . . . , Ak a
strongΔ-system, if the intersection of any two of them is the same. Is it true that ifA
is a system ofr-tuples on ann-element set, without ak-Delta-system, then|A| < Cn

r ,
for some constantCr > 0.

9.4. Do hypergraphs jump?

Definition 9.6 (Jumping constants). The numberα ∈ [0, 1) is a jump forr if for any

ε > 0 and integerm ≥ r, anyr-uniform hypergraphH(r)
n with n > no(ε, m) vertices

and at least(α + ε)
(
n
r

)
edges contains a subhypergraphH(r)

m with at least(α + c)
(
m
r

)

edges, wherec = c(α) does not depend onε andm.

By the Erd̋os–Stone–Simonovits theorem, for ordinary graphs (i.e.r = 2) every
α is a jump. Erd̋os asked [111] whether the same is true forr ≥ 3. For the sake of
simplicity we restrict ourselves to 3-uniform hypergraphs. For such a hypergraphH(3)

n

define the triple density as

ζ(H(3)
n ) =

e(H(3)
n )

(
n
3

) .

Theorem 9.1 of Erd̋os shows that if for a three-uniform hypergraph sequence(H(3)
n )

the triple-densityζ(H(3)
n ) > α > 0,31 then there exist some subgraphsH(3)

m(n) ⊂ H(3)
n

31 We may define the density dividing bynr and by
(

n
r

)
.
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with m(n) → ∞, for which

ζ(H(3)
m(n)) ≥

6
27

as n → ∞.

This means that – in this sense – the density jumps fromα = 0 to α′ = 2/9. It
seems to me that Erdős wanted to know if this minimum density, 2/9 (i.e. the density

of K
(3)
3 (m)) is a jumping constant. However, he formulated his question in a more

general form and that was disproved (by a “random graph construction”), by Frankl
and Rödl:

Theorem 9.7(Frankl and Rödl [163]).Suppose thatr ≥ 3 and` > 2r. Then1− 1
`r−1

is not a jumping constant.

Theorem 9.8(Baber–Talbot [30]).If α ∈ [02299, 02316], thenα is a jump forr = 3.

These are the first non-trivial jumping constants. The proof uses Razborov’s flag
algebra method. Theorem 9.8 follows from that for an appropriately chosen familyF
of 3-uniform hypergraphsex(n,F) < 0.2299

(
n
3

)
+ o(n3).

Remark 9.9.The jumping constant problem came up slightly differently (perhaps ear-
lier) in the digraph extremal problems, in the following form: “prove that the extremal
densities form a well-ordered set under the ordinary relation ‘<’ ”. Actually, a YES
answer implies that the corresponding digraph extremal problems can algorithmically
be solved. For the details we refer the reader to [81, 86]. The answer was YES for
r = 1 and NO for large values ofr, see Sidorenko [317], and Rödl and Sidorenko
[304].

9.5. The story of the Fano problem

Consider the 3-uniform hypergraph defined by the “lines” of the Fano geometry (see
Figure 8 (a)). This hypergraph has 7 vertices and 7 triples and any two (distinct) of
them intersect in exactly 1 vertex. This is the smallest finite geometry. As a hyper-
graph, it will be denoted byF7.

Figure 8. (a) Fano hypergraph (b) Fano extremal graph.

Vera Sós asked what is the extremal graph forF7, and conjectured [339] that it is
the complete bipartite 3-uniform graph shown in Figure 8 (b). Why is this conjecture
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natural?32

(i) BecauseF7 is 3-chromatic, by Definition 9.2,
(ii) however, deleting any triple ofF7 we get a 2-chromatic hypergraph;
(iii) F7 is relatively sparse.

Theorem 9.10(de Caen and Füredi [90]).

ex3(n,F7) =
3
4

(
n

3

)

+ O(n2).

Theorem 9.11(Füredi–Simonovits [179], Keevash–Sudakov [219]).For n > n0(F7)
the complete bipartite 3-uniform hypergraph is the only extremal hypergraph forF7.

Actually, in [179] a stronger, stability result was proved, easily implying Theo-
rem 9.11. Observe that the degrees of the conjectured extremal graph are around3

4

(
n
2

)
.

Theorem 9.12.There exist aγ2 > 0 and ann2 such that the following holds. IfH is a
triple system onn > n2 vertices not containing the Fano configurationF7 and

deg(x) >

(
3
4
− γ2

)(
n

2

)

holds for everyx ∈ V (H), thenH is bipartite,H ⊆ H(X, X) for someX ⊆ V (H).

This result is a distant relative of Theorem 4.25 (of Andrásfai, Erdős and T. Sós).

Remark 9.13 (Tools). These proofs heavily use some multigraph extremal results of
Füredi and Kündgen [174]: the basic approach is that one finds first aK(3)

4 ⊂ H(3)
n .

If its vertices area, b, c, d, then one considers the four link-graphs of these vertices,
where the link-graph of anx in a 3-uniform hypergraph is the pairsuv forming a
3-edge withx.33 These link-graphs define a (colored) multigraph onV (H(3)

n ) −

{a, b, c, d}. We apply a multigraph extremal theorem of [174] to get anF7 ⊂ H(3)
n .

The boundedness of multiplicities is trivial.

There are a few further cases where we have sharp results on hypergraph extremal
problems. I mention here e.g. Füredi, Pikhurko and Simonovits [176, 177, 178], where
the last one refers to 4-hypergraphs. Other sharp results can be found on 4-hypergraph
cases in Füredi, Mubayi, Pikhurko [175].

32 We used the completek-chromatic graph for Theorem 9.1 in a slightly different way. Actually, there
we considered the strong chromatic number, here the weak one.

33 Actually, we use only the three largest ones of them.
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9.6. Co-degree problems

For hypergraphs we have several options to define degrees. Below we restrict our con-
siderations again to the 3-uniform case and instead of degrees we consider co-degrees:
the co-degree of two verticesx andy is the number of triples ofH(3)

n containing both
of them.

Theorem 9.14(Mubayi [280]).For everyε > 0 there exists ann0 such that forn >

n0, if for any pair of verticesx, y ∈ V (H(3)
n ) their co-degree is at least(1

2 + ε)n then

F7 ⊂ H(3)
n .

Mubayi conjectured thatε = 0 would be sufficient to ensure a Fano subgraph.
Mubayi and Zhao remark in [281] that for co-degree problems many questions have
answers different from that of the ordinary hypergraph extremal problems. One such
case is the problem of jumping constants (see Section 9.4). The co-degree densities
are defined in the obvious way, thus the jumping constants are defined almost the same
way as for hyperedge densities.

Theorem 9.15(Mubayi–Zhao [281]).For co-degree problems everyc ∈ (0, 1) is a
non-jumping constant.

Further sources to read: We close this section mentioning some references on hy-
pergraph extremal theorems: Balogh, Bohman, Bollobás, and Yi Zhao: [33], Frankl
and Füredi [162], Keevash and Sudakov [220].

10. Ramsey–Turán theory

Vera Sós [338] and then Erdős and Vera Sós [143] initiated a whole new research field,
the Ramsey–Turán theory. We shall concentrate primarily on the most recent results,
since a longer survey of Vera Sós and myself [335] covers the earlier results well.

