
Szemere‘di’s Partition 
and Quasirandomness 

Miklos Simonovits and Vera T. S b  
Mathematical Research Institute, Hungarian Academy of Sciences, Budapest, 
Hungary H- 7053 

ABSTRACT 

In this paper we shall investigate the connection between the SzemerCdi Regularity Lemma 
and quasirandom graph sequences, defined by Chung, Graham, and Wilson, and also, 
slightly differently, by Thomason. We prove that a graph sequence (G,) is quasirandom if 
and only if in the SzemerCdi partitions of G ,  almost all densities are $ + o(1). 

Many attempts have been made to clarify when an individual event could be 
called random and in what sense. Both the fundamental problems of probability 
theory and some practical application need this clarification very much. For 
example, in applications of the Monte-Carlo method one needs to know if the 
random number generator used yields a sequence which can be regarded “pseu- 
dorandom” or not. The literature on this question is extremely extensive. 

Thomason [6-81 and Chung, Graham, and Wilson [2,3], and also Frankl, Rodl, 
and Wilson [4] started a new line of investigation, where (instead of regarding 
numerical sequences) they gave some characterizations of “randomlike” graph 
sequences, matrix sequences, and hypergraph sequences. The aim of this paper is 
to contribute to this question in case of graphs, continuing the above line of 
investigation. 

Let %(n, p) denote the probability space of labelled graphs on n vertices, where 
the edges are chosen independently and at random, with probability p. 

We shall say that 

“a random graph sequence (G,) has property P” 
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if every G, E %(n, p ) ,  and P is a graph property (i.e., a set of graphs) and 

Prob(G,E%(n, p ) n P ) + l  f o r n + w .  

In [2,3] a class of graph (hypergraph) properties are considered, all possessed 
by random graphs (respectively, hypergraphs) and at the time equivalent to each 
other in some well-defined sense. 

(G,) is called quasirandom, if it satisfies any one (and consequently all) of 
these properties, listed below. 

Notation. Let V(G)  denote the vertex set and E(G)  the edge set of the graph G. 
We use the notation G, if IV(G)l= n. Let H ,  be a fixed graph on u vertices and 
let 

NT;(H,) resp- NG(Hu)  

denote the number of labeled occurrences of H ,  in G as an induced resp. as a not 
necessarily induced (labeled) subgraph of G. Here a “labeled copy of H in G” 
means a pair ( H , ,  JI), where JI: H +  H ,  C G is an isomorphism of H and H,. 
Further, ( H , ,  JI) = ( H 2 ,  +), if 4 0  JI-’ is the identity. Given a graph G, with two 
disjoint sets X and Y of vertices, e (X ,  Y) denotes the number of edges one 
endpoint of which is in X and the other in Y. The density is defined as 

Further, e ( X )  denotes the number of edges of the subgraph induced by X. Below, 
for the sake of simpler notation, we shall assume that the vertex set of the graph 
G, is (1, . . . , n } .  Let A = A ( G )  be the adjacency matrix of G, i.e., 

{ 1 if (i, j ) E E ( G )  
a .  . =  

1 . 1  0 if (i, j ) e E ( G )  ‘ 

Order the eigenvalues of A so that I A l l  2 ( h , l 2  * - 2 Ih,l: let hi denote the ith 
largest (in absolute value) eigenvalue of A.  

Remark. It is remarked in [2] that-though most of the results are considered 
only for the case p = ;-all these results generalize to every fixed probability 
p E ( 0 , l ) .  The same holds for the results of this paper too. 

Theorem. 
alent: 
P,(v): For fixed u, for all graphs H ,  

((21) For any graph sequence (G,)  the following properties are equiv- 

N , p , )  = ( 1  + o ( ~ ~ ) n ~ ~ - ( ~ )  . 

P,(t): Let C,  denote the cycle of length t. Let t r 4  be even. 

e(G,)  2 in’ + o(n’) and NG(C,)  I ( ; ) I  + o(n‘) 
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P,: 
P4: 

e(G,) 1 an2 + o(n2),  
For each subset X c  V 

A,(G,) = i n  + o(n), and A,(G,) = o(n). 

e ( x )  = 1x1’ + o(n’) . 