The extremal configuration in Turán’s original theorem is too regular. This is why
one could feel that perhaps better estimates could be achieved by replacing Turán’s
original theorem by some version of it, where the too regular configurations are some-
how excluded. One way to exclude regular patterns is to assume thatG does not con-
tain too many independent vertices – Turán’s extremal graph does. This means that we
exclude large complete graphs in the complementary graphs. This is, how we arrive
at problems which, as a matter of fact, are combinations of Ramsey and Turán type
problems. Very soon after the first results of Erdős and Vera T. Sós [143, 144, 145]
were published, many others joined to this research.

As we mentioned, Turán’s original theorem was motivated by Ramsey’s theorem. It
would have been quite natural to ask sooner or later, whether the two results could be
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combined. The questions thus arising would have been interesting on their own, too.
However, only much later, in connection with the applications discussed in Section 13
did the Ramsey–Turán problems emerge.

We denote byRT (n, L, m) the maximum number of edges a graphGn can have if
L 6⊆ Gn andα(Gn) ≤ m. Settingm = n we arrive at Turán’s extremal theorem. On
the other hand, ifm is too small then, by Ramsey’s theorem, there are no graphs in the
considered class. The first problems and results in this field can be found in Sós [338],
generalized by Burr, Erd̋os and Lovász [87].

As we shall see in Section 13, if we wish to apply Turán’s theorem to find lower
bounds on “geometric sums” of type (13.1), then we use many different graphs on
the same vertex set, simultaneously. We know that the first one contains no complete
p1-graph, the second one contains no completep2-graph, and so on. We would like to
find some estimate on some weighted sum of the number of their edges. The simplest
case is, when these weights are equal. This is how Vera T. Sós arrived in [338] at the
following question:

Partition the edges of aKn intok sets, thus obtaining the graphsG1, . . . , Gk

on V (Kn). We know that fori = 1, . . . , k, Gi contains no completepi-
graph. What is the maximum ofe(G1) + ∙ ∙ ∙ + e(Gk−1)?

Of course, ifk andp1, . . . , pk are fixed and|V | is too large, then such graphs simply
do not exist. This is just Ramsey’s theorem. However, in the cases interesting for us
p1, . . . , pk−1 are fixed andpk tends to infinity. We assume only thatpk = o(n), or
more generally, thatpk = o(f(n)). Thus we could use the notation

RT (n, L1, . . . , Lk−1; o(f(n)) ≤ cn2

or RT (. . . ) = o(f(n)) where the left-hand side means that we consider a graph se-
quence(Gn) with α(Gn) = o(f(n)).

Surprisingly enough, such questions sometimes prove to be extremely difficult. The
simplest tractable case was when we had two graphs,Gn and its complementary graph
Hn and wanted to maximizee(Gn) under the assumption thatGn contains noKp+1

and the largest complete graph inHn is of sizeo(n). The first real breakthrough was

Theorem 10.1(Erdős and Sós [143]).

RT (n, K2p+1, o(n)) = e(Tn,p) + o(n2). (10.1)

So the estimate ofRT (n, Km, o(n)) was solved by Erd̋os and V. T. Sós [143] for the
case whenm is odd. The case of evenp’s was much more difficult. Thus e.g. it was
a longstanding problem whether forp = 4 e(Gn) = o(n2) or not. Finally Szemerédi
proved that

Theorem 10.2([350]). RT (n, K4, o(n)) < 1
8n2 + o(n2).
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Later Bollobás and Erd̋os [58] constructed graphs, showing that Szemerédi’s esti-
mate is sharp.

Theorem 10.3([58]). RT (n, K4, o(n)) = 1
8n2 + o(n2).

The next breakthrough was when Erdős, Hajnal, V. T. Sós and Szemerédi, [129], de-
termined (among others) the limit ofRT (n, K2p, o(n))/n2, (thus generalizing Theo-
rem 10.3). Ramsey–Turán theory is one of the areas of Extremal Graph Theory where
many new results were proved lately. In [127] Erdős, Hajnal, Simonovits, Sós, and
Szemerédi asked:

Problem 2.Does there exist ac > 0 for whichRT (n, K4,
n

logn) < (1
8 − c)n2?

One step to answer Problem 2 was

Theorem 10.4(Sudakov [342]).If ω(n) → ∞, and f(n) = n/eω(n)
√

logn, then
RT (n, K4, f(n)) = o(n2).

Then Problem 2 was answered in the negative by

Theorem 10.5(Fox, Loh and Zhao [161]).For
√

log log3 n
logn ∙ n < m < 1

3n,

RT (n, K4, m) ≥
1
8
n2 +

(
1
3
− o(1)

)

mn.

On the other hand,

Theorem 10.6(Fox, Loh and Zhao [161]).There is an absolute constantc > 0, such
that for everyn, if e(Gn) > 1

8n2, andK4 6⊆ Gn, then34

α(Gn) > c
n

logn
log logn.

In other words, ifc̃ > 0 is small enough, then

RT

(

n, K4, c̃
n log logn

logn

)

≤
1
8
n2.

In addition, they proved that

Theorem 10.7(Fox, Loh and Zhao [161]).

RT (n, K4, α) ≤
1
8
n2 + 1010αn.

34 Let us use binary log here, but assume that logn > 1.
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J. Balogh, Ping Hu, and M. Simonovits [40] proved (among many other results) the
following phase transition phenomenon.

Theorem 10.8.RT (n, K5, o(
√

n logn)) = o(n2).

One difficulty in this area is that there are no known Erdős–Stone–Simonovits type
results (though there are some related conjectures in [129]). Thus, e.g. ifL(t) is
a blown-up version ofL, RT (n, L, o(n)) andRT (n, L(t), o(n)) may behave com-
pletely differently, even forL = K3. We close this part with a related construction of
V. Rödl. Erd̋os asked if

RT (n, K(2, 2, 2), o(n)) = o(n2). (10.2)

Rödl modified the Bollobás–Erdős construction [58]; his version still did not decide if
(10.2) holds, however, it answered another question of Erdős:

Theorem 10.9(Rödl [299]).There exist graphsGn with e(Gn) > 1
8n2 − o(n2) edges

and withα(Gn) = o(n), however, not containingK4, nor K(3, 3, 3).

Further sources to read:Erdős and Sós [143, 144].

10.1. Sparse Ramsey–Turán problems

Starting out from completely different problems, Ajtai, Komlós and Szemerédi also
arrived at Ramsey–Turán type problems. To solve some number theoretical and geom-
etry problems, they arrived at the following Ramsey–Turán theorem:

Theorem 10.10([5, 1, 6]). If the average degree ofGn is d andK3 6⊆ Gn then

α(Gn) > c
logd

d
. (10.3)

This means a logd improvement over the ordinary Turán theorem. Another inter-
pretation of this is that excluding a triangle in the complementary graph makesGn

random-looking. These and similar results, e.g. [1], were used to improve earlier esti-
mates in some problems in Geometry [239], [238], Combinatorial Number Theory [6]
and Ramsey Theory [5]. We skip the details.

10.2. αp-independence problems

We close this very short part with two relatively new results of Balogh and Lenz [39].
Hypergraph Ramsey–Turán problems motivate the following problem:
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Given two sample graphsH andL, and two integersn, andm. How many
edges can a graphGn have if any inducedGm ⊆ Gn contains anH andGn

does not containL.

For H = K2 we get back the ordinaryRT (n, L, m), while for H = Kp we call
the maximumm in the conditionαp-independence and denote it byαp(Gn). Several
related results can be found in [127, 128], and for newer results see Balogh and Lenz
[39]. We mention here just one of them:

Theorem 10.11(Balogh–Lenz).For t ≥ 2 and 2 ≤ ` ≤ t, let u = dt/2e. Then
RT t(n; Kt+`, o(n)) ≥ 1

2

(
1− 1

`

)
2−u2

n2.

This is a breakthrough result, answering our earlier questions, where we [128]
wanted to decide, for which̀ is RT t(n; Kt+`, o(n)) ≥ c(`, t)n2 for some constant
c(`, t) > 0. Balogh and Lenz found important “generalizations” of the Bollobás–
Erdős construction [58].

Further sources to read:Balogh and Lenz [38].

11. Anti-Ramsey theorems

Anti-Ramsey problems35 (in the simplest case) have the following form: Given an
arbitrary coloring of a graph, we call a subgraphH Totally Multicolored (TMC) or
Rainbow if all its edges have distinct colors.36

Problem 3.We have a “sample graph”H. Let AR(n, H) be the maximum number
of colorsKn can be colored with without containing a TMCH.

The problem of determiningAR(n, H) is connected not so much to Ramsey theory
but to Turán type problems. For a given familyH of finite graphs, the general result
corresponding to Theorem 3.3 is

Theorem 11.1(Erdős–Simonovits–Sós [141]).Let

d + 1 := min
e∈E(H)

{χ(H − e) : e ∈ E(H)}. (11.1)

Then
AR(n, H) = e(Tn,d) + o(n2), if n → ∞. (11.2)

35 I heard this expression “anti-Ramsey” first from Richard Rado and it is also the title of his paper
[292] on sequences. There the topic is analogous but not really connected to our problems.

36 Originally we called it TMC, later Erd̋os and Tuza started calling such anH “rainbow” colored, and
some people would call it heterochromatic.
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The reason for this Transfer Principle: Assume thatH − e has the minimum
chromatic number in (11.1). Consider an edge-coloring ofKn and choose one edge
from each color. This way we get a TMC graphGn. Now,e(Gn) > ex(n, H−e)+εn2

would guaranteecnv(H) copies ofH − e. Hence some pairuv would be contained in
c′nv(H)−2 copies ofH − e, yielding withuv this many copies ofH. We could choose
two of them having no common vertices butu andv. Since all the colors in this union
are distinct, whichever way we coloruv, we get a TMC copy ofH. 2

11.1. Path, cycles and further related results

The above approach gives a good asymptotic ifd > 1 in (11.1). On the other hand,
for d = 1 new problems have to be overcome. The anti-Ramsey problem ofP` was
solved by Simonovits and Sós [334]. The question ofC` was much more complicated.

Problem 4 (Erdős–Simonovits–Sós [141]). How many colors ensure a totally multi-
colored (Rainbow)C` with somè > k.

One immediately sees that this problem is an analog of the Erdős–Gallai problem on
cycles. One of the important open problems in this area was the problem of Rainbow
cycles.

Conjecture 11.2(Erdős, Simonovits and Sós [141]). Fix a cycle length`. Consider
the following edge-coloring ofKn. First we cover the vertices by complete subgraphs
of ` − 1 vertices each and a remainder smaller one,Kr (they form an extremal graph
for P`.) Give a “private color” to these edges. Enumerate the complete subgraphs as
H1, . . . , Hm, . . . and color the edges betweenHi andHj by the new colorci if i < j.
One can easily see that this coloring ofKn has no totally multicolored (rainbow)C`.
Show that this is the maximum number of colors one can use:

AR(n, C`) =
1
2
(` − 2)n +

n

` − 1
+ O(1).

The conjecture is easy forK3, was proved forC4 by Noga Alon [8], then for̀ =
5, 6 independently by Schiermeyer [313] and by Jiang Tao and Doug West [206], and
finally the problem was completely settled by Montellano-Ballesteros and Neumann-
Lara [274].

11.2. Other types of anti-Ramsey graph problems

In the results of the previous section typically some colors are used very many times
but the others only once. To eliminate this, Erdős and Tuza counted the “color-
degrees”:
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Theorem 11.3(Erdős and Tuza [151]).Consider an arbitrary coloring ofKn. Denote
byk(i) the number of colors at theith vertex. IfKn does not contain TMC (rainbow)
triangles, then

∑
2−k(i) > 1.

They consider the cases when the color distribution is forced to be uniform in some
sense and list several problems and provide further theorems.

Theorem 11.4(Frieze–Reed [165]).If c > 0 is a sufficiently small constant,n is large,
and the edges ofKn are colored so that no color appears more thank = c n

logn times,
thenKn has a TMC Hamilton cycle.

We close this part with mentioning results stating that there are very sparse graphs
having the anti-Ramsey property. In the next two theorems – instead of assuming that
the number of colors used is large – we assume that they form a proper coloring.

Theorem 11.5(Rödl and Tuza [305]).There exist graphsG with arbitrarily high girth
such that every proper edge coloring ofG contains a cycle all of whose edges have
different colors.

The proof of the above results was probabilistic. Haxell and Kohayakawa proved
that the Ramanujan graphs constructed by Lubotzky, Phillips and Sarnak [267] also
have this property.

Theorem 11.6([200]). For every positive integert, every realδ such that0 < δ <
1/(2t + 1), and everyn sufficiently large with respect tot andδ, there is a graphGn

such that (i)girth(G) = t + 2, and
(ii) for any proper edge-coloring ofGn there is a rainbowC` ⊂ Gn for all 2t+2 ≤

` ≤ nδ .

Further sources to read: Babai and Sós [29], Babai [27], Alon, Lefmann and Rödl
[17], Hahn and Thomassen [198], Axenovich and Kündgen [26], Burr, Erdős, Graham,
Sós, Frankl [89, 88] . . . .

12. Turán-like Ramsey theorems

Considering Ramsey theorems for ordinary graphs we may observe the following “di-
chotomy”:

(a) Pseudo-random graphs: In many cases the Ramsey extremal graphs look as if
they were random graphs.37

37 A famous conjecture of V. T. Sós suggests that (at least for complete graphs) these are quasi-random
graphs.
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(b) Canonical structures: In other cases the Ramsey extremal structures look like (al-
most?)Canonical Graph Sequences: n vertices are partitioned intoq classesU1, U2, . . . , Uq

and the graphsG[Ui] are monochromatic cliques, the bipartite graphsG[Ui, Uj ] are
also monochromatic complete bipartite graphs, and the sizes of these classes may
vary. (However, in our cases it may happen that Canonical Sequences are Ramsey-
extremal, but there are also some other almost-canonical graph sequences that are
Ramsey-extremal: we can change the colors of a negligible number of edges without
creating monochromatic forbidden subgraphs.)

Denote byRk(L1, L2, . . . , Lk) the Ramsey number corresponding toL1, L2, . . . , Lk:
the minimumN for which, if wek-edge-colorKN , then for somei theith color will
contain anLi.

Conjecture 12.1(Bondy–Erd̋os). If n is odd, then

Rk(Cn) := Rk(Cn, Cn, . . . , Cn) = 2k−1(n − 1) + 1. (12.1)

The background of this conjecture is that for two colors, according to the Bondy–
Erdős theorem [65], or the Faudree–Schelp [154] or Rosta theorems [306] the conjec-
ture is true. The sharpness can be seen if we take two complete BLUEKn−1’s and
join them completely by RED edges.