P,: For each subset X c V,  1x1 = Ln/2] we have e ( X )  = ( &n2 + o(n’)). 
P,: Ex.,,, I IS(x, y)l - n/21= 0(n3) where S(x,  y )  = { u :  au,x = au,y ,  u E V } .  
P,: I In(x, y)l - n/41= o(n ), where n (x ,  y )  = { u: au.x = aU,, = 1,  u E V } .  3 

Obviously, PI(.) says that the graph G, contains each subgraph with the same 
frequency as the random graph. In P,(t) we restrict ourselves to the-not 
necessarily induced+ven cycles. The difference between the role of the odd and 
even cycles is explained in [2]. The eigenvalue property is also very natural- 
knowing the connection between the structural properties of graphs and their 
eigenvalues. The other properties are self-explanatory. 

To formulate our results, we need the SzemerCdi lemma [5].  

Definition 1. 
X C V ,  Y 
Y* C Y satisfying IX*l> ~1x1 and J Y * l >  EIYI, 

(Regularity condition) Given a graph G, and two disjoint vertex sets 
V ,  we shall call the pair ( X ,  Y )  €-regular, if for every X *  C X and 

Id(X*,  Y * )  - d ( X ,  Y ) l <  E . 

Theorem. (Szemeridi Regularity Lemma [5] )  For every E > 0 and K there exists a 
k(E, K )  such that for  every G,, V(G,) can be partitioned into k + 1 sets 
U,, U , ,  . . . , U,, for  some K < k < k(E, K ) ,  so that lU,l < En, lU,l= m (is the 
same) for every i > 0,  and, for  all but at most E . (;) pairs ( i ,  j ) ,  (U; ,  U j )  is 
€-regular. 

Remarks (k-Partite Random Graphs). One can generalize the notion of the 
random graphs as follows. Assume that a nonnegative symmetric r x r matrix 
P = ( p i , j )  and a vector ( a l ,  . . . , a,) is given, where 0 1 p , , ~  I 1, a; > 0, and 
C a; = 1. Partition n vertices into r classes U,, . . . , U, so that lU,( = ain + o(n). 
Join a vertex x E U; to a vertex y E Uj with probability p i , j ,  independently, for 
every pair x # y .  

(a) One interpretation of the SzemerCdi lemma is that every graph can be 
approximated (in some sense) by k-partite random graphs. 

(b) In theory we can allow pi,; > 0. In the applications below we shall count 
only subgraphs H ,  of k-partite random subgraphs where each U; contains 
at most one vertex of H,. In that case the probabilities pi.; do not count at 
all. 

Now we formulate a graph property which will be proved to be a quasirandom 
property. 

P,: For every E > 0 and K there exist two integers, k(E, K )  and no(€, k), such 



SIMONOVITS AND SOS 4 

that, for n > no, G, has a SzemerCdi partition for the parameters E and K ,  into k 
classes U , ,  . . . , U,, with K I k I k(c,  K ) ,  so that 

( U i ,  U,) is E-regular, and Id(Ui, U,) - < E 

holds for all but E (  i )  pairs ( i ,  j), 11 i, j I k.  

Below we shall use the expression “almost surely” in the sense “with probability 
1 - o(1) as n+m.” It is easy to see that if (G,) is a random graph sequence of 
probability 1 ,  then P, holds for (G,), almost surely. We prove that P, is a 
quasirandom property, i.e., P , e P i  for 1 5  i 5 7.  

Theorem 1. ( P , e P i )  (G,) is quasi-random iff for every K and E > 0 there exist 
two integers k(E, K )  and no(€,  K )  such that, for n > no, V(G,) has a (Szemerkdi) 
partition into k classes U,,, . . . , U, ( K  < k < k(E, K ) )  where all but at most Ek2 pairs 
1 I i < j I k are E-regular with densities d( Ui, U,) satisfying 

(d(Ui,  U j )  - $ 1  < E . 

As a matter of fact, we shall prove some stronger results. The proof of Theorem 1 
will immediately follow from the next two theorems. 