Now, if we have a construction onN = 2k−1(n − 1) vertices,k-colored, without
monochromaticCn, then we may take two copies of this construction and a new color
k and join the two copies completely by this new color. This provides the lower bound
in (12.1).

For k ≥ 3, the conjecture seemed to be harder to prove. Łuczak [269] proved that
if n is odd, thenR3(Cn) = 4n + o(n), asn → ∞. Later, Kohayakawa, Simonovits
and Skokan (adding some fairly involved stability arguments to Łuczak’s original one)
showed that

Theorem 12.2(Kohayakawa, Simonovits and Skokan, [231], [232]).There exists an
n0 for which forn > n0,

R3(Cn, Cn, Cn) = 4n − 3. (12.2)

The special casen = 7 of (12.2) was proved in [152]. Conjecture 12.1 is still open
for k > 3. Bondy and Erd̋os [65] remarked that they could proveRk(Cn) ≤ (k +2)!n
for n odd. The next result improves this:

Theorem 12.3(Luczak–Simonovits–Skokan [272]).For every oddk ≥ 4,

Rk(Cn) ≤ k3k−1n + o(n), as n → ∞.

The following conjecture is unknown even fork = 4:
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Conjecture 12.4(Kohayakawa, Simonovits, Skokan). Ifn1, n2, . . . , nk are fixed, then
there are asymptotically Ramsey-extremal graphsUN for the corresponding Ramsey
problem of findingRk(Cn1, Cn2, . . . , Cnk

), whereV (UN ) can be partitioned into a
bounded numberOk(1) of classes and – apart fromOk(N) edges – the color of each
edge depends only on the classes it joins.

The case of even cycles has a slightly different answer, since the construction de-
scribed above contains long monochromatic even cycles. Related results can be found
in e.g. Łuczak [270], Figaj and Łuczak, Benevides and Skokan [47]. For further re-
lated results see the 3-color-Path results of Gyárfás, Ruszinkó, Sárközy, and Szemerédi
[194], [195].

Slightly different, yet related questions are discussed in the paper of Faudree and
Simonovits [156].

13. Applications of Turán’s graph theorem

13.1. Distance distribution

Here we shall discuss very briefly some applications of Turán’s graph theorem to the
distribution of distances in metric spaces. Perhaps Erdős noticed first that Turán’s
theorem can be applied to distance distributions.

Theorem 13.1 (Erdős [107]).If we have a setX of n points in the plane,X =
{P1, . . . , Pn} and the diameter ofX is at most 1, then at least

(
n

2

)

− ex(n, K4) ≈
1
3

(
n

2

)

of the distancesPiPj is at most1/
√

2.

To prove this, observe that for any 4 points – by an easy argument – at least one of
the 6 distances is≤ 1/

√
2. So the graphGn defined by the distances> 1/

√
2 contains

noK4. Hencee(Gn) ≤ ex(n, K4). 2

Obviously, this result is sharp: if we fix an equilateral triangle of diameter 1 and put
n/3 points into each of its vertices, then roughly 1/3 of the

(
n
2

)
distances will be 0 and

all the others are equal to 1.
Fourteen years later Turán pointed out that a slight generalization of this simple ob-

servation may yield far-reaching and interesting results (estimates) in geometry, anal-
ysis and some other fields, too. Turán’s basic observation was as follows: Instead of
d = 1/

√
2, we can apply the same idea simultaneously to several distances. We define

the correspondingPacking Constants:

Definition 13.2.Given a metric spaceM with the metricsρ(x, y) and an integerk, let

dk := max
diam{P1,...,Pk}≤1

min
i 6=j

ρ(Pi, Pj).
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(If |M| = ∞, it may happen that we have to replace the min by inf.)

Now, the above argument shows that if theρ-diameter of ann-element set is at most
1, then it contains at least

(
n
2

)
− ex(n, Kk) distancesρ(Pi, Pj) ≤ dk. Using Abel

summation, we may obtain good estimates on sums of the form

∑
f(ρ(Pi, Pj)). (13.1)

This way, through distance distribution results, Turán [363], V. T. Sós [338], and later
Erdős, Meir, V. T. Sós and Turán [132, 133, 134] could give estimates on certain in-
tegrals, potentials, certain parameters from functional analysis, and other geometric
sums. In [132] the authors write:

In what follows, we are going to discuss systematic applications of graph
theory – among others – to geometry, potential theory and to the theory
of function spaces . . . These applications show that suitably devised graph
theorems act as flexible logical tools (essentially as generalizations of the
pigeon hole principle) . . . We believe that the applications given in this se-
quence of papers do not exhaust all possibilities of applications of graph
theory to other branches of mathematics. Scattered applications of graph
theory, (mostly via Ramsey theorem) existed already in the papers of Erdős
and Szekeres [149] and Erdős [106], [116].

Remarks 13.3.These lines are 40 years old, however, the development of Discrete
Mathematics really shows that Discrete Mathematics became a very applicable theory
in very many areas of mathematics. Strangely enough, or perhaps because Turán died
too soon, not too many results were published on the application of extremal graph
results to distance distribution after Turán’s death.

However, two further areas were strongly connected to this approach. The first one
was the application of Turán type graph results in estimating distributions in Probabil-
ity Theory. This area was pioneered by G. O. H. Katona. He was able to prove some
inequalities concerning the distribution of certain random variables [213]–[216]. Next
several important results of the field were proved by A. Sidorenko. This volume has
a separate article on this topic, by Katona [214]. I would risk the opinion that among
the several steps that led to the theory of graph limits one important step was this:
introducing integrals in areas related to extremal graph theory.

The other one isRamsey–Turán theorydiscussed in Section 10.

13.2. Application to geometry

Givenn points in the space (or in any bounded metric space), for everyc > 0 we can
define a graphG(c) by joining the pointsP andQ iff PQ > c. By establishing some
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appropriate geometric facts, we may ensure thatG(c) contains no completep = p(c)-
graph. Hence we know (by Turán’s theorem) that the number of pairs(P, Q) with
PQ > c is at mostex(n, Kp(c)).

Assume that we apply this method with several constantsc1 > c2 > ∙ ∙ ∙ > ck > 0.
If f(x) is a monotone decreasing function in (13.1), then we may obtain lower bounds
on this expression by replacing all the distances betweenci andci+i by ci. The ‘only’
problems to be solved are:

How to choose the constantsc1 > c2, > ∙ ∙ ∙ > ck > ∙ ∙ ∙ > 0?

How to choose the integerspk for the constantsck, to get good results?

This was the point where the packing constants (depending largely on the geometric
situation) came in. Their investigation goes back at least to a dispute between Newton
and Gregory, see Turán [364]. It was also somewhat surprising that not all packing
constants count in our application. It is enough to regard those ones, whereck > ck+1.
It is not worth giving a detailed description of the results obtained this way, since the
Introduction of [134] does it. We make only one critical remark on a side issue:

In [364] Turán remarks that perhaps his method, implemented on a good com-
puter, would help to decide problems such as the one in the Newton–Gregory dispute.
Namely, it could decide whetherct = ct+1 or not.

This is not quite so. First of all, such an algorithm can never give a positive answer.
Further, even if the answer is in the negative, and that could be proved by the method
suggested by Turán, then probably that could be decided also without using Turán’s
method.

13.3. Other applications

An old unsolved problem is that if we haven points in thek-dimensional Euclidean
space, how many unit distances can occur. For the plane Erdős observed that the graph
given by the unit distances cannot contain aK2(2, 3). Hence – by the K̋ovári–T. Sós–
Turán theorem – the number of unit distances isO(n3/2). A similar argument works
in R3: the 3-space, but for higher dimension the situation changes. Unfortunately, the
application of Turán type theorems is not enough to get the conjectured bounds: to
prove that the number of unit distances is at mostO(n1+ε).

(b) Some other type of applications of hypergraph extremal problems are found
in the works of Simonovits [322] and Lovász [261] yielding sharp bounds on some
questions related to color-critical graphs. For more details see either the original papers
or the Füredi and Simonovits survey [180].

Further sources to read:Erdős [116], Erd̋os and Simonovits [142], . . . .
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14. Extremal subgraphs of random graphs

What happens if, instead of considering all theL-free graphsGn, we consider only
L-free subgraphsGn of some host-graphsRn and maximize their number of edges.
One of the most investigated subcases of this problem is whenRn is a random graph
with some given distribution. The maximum isex(Rn,L), however this is a random
number, depending on the random graphRn. So we can state only that certain events
will hold with high probability.

Rödl and Schacht wrote very recently an excellent survey [303] on this topic, so we
shall give only a very short introduction to this area.

Assume thatRn is a random graph of binomial distribution, with given edge prob-
ability: Rn ∈ Gn,p. The phenomena to be discussed are

If L is a sample graph,k = χ(L)−1, and we take a random graphRn ∈ Gn,p

with edge probabilityp > 0,
(a) is the subgraphFn ⊆ Rn ∈ Gn,p not containingL and having the

maximum number of edgesk-chromatic with probability 1− o(1)?
(b) if (a) does not hold, is it true that at least we can deleteo(e(Rn))

edges fromRn to get ak-chromatic graph, almost surely?

An early result in this area was

Theorem 14.1(Babai–Simonovits–Spencer [28]).There exists ap0 < 1
2 for which in

a randomRn ∈ Gn,p, almost surely, the maximum sizeK3-free subgraph,Fn ⊆ Rn is
bipartite.

Several generalizations of this were proved in [28], however, in those days no
“Sparse Regularity Lemma” was known, and the proofs of Babai, Simonovits and
Spencer used the (ordinary) Szemerédi Regularity Lemma [349] and the stability method.
Hence [28] could cover only the case when the edge probability wasp > p0 > 0. As
soon as the Kohayakawa–Rödl version of the Regularity Lemma was proved and be-
came known, the possibility to generalize the results of [28] became possible. First
Brightwell, Panagiotou and Steger [75] proved that Theorem 14.1 holds under the
much weaker condition thatp > n−1/250 and very recently B. De Marco and Jeff
Kahn [97] proved that

Theorem 14.2.There exists aC > 0such that if the edge probability isp > C
√

logn/n,
then every maximum triangle-free subgraph ofGn,p is bipartite, with probability tend-
ing to 1, asn → ∞.

This is best possible.
Let

d2(H) = max

{
e(H ′)
v(H ′)

: H ′ ⊆ H, andv(H ′) ≥ 3

}

.



56 M. Simonovits

Conjecture 14.3(Kohayakawa–Rödl–Schacht [230]). Letv(H) ≥ 3 ande(H) > 0.
Let G = Gn,p be a random graph with edge probabilityp = pn wherepnn1/d2(H) →
∞. Then

(i) almost surely (asn → ∞),

ex(G, H) =

(

1−
1

χ(H) − 1

)

e(G) + o(e(G)).

(ii) Further, forχ(H) ≥ 3, a stability phenomenon also holds: almost surely, delet-
ing o(e(Gn,p)) edges, one can makeGn,p (χ(H) − 1)-colorable.

The above conjecture is proved for several cases. Thus, e.g., for cycles it was proved
by Haxell, Kohayakawa and Łuczak [201] and [202], while the paper of Kohayakawa,
Łuczak and Rödl [227] contains a proof of (i) forH = K4.

15. Typical structure of L-free graphs

Here we consider the following problem:

What is the typical structure ofL-free graphs? Or, more generally, we have
a Universe (graphs, hypergraphs, multigraphs, permutations, ordered sets,
. . . ) and a propertyP , can we say something informative about the typical
structures inP?

This question has basically two subcases: the exclusion of someL as a not neces-
sarily induced subgraph and the exclusion of some induced subgraphs.

15.1. Starting in the middle

In this part, excludingL ⊂ Gn we do not assume that (only) the induced subgraphs
are excluded. The difference can be seen already forC4: If we define a complete graph
onA and an independent set onB and join them arbitrarily, the resultingGn contains
manyC4’s but no inducedC4. So first we consider the case of not necessarily induced
subgraphs.

First we assume that the forbidden graphs are non-bipartite, and return to the degen-
erate case in the next, very short subsection. Denote byP(n,L) the family ofn-vertex
graphs without subgraphs fromL. Since all the subgraphs of anySn ∈ EX(n,L)
belong toP(n,L), therefore

|P(n,L)| ≥ 2ex(n,L). (15.1)

This motivated

Conjecture 15.1(Erdős).

|P(n,L)| = 2ex(n,L)+o(n2). (15.2)
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Of course, the meaning of this is thatP(n,L) cannot be much larger than the right-
hand side of (15.1). This was confirmed first forKp+1. The result forK3 was much
sharper than for the general case.

Theorem 15.2(Erdős–Kleitman–Rothschild [131]).(i) Almost all triangle-free graphs
Gn are bipartite.

(ii) In general,

|P(n, Kp+1)| ≤ 2
(

1− 1
p

)
n+o(n2)

.

Later Erd̋os, Frankl, and Rödl proved the original Erdős conjecture.

Theorem 15.3(Erdős, Frankl, and Rödl [125]).

|P(n,L)| ≤ 2ex(n,L)+o(n2).

As we have already pointed out, the finer structure in the extremal graph problems
depends on the “Decomposition family”M of L. So Balogh, Bollobás and myself
improved Theorem 15.3 in several steps. First, in [34] we improved the error term
o(n2) of Theorem 15.3 toO(n2−c).

Theorem 15.4.For everyL, ifM is the decomposition family ofL andM is finite, then

|P(n,L)| ≤ nex(n,M)+cL∙n ∙ 2
1
2

(
1− 1

p

)
n2

, (15.3)

for some sufficiently large constantcL > 0.

This was an improvement, indeed: ifL ∈ L andv = v(L) is of minimum chromatic

number, then we can choose a bipartiteM ⊆ L fromM. Henceex(n,M) < c ∙n2− 2
v ,

yielding a better error term in the exponent in (15.3).
Our next result yields also structural information.

Theorem 15.5(Balogh, Bollobás, Simonovits [35]).LetL be an arbitrary finite family
of graphs. Then there exists a constanthL such that for almost allL-free graphsGn

we can deletehL vertices ofGn and partition the remaining vertices intop classes,
U1, . . . , Up, so that eachG[Ui] isM-free.