Theorem 2. (P, + P,). Assume that (G,) is a graph sequence such that for every 
z c V G , )  

Then for every E > 0 and K ,  there exist a k(E, K )  and n,(E, K ) ,  such that if 
n > no(€,  K ) ,  then for an arbitrary partition of V(G, )  into U , ,  . . . , U, ( K  < k < k 
( E ,  K ) ) ,  where I lUil - n / k l <  K ,  

holds for every 1 I i < j I k .  Moreover, every pair ( U i ,  U,) is E-regular. 

Remarks. Observe that here we have no exceptional pairs (Ui ,  U,), while in the 
Regularity lemma we allow E (  ’;) exceptions. In the case of the SzemerCdi lemma 
it is a longstanding open question if the exceptional pairs can be excluded. This 
follows from our result if almost all pairs have density 4 .  

The condition I lUil - n / k (  < K could be replaced by I ( U i ( - n / k (  = o(n).  

Proof of Theorem 2. Fix an integer K and an E > 0. Partition (in an arbitrary 
way!) V(G, )  into subsets U , ,  . . . , U,, (Ui  - n / k ( <  K ,  i = 1 ,  . . . , k .  We show that 
this in an E-regular partition of G, with 

(d(Ui,  U,) - < E 
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for some S , + O  (n+O). If 1x1, (YI > E I U ; ~ ,  and if n is so large that 

then 

Theorem 3. (P, 3 P4) For every E > 0 and K > 1 / E  there exist a S > 0 and a 
k(E, K )  so that if (G,) has a Szemerkdi partition U,, U, ,  . . . , Uk-for the parame- 
ters 6, K ,  k(E, K)-such that, for  all but at most S( ’;) pairs ( i ,  j ) ,  (Ui, U j )  is a 
regular pair and 

I d ( U j , U j ) - i l < S  (2) 

then for every X c V(G,)  

Proof of Theorem 3. 
S = €14, i.e., find a partition U,, U , ,  . . . , uk according to P,. 

which 

Fix an E > 0 and then a K > 1 / E .  Apply the P, property with 

Let X c V. Put X i  := X n U j ,  11 i 5 k .  If there are exactly 1 classes Ui for 

then we may assume that (4) holds for i = 1,. . . , I  and does not hold for 
i =  I +  1,. . . , k. If I X l < d n ,  then (3) is trivial. So we may assume that 
1x1 2 f i n .  The regularity condition 

le(Xi, X j>-  tlxil lxjl I<SlXil lxjl ( 5 )  

holds for all but at most Sk2 pairs 1 I i < j  I 1. If, for every pair ( i ,  j )  (1 I i < j 5 
k) violating ( 5 )  or not being S-regular, we replace the edges between X i  and Xi by 
random edges of probability i ,  and delete the edges joining pairs in the same 
U;, i = 1 ,  . . . , k, then number of edges remains almost the same: 
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(a) An (1/K)n2 < 6n2 error comes from the number of edges joining vertices in 

(b) The error coming from the irregular pairs ( Ui , U,), or from pairs violating 

(c) There is a third type of error coming from the “small” Xi’s, where (4) does 

the same U i .  

( 5 )  is also <an2. 

not necessarily hold. Since 

n I U Xi  1 I 6(k  - I )  - -= 6n  
i > I  k -  

this error can also be estimated by an2. 

by random graphs) is almost surely < an2. 
(d) The error coming from the randomness (when replacing the irregular pairs 

Hence 

By the Theorem [2] we have P s e P i  for 1 I i 5 7 .  All the direct proofs of type 
P, +Pi are straightforward, except perhaps the one on the eigenvalues. Here we 
shall give also a direct proof for Ps+Pl(v). The readers familiar with the 
applications of the Szemeridi Theorem will see that the proof is not short, but 
very natural. 

Theorem 4. (P, + Pl (v)) For every E > 0 and K there exist a 6 > 0 and a k(c,  K )  so 
that if n > no, and U,, U , ,  . . . , U ,  is a Szemeridi partition of an arbitrary graph 
G,, for the parameters 6 ,  K ,  k (e ,  K ) ,  such that, for all but at most 6( ’;) pairs ( i ,  j ) ,  
(U i ,  U,) is a 6-regular pair and 

(d(Ui ,  U i )  - I < 6 (6) 

then for every H ,  

To prove Theorem 4 we shall formulate and prove a more general (though not 
too deep) assertion, where we count subgraphs H ,  in generalized random graphs. 