For some particular cases we can provide even more precise structural information.
A good test case is when the octahedron graph is excluded. In our main result below
we describe the structure of almost all octahedron-free graphs. We say that a graphG
has propertyQ = Q(C4, P3) if its vertices can be partitioned into two sets,U1 andU2,
so thatC4 6⊆ G[U1] andP3 6⊆ G[U2]. If G ∈ Q thenG does not containO6. It was
proved by Erd̋os and Simonovits [137] that forn sufficiently large everyO6-extremal
Gn has propertyQ. The typical structure ofO6-free graphs is described by
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Theorem 15.6(Balogh, Bollobás, Simonovits [36]).The vertices of almost everyO6-
free graph can be partitioned into two classes,U1 andU2, so thatU1 spans aC4-free
graph andU2 spans aP3-free graph.

A similar, slightly simpler, result is the following. DenoteP(n; a, b) the family of
graphsGn for which noa vertices ofGn span at leastb edges. In some sense, G. Dirac
started investigating such problems [100]. Several results of Erdős and Simonovits
are related to this topic, and they became very important for hypergraphs, see e.g.,
Brown, Erd̋os and T. Sós [82], or Ruzsa and Szemerédi [311]. Much later, Griggs,
Simonovits and Thomas [192] proved that, forn sufficiently large, the vertex set of any
P(n, 6, 12)-extremal graphGn can be partitioned intoU1 andU2 so that the induced
subgraphs,G[U1] is {C3, C4}-free andG[U2] is an independent set. Note that ifG1 is
{C3, C4}-free ande(G2) = 0 thenG1 ⊗ G2 is (6, 12)-free.

Theorem 15.7(Balogh, Bollobás, Simonovits [36]).The vertex set of almost every
graph inP(n; 6, 12) can be partitioned into two classes,U1 andU2, so thatU1 spans
a {C3, C4}-free graph andU2 is an independent set.

To avoid technicalities, we formulated only this special case. Another line is the
problem of critical edges.

Theorem 15.8(Prömel and Steger [291]).For everyL having a critical edge, almost
all L-free graphs have chromatic numberχ(L) − 1.

This is sharp, since no graph with chromatic numberχ(L) − 1 containsL as a
subgraph, (see also Hundack, Prömel, and Steger [203].) To demonstrate the power
of our methods we proved a generalization of their result. Denote bysH the vertex-
disjoint union ofs copies ofH. Let the excluded graph beL = sH , whereH has a
critical edge, andχ(H) = p + 1 ≥ 3. Simonovits [321] proved that forn sufficiently
large, the uniqueL-extremal graph isH(n, p, s), see Theorem 4.15. Observe that if
one can deletes − 1 vertices of a graphGn to obtain ap-partite graph, thenGn is
L-free.

Theorem 15.9(Balogh, Bollobás, Simonovits [36]).Let p ands be positive integers
andH be ap + 1-chromatic graph with a critical edge. Then almost everysH-free
graphGn has a setS of s − 1 vertices for whichχ(Gn − S) = p.

15.2. Degenerate cases

One could think that ifL is bipartite but not a tree, then (15.2) remains valid:

|P(n, L)| < 2ex(n,L)(1+o(1)). (15.4)

Yet, this is not known even in the simplest case, forL = C4. The first important
result in this area was
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Theorem 15.10(Kleitman–Winston [224]).

2( 1
2−o(1))n

√
n ≤ |P(n, C4)| < 2cn

√
n with c = 1.082.

The result itself is highly non-trivial. The next result in this direction was

Theorem 15.11(Kleitman–Wilson [372]).

|P(n, C6)| < 2cn 3√n.

The corresponding results forC2k for k ≥ 4 are still open. Balogh and Samotij also
have analogous results forKt,t, and – more generally, – forKs,t.

Theorem 15.12(Balogh and Samotij [42, 43]).For L = Ks,t, there exist a constant
c = cL for which

|P(n, L)| ≤ 2cex(n,L).

Their method also implies that

Theorem 15.13(Balogh and Samotij [42, 43]).For L = K2,t, there exists a constant
c̃ = c̃L for which for almost allL-freeGn, we have

1
12

ex(n, L) ≤ e(Gn) ≤ (1− c)ex(n, L).

Several of the related papers contain a “mini-survey” of the situation, so we stop
here.

15.3. Typical hypergraph structures

As we have mentioned, for many years there were only a few hypergraph extremal
results. In the last few years this changed dramatically. As we have seen in Section 9,
several interesting extremal hypergraph theorems were proved lately. Also some cor-
responding “typical structure results” were obtained, e.g. [41]. Here we give only a
few examples. The first one is connected to the Fano results [179] and [219].

Theorem 15.14(Person and Schacht [287]).Almost allF7-free 3-uniform hypergraphs
are 2-chromatic.

Call the following three edges a triangle:(u, v, w), (u, v, x), (x, y, w). The follow-
ing result extends the sharper version of Theorem 15.2, at least for triangles.

Theorem 15.15(Balogh and Mubayi [41]).Almost all triangle-free 3-uniform hyper-
graphs are tripartite.

The following result attacks already the general case, extends the Erdős–Frankl–
Rödl theorem to 3-uniform hypergraphs.
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Theorem 15.16(Nagle and Rödl [283]).For any fixed 3-uniform hypergraphL,

|P(n, L)| < 2ex(n,L)+o(n3).

This was extended tok-uniform graphs by Nagle, Rödl and Schacht [284].

Other structures. There are some other structures where analogous results were proved
fairly early, showing that some specific structures dominate (in number) the others.
Here we mention some results of Kleitman and Rothschild [222] on the number of
partially ordered sets onn elements.

ConsiderQ(n), the family of partial orders of the following structures:n vertices
are distributed in three classesL1, L2, andL3, where|L1| = n/4 + o(n), |L2| =
n/2 + o(n), |L3| = n/4 + o(n). Define a partial order by its Hasse diagram. Define
the partial orderQ as follows: the arcs go fromLi to Li+1, i = 1, 2, and if we forget
about the orientations, we get a1

2-quasi-random graph betweenLi andLi+1. Kleitman
and Rothschild proved that [222]]

Theorem 15.17(Kleitman and Rothscild [222], see also [221]).

|Pn| =

(

1 + O

(
1
n

))

|Qn|.

Thus
|Pn| = 2n2/4+o(n2).

See also Kleitman, Rothschild and Spencer [223].

15.4. Induced subgraphs?

If instead of excluding some not necessarily induced subgraphs, we exclude induced
subgraphs, the situation completely changes. The first results in this direction were
proved by Prömel and Steger [289], [290] . . . . Several extensions were proved by
Alekseev, Bollobás and Thomason, and others.

Definition 15.18.The sub-coloring numberpc(P) of a hereditary graph propertyP is
the maximum integerp for which if we put complete graphs into some classes of aTn,p

(somehow), and delete some original edges, the resulting graph cannot have property
P .

Example 15.19.Let the propertyP be thatGn contains an inducedC4. Consider a
complete graphK` and a setIm of independent vertices (with disjoint vertex sets) and
join them arbitrarily. The resulting graph will not contain inducedC4’s. It is easy to
see that herepc(P) = 2.
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Theorem 15.20(Alekseev [7], Bollobás–Thomason [61]).If P is a hereditary prop-
erty of graphs, andP(n,L) denotes the family ofn-vertex graphs of propertyP , and
p := pc(L) then

|P(n,L)| = 2
1
2

(
1− 1

p

)
n2+o(n2)

.

This was improved in [12].

Definition 15.21.Given an integerk, the universal graphU(k) is the bipartite graph
with partsA = {0, 1}k andB = {1, . . . , k}, wherej ∈ B is joined to ak-tupleX if
j ∈ X, (i.e., thejth coordinate ofX is 1).

Theorem 15.22(Alon, Balogh, Bollobás, Morris [12]).LetP be a hereditary property
of graphs, with coloring numberχc(P) = p. Then there exist constantsk = k(P) ∈ N
andε = ε(P) > 0 such that the following holds. For almost all graphsGn ∈ P , there
exists a partition(A, S1, . . . , Sp) of V (Gn), such that:

(a) |A| < n1−ε ,
(b) G[Sj ] is U(k)-free for everyj ∈ [p].

Moreover, ifPn is the family ofn-vertex graphs ofP , then

2(1−1/p)(n
2) < |Pn| ≤ 2(1−1/p)(n

2)+n2−ε

for every sufficiently largen ∈ N.

There are several further interesting results in [12], but we stop here.

Further sources to read:Bollobás [56].

15.5. Counting the colorings

Some of the above results are strongly connected to estimating

cr,F (H) := #{r − colorings ofH without monochromatic copies ofF}

Estimatingcr,F is strongly connected to the extremal problem ofF , i.e. determining
ex(n, F ) and also with Erd̋os–Frankl–Rödl type theorems, first of all, with Theorems
15.2 and 15.3 Erd̋os and Rothschild conjectured that

Conjecture 15.23.
c2,K`

(Gn) ≤ 2ex(n,K`).

For triangles this was proved by Yuster [374]. This was extended to arbitrary com-
plete graphs by Alon, Balogh, Keevash and Sudakov [11]. A similar coloring-counting
theorem was proved by Lefmann, Person, Rödl and Schacht [259], also explaining the
connection of these results to each other. We skip the details.
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16. “Random matrices”

This part is devoted to random±1 matrices, where the questions are:

(i) How large is the determinant of a random matrix,
(ii) what is the probability that a random matrix is singular,

(iii) what can be said about the eigenvalues of a random matrix.

Recently very many new results were obtained in this field. Below I shall mention
some of them and provide some references, and also refer the reader to the excellent
survey paper of Van Vu [370].

Szekeres and Turán [347] were primarily interested in (i), more precisely, in the
average of the absolute value of the determinant of a±1 matrix. Later Turán continued
this line, Szekeres went into another direction.

16.1. Hadamard matrices

According to the famous theorem of Hadamard, given a matrixA = (aij), | det(A)|
can be estimated from above by the product of the lengths of the row vectors. Equality
holds iff the row vectors are pairwise orthogonal. If the entries of the matrix are 1’s
and -1’s, then Hadamard’s result yields that

| det(A)| ≤ nn/2. (16.1)

It is natural to ask whether the equality in (16.1) can be achieved for±1 entries. In
other words, are there orthogonaln × n matrices with±1 entries? Such matrices are

called Hadamard matrices. The smallest ones are(1) and

(
1 1

−1 1

)

. One can easily

prove that if for somen > 2 such a matrix does exist, thenn is divisible by 4. It is a
very famous, old and widely investigated but still open conjecture that

Conjecture 16.1.Hadamard matrices exist for everyn divisible by 4.

One can easily construct Hadamard matrices forn = 2k and it is not too difficult to
construct them forn = 4k if n − 1 is a prime.

16.2. Szekeres–Turán approach

In connection with the Hadamard problem, Gy. Szekeres and P. Turán arrived at the
following question [347]:

Problem 5.Consider all the±1 matricesA of n rows and columns. How large is the
average of| det(A)|k, as a function ofn?

They proved in [347] that
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Theorem 16.2.The average of| det(A)|2 for then × n ±1 A, is n!.

They simply calculated the sum of the squares of the determinants of all then × n
±1 matrices. Their proof was very simple and elegant. They also calculated the sum
of the fourth powers of these determinants, proving that this is(n!)2 ∙ ϕ(n), where
ϕ(n) is a function defined by the recursion

ϕ(1) = 1, ϕ(2) = 2, ϕ(n) = ϕ(n − 1) +
2
n

ϕ(n − 2). (16.2)

Remark 16.3.For everyc > 0,ϕ(n) is betweenn2−c andn2, if n is sufficiently large.
This means that the average of the squares and fourth powers of these determinants are
(in some weak sense) fairly near to the desired maximum. Geometrically, if we taken
±1 vectors independently, at random, they will be roughly orthogonal to each other.

Remark 16.4.Superficially we could think that the main goal of the Szekeres–Turán
paper was to prove the existence of a good approximation of Hadamard matrices, using
Random Matrix methods. Maybe, originally this was their purpose. However, as they
remarked, Erd̋os had pointed out38 that the following direct construction provides a
much better result on the maximum value of the determinant:

Find a primep = 4k − 1 < n sufficiently near ton and then build a Hadamard
matrix for this ñ = 4k. Using the monotonicity of the maximum, one gets a much
better estimate than by the Szekeres–Turán argument.

Is this result more than merely answering an important and interesting mathematical
problem in an elegant way? YES, in the following sense:

Here we can see one of the first applications of stochastic methods instead of giv-
ing constructions for some optimization problem in Discrete Mathematics. Later this
method was applied many times and proved to be one of our most powerful methods.
(In combinatorics and graph theory it was Paul Erdős who started applying probabilis-
tic methodssystematically.) From this point of view the Szekeres–Turán paper was
definitely among the pioneering ones.

16.3. Turán’s and Szekeres’ continuation

Later both Turán [357, 360, 362] and Szekeres [344, 345] returned to these questions.
They generalized their original results in various ways. However, they did not really
succeed in estimating the average of the 2kth power of the considered determinants.39

(The average of the odd powers is, by symmetry, 0!) Turán seemed to be more in-
terested in finding analytically various averages of±1 determinants. Szekeres went
basically into two directions:

38 This was remarked in the paper of Turán and Szekeres and also, e.g., in the “problem collection
paper” of Erd̋os [108].

39 As I see, they could not estimate the average of the 6th powers.
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(a) He considered the so calledskew Hadamard matrices, restricted the averaging
to these matrices i.e., where fori 6= j ai,j = −aj,i. For them the averaging method
[344] gave higher average.

(b) Also, Szekeres invented new combinatorial/algebraic constructions of Hadamard
Matrices, Skew Hadamard Matrices [345]. He also used computer searches to find
“small” examples. e.g. forn = 52, 92.

16.4. Expected or typical value?

The paper of Szekeres and Turán determines the average and the square average of
det(A)2. In many cases the typical values of some random variableξ are very near to
its expected values. This is e.g. the case in Turán’s “Hardy–Ramanujan” paper [356].
In case of the±1 determinants the situation is different.

A correction/historical remark. Here I have to make a “Correction”: Writing my
notes for Turán’s Collected Papers [368] I “overstated” Theorem 16.2. I wrote that
Szekeres and Turán proved that the determinant of almost allA in Theorem 16.2 is
near to the average

√
n!. This holds only in some fairly weak logarithmic sense. In the

ordinary sense, not only they did not state this, but – as it turns out below – this is not
even true.

Of course, Szekeres and Turán did not speak of “probability”. The point is that they
did not use Chebishev inequality, and they did not calculate the standard deviation.
(Slightly earlier, Turán, in his proof of the Hardy–Ramanujan theorem, without speak-
ing of probabilities, calculated the mean and the standard deviation of the number of
prime divisors and then applied Chebishev inequality.) Theorem 16.6 below implies
that for a positive percentage of the considered random matrices the determinant is
above(1 + c)

√
n!, for some fixedc > 0.