Theorem 5. For a given 6 and a K 2 116, let U,, U , ,  . . . , U, be a Szemeridi 
partition of an arbitrary graph G,, corresponding to the parameters S’, K ,  and 
k(e ,  K ) .  Let Q ,  be a k-partite random graph obtained by replacing the edges joining 
the classes Ui and Uj by independently chosen random edges of probability 
pi , j  := d(Ui, U j )  ( 1  I i < j 5 k ) .  (Set pi,i = 0.) Then, if n > no(& K ) ,  

NQn(H,)  - C,6n” I NGn(H,)  I NQ,(H,) + C,6nU (8) 

almost surely, where C ,  is a constant depending only on v. 
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(It is irrelevant whether we define all pi , ;  = 0 or choose them arbitrarily, since, as 
we shall see, the number of H,’s having two more vertices in some U; is negligible 
both in G, and Q,.) 

Obviously, Theorem 5 implies Theorem 4: (7) follows from (8). One could ask 
if the error term of (8) is of the correct order of magnitude. In some sense it can 
be improved, if we do not allow the probabilities to be too small or too large. 
Namely, the proof given below for Theorem 5 would also give the following: 

Theorem 5*. 
constant y E (0 ,  l), for every 1 5 i < j 5 k ,  

Using the notations of Theorem 5 ,  assume that for some fixed 

Then we may replace the assumption of S2-regularity in Theorem 5 by the weaker 
S-regularity, and still get, for n > n,(S, K ) ,  

almost surely, where C ,  is a constant depending only on y. 

Remark. If we have k partition classes, and k < k ,  for a k,  independent of S, 
then we cannot state that N Q ( H )  = N , ( H ) .  In this case C e(U,) > con2 may occur 
and then often N G ( H )  > N Q ( H )  + cln”. (As a matter of fact, this is the case in all 
the reasonable cases.) 

Proof of Theorem 5. The proof consists of two parts: of a lower and an upper 
bounds for NGn(H,),  in terms of NQn(H,) ,  6, and n. It is enough to prove the 
lower bound, since the upper bound follows in the same way. Alternatively, we 
can observe, that if we have the lower bound for each H,, that implies the upper 
bounds with a bigger constant. 

(a) As we shall see, it is enough to count the copies of induced H,’s for any 
fixed v classes, { U;,, . . . , U; }, and then add up the corresponding estimates. Let 
us label the vertices of an H ,  by u l , .  . . , u,. A labeled copy is a pair ( H , ,  W), 
where W: V(H,,)+ V(G,).  We shall denote by t,b(ui) the index of the group of 
W(u;): the j for which W ( u j )  E Ui. We shall call two labeled copies (H,, ,  Q,) and 
(H,,, W2) of the same “position,” if the corresponding vertices use the same 
classes: 

t,bl(ui) = t,b2(ui) for i = 1, . . . , Y . 

(b) For a given Y we shall need below that S be small enough, say 
0 < S < (2v)-’. Let K = [ l / S l ,  m = lUil ( i  > 0 ) .  First we show that it is enough to 
count the number of copies of H ,  where all the vertices of H ,  belong to different 
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classes U i .  Indeed, 
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Since we can choose an ordered pair in H ,  in less than v2 ways, and an ordered 
(v - 2)-tuple in V(G,)  in less than nu-’ ways, therefore on each edge we have at 
most v2nU-’ copies of H , .  Hence the number of labeled copies of H ,  G 
(induced or  not) where not all the vertices belong to  different classes is only at 
most Sv2n”. (This is the point where we needed K to be big.) 