This question, whenξ is noticeably aboveE(ξ) (whereE denotes the expected
value), is discussed in e.g. in

Theorem 16.5(Schlage–Puchta [314]).Let ξ be a nonnegative real random variable,
and suppose thatE(ξ) = 1 andE(ξ2) = a > 1. Then the probabilityP (ξ ≥ a) is
positive, and for everyb < a we have

∫
|ξ|>b ξ2 ≥ a − b.

The paper remarks that this theorem is nearly a triviality, but it has several interest-
ing corollaries. One of them is a lower estimate for| det(A)| in the Szekeres–Turán
problem. Since the 4th moment is much larger than the 2nd, (by (16.2)), Theorem 16.5
is applicable here.
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16.5. The Hadamard “goodness” of random matrices

Denote the (Euclidean) norm ofa by ||a||. Let A be ann × n matrix with column
vectorsai, (i = 1, . . . , n). Define its “Hadamard goodness” as

h(A) =
det(A)
∏

||ai||
,

if the denominator does not vanish, otherwise defineh(A) = 0.
John Dixon [101] wrote a nice and interesting paper on the above discussed ques-

tion, primarily on the typical goodness of the random method in the “Hadamard ap-
proach”. He wrote that for him a paper of Cabay and Lam suggested that (logarithmi-
cally, in some natural settings) the values of the determinants of random matrices are
close to their maximum. He proved that this is not so: the logarithmic distance is typ-
ically what is suggested in the Szekeres–Turán theorem: det(A)1/n ≈ (

√
n!)1/(2n) ≈√

n/e.
The question investigated by Dixon [101] is, how large the expected value ofh(A) is

if A is a random matrix, where the distribution of entries obey some weak smoothness
conditions. The conclusion of Dixon’s results is that typicallyh(A)1/n ≈ 1/

√
e.

Condition (D1) If a1, . . . , an are the columns ofA, then the density of the distribution
atA depends only on the values of||a1||, . . . , ||an||.

Condition (D2) The probability that det(A) 6= 0 is 1.

Theorem 16.6(Dixon [101]).Let A be a random matrix whose distribution satisfies
(D1) and (D2). Denote byμn andσ2

n the mean and variance of the random variable
logh(A). Then

(i) μn = −1
2n − 1

4 logn + O(1), andσ2
n = 1

2 logn + O(1), asn → ∞;
(ii) For eachε > 0, the probability that

n− 1
4−εe−

1
2n < h(A) < n− 1

4+εe−
1
2n

tends to 1 asn → ∞.

16.6. Probability of being singular

In this section we are discussing the upper bounds for the probability that det(A) = 0.
For a reader interested in more details, the following sources are suggested: Komlós
[237], Kahn, Komlós, and Szemerédi [211], or some more recent papers of Van Vu
[370], Terry Tao and Van Vu [352].

Obviously, for continuous distributions this probability is 0. One can easily see that
this probability must be the largest for±1 matrices, where both values are taken with
equal probabilities.
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Theorem 16.7(Komlós, [237]).Let A = (aij) be ann × n matrix whose entries are
random independent variables, taking values±1 with probability 1

2. Thendet(A) 6= 0
with probabilitypn → 1 asn → ∞.

A more general result is

Theorem 16.8(Komlós, [237]).Let A = (ξij) be ann × n matrix whose entries are
random independent variables, with common, non-degenerate distribution.40 Then
det(A) 6= 0 with probabilitypn → 1 asn → ∞.

Conjecture 16.9.Let Pn be the probability that a randomn× n matrix with elements
±1 is singular. ThenPn = (1 + o(1))n221−n.

The first breakthrough was

Theorem 16.10(Kahn, Komlós and Szemerédi [211]).There is a positive constantε
for whichPn < (1− ε)n.

This is a considerable improvement on the best previous bound,Pn = O(1/
√

n)
given by Komlós in 1977.

16.7. Eigenvalues of random matrices

This field is again a very wide one, with many interesting results. The beginnings of
this part heavily relies on the Füredi–Komlós paper [173].

Investigating the distribution of the eigenvalues of matrices goes back to E. P. Wigner
(1955), who was motivated by quantum mechanics. The following generalization is
due to L. Arnold [25].

Theorem 16.11(Wigner, semicircle law.).Assume thatA is a random symmetric ma-
trix with random independent entriesaij for i ≥ j. Let the distribution of these entries
beF for i 6= j andG for i = j. Assume that

∫
|x|k dF < ∞,

∫
|x|k dG < ∞ for

k = 1, 2, . . . and setD2aij = Var aij = σ2. LetWn(x) be the empirical distribution
of the number of eigenvalues ofA not exceedingxn. Let

W (x) =

{
2
π

√
1− x2 for |x| ≤ 1,

0 for |x| > 1.

Then

lim
n→∞

Wn(2σ
√

n ∙ x) = W (x).

40 A distribution is degenerate if with probability 1, its outcome is the same.
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This implies that forc > 2σ with probability 1−o(1), all buto(n) of the eigenvalues
belong to[−c

√
n, c

√
n]. Yet, this does not give information on the largest eigenvalues.

Ferenc Juhász [209] gave some weak estimates on this and those were improved to
much better ones by the Füredi–Komlós theorems which basically assert that

Theorem 16.12(Füredi, Komlós [173]).Let A = (aij)n×n be ann × n symmetric
matrix whereaij are independent (not necessarily identically distributed) random real
variables bounded with a common boundK, for i ≥ j. Assume that, fori > j, aij

have a common expectationμ and varianceσ2. Further, assume thatE(aii) = ν.
(Hereaij = aji.) The numbersK, μ, σ2, ν will be kept fixed asn → ∞.

If μ > 0 then the distribution of the largest eigenvalue ofA = (aij) can be approx-
imated in order1/

√
n by a normal distribution of expectation

(n − 1)μ + ν + σ2/μ (16.3)

and variance2σ2. Further, with probability tending to1,

max
i≥2

|λi(A)| < 2σ
√

n + O(
√

n logn), (16.4)

whereλi is theith eigenvalue ofA.41

Remark 16.13.The semi-circle law implies that maxi≥2 |λi(A)| cannot be much smaller
than 2σ

√
n.

16.8. Singularity over finite fields

One could ask what happens if we take the entries of a randomn × n matrix from a
finite fieldF .

Theorem 16.14(Jeff Kahn, J. Komlós [210]).The probability that a random square
matrix of ordern, with entries drawn independently from a finite fieldF (q) according
to some distribution, is nonsingular is asymptotically (asn → ∞) the same as for the
uniform distribution (excepting certain pathological cases, see below):

Pr(Mn is nonsingular) →
∏

i≥1

(

1−
1
qi

)

as n → ∞. (16.5)

What is pathological? Kahn and Komlós write that if the entries of the random
matrix Mn are chosen independently and uniformly fromF , that is enough to ensure
(16.5) and this was fairly widely known. Among others in [91] (see also [253, 254]) it
is proved that

41 λ1 ≥ λ2 ≥ ∙ ∙ ∙ ≥ λn.
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Theorem 16.15.Let Mn be a randomn × n F -matrix with entries chosen according
to some fixed non-degenerate probability distributionμ onF . Then (16.5) holds if and
only if the support ofμ is not contained in any proper affine field ofF .

We skip the details here, again.
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