(c) Next we show that we may assume that all the pairs (Ui ,  U j )  are 6-regular. 
If, for some i # j, ( U ; ,  U j )  is a nonregular pair, then we delete the edges between 
Ui and U j .  (This may decrease or increase the number of induced H,’s.)  In this 
way we omitted at most 2S( i ) m 2  = an2 edges. As we have seen in the previous 
para raph, on each edge we have at most v2nu-2 copies of H,, which sums to 
<Sv nu omitted and added copies. Hence it is enough to count the copies of H,’s 
for v given distinct classes Ui, ,  . . . , Uiv, and for a given “position” +. We may 
assume that 

g 

+(ui )  = i , i.e., q ( u i )  E Ui , for i = 1,. . . , v . 

(d) Further, proving the lower bound on NGn(H,) ,  we may forget about all 
those “positions” + of which a “typical” random Q, would contain fewer than 
2Sm” copies. 

(e) First we deal with the random graph Q, and 
in it. For the fixed position + (namely, now for 
probabilities 

Pi,  j 
1 - p i , j  

p * . =  if (ui,  ui )  E E ( H , )  , 
if (ui, u j ) j Z E ( H , )  , 

try to build up an induced H ,  
+(ui )  = i), we introduce the 

If we pick v vertices, one in each class, the probability that they span an H ,  of the 
given “position” is 

Hence the number of different H,’s of “this position” is, almost surely, 

( m ’ + o ( m Y ) )  n pjr j .  

Another way to say the same thing is that if we have fixed ul , .  . . , u,-~, then-in 
Q,-(almost surely) u, can be chosen in 

1 5 i C j s u  

- m n p : ,  
i C r  

ways. Below our strategy is to show that roughly the same calculation holds for 
G,, apart from some negligible error terms. (d) implies that pl:j’s are all large 
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enough; moreover, 

(f) Now we build up copies of H ,  G,  step by step: First picking its vertex 
u ,  = q ( u , )  E U , ,  . . . , and in the last step u,  = V ( u , )  E U,. At each stage we shall 
have v sets: in the tth step these will be U,,; C U;, (i  = 1, . . . , v), defined as 
follows. U,.; = U; (i = 1 ,  . . . , v). Suppose we have already fixed the vertices 
u1 E U , ,  . . . , u I p 1 .  Then UI.; = { u ; }  for i = 1, . . . , f - 1. Let U,,; C U; ( t  5 i 5 v) 
denote the possible choices of u; E U; after the first t - 1 vertices have been fixed 
and we set out to find u,.  (In other words, U,.; is the subset of U, of those vertices 
which are joined to u l ,  . . . , u , - ~  according to the rules “prescribed” by H”.) 
Let-for the fixed position-if x E U,, then 

U; n N ( x )  if (u;, u,) E E ( H u )  
= { Ui\N(x) if ( u i ,  U h ) $ E ( H u ) .  

(These are the vertices which can be chosen as u ; ,  assumed that uh = x has already 
been fixed.) 

Obviously, 

u,,; c u,-,.; c . .  . u,.; = u; . 
Moreover, for i = t ,  . . . , v, 

U,.; = U l - ,  n N L ( U , - ~ ) .  

To choose u, E U,, , ,  we decide to discard those vertices of U,,l  which are joined to 
some U,. j  ( j  > t) with “incorrect degree.” Let for j = t + 1, . . . , v, 

~j := { X E  ~ 1 . t :  1Uf.j n ~ j ( x ) I  < ( ~ : j  - S)lut,jlI * 

We decide to  choose uf only from 

By the 8-regularity, 1B;l < 81Ul,,I.,Namely, we may apply the regularity condition 
to X =  IY,,~, Y =  IY,,~, and X* = B: GX: By (lo), IU,,il >am, and ~ U , , , ~  > 8m and 
if I Bjl > 8lU,,,l, then d(BI ,  U, , l )  <P,:~- 8 would contradict the regularity. 

Hence 

Thus 



10 SIMONOVITS AND S O S  

Therefore, we get at least 

u 1 - 1  

induced copies of H , ,  of the given “position.” Here m = n/k. There are less than 
k” positions. So the error terms add up to 

= c,8mvk“ = c,8n‘ . 

This proves (8). 

Remark. One could have described the above proof [namely, step (f)] in a 
somewhat more compact form, using induction on v, but first generalizing the 
statement of Theorem 5 to the case of arbitrary r-partite random and quasiran- 
dom graph sequences. 
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