# A Note on Ramsey Size-Linear Graphs 

P.N. Balister, ${ }^{1}$ R.H. Schelp, ${ }^{1}$ and M. Simonovits ${ }^{1,2}$<br>${ }^{1}$ DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF MEMPHIS<br>MEMPHIS, TN 38152<br>E-mail: balistep@msci.memphis.edu<br>${ }^{2}$ RÉNYI INSTITUTE OF MATHEMATICS HUNGARIAN ACADEMY OF SCIENCES<br>PO BOX 127, H-1364<br>BUDAPEST, HUNGARY<br>E-mail: schelpr@msci.memphis.edu<br>miki@msci.memshis.edu

Received July 7, 2000

DOI 10.1002/jgt. 10001


#### Abstract

We show that if $G$ is a Ramsey size-linear graph and $x, y \in V(G)$ then if we add a sufficiently long path between $x$ and $y$ we obtain a new Ramsey size-linear graph. As a consequence we show that if $G$ is any graph such that every cycle in $G$ contains at least four consecutive vertices of degree 2 then $G$ is Ramsey size-linear. © 2002 John Wiley \& Sons, Inc. J Graph Theory 39: 1-5, 2002


Keywords: Ramsey numbers; Ramsey size-linear

If $G$ is a graph, write $n(G)=|V(G)|$ for the number of vertices and $e(G)=$ $|E(G)|$ for the number of edges of $G$.

It is well known that the Ramsey number $r\left(K_{3}, T\right)=2 e(T)+1$ for any tree $T$. In the early 1980s Harary asked if $r\left(K_{3}, H\right) \leq 2 e(H)+1$ for every graph $H$. An upper bound was given in [4], later improved by Sidorenko [6], and then in 1993
the "Harary bound" was shown to hold by Sidorenko [7]. This motivated the following definition, which is equivalent to the one introduced in [5].

Definition 1. A graph $G$ is Ramsey size-linear if there is a constant $C_{G}$ such that for any graph $H$ the Ramsey number $r(G, H)$ is bounded above by $C_{G} e(H)+n(H)$.

Note that this implies $r(G, H)$ is bounded above by the linear function $\left(C_{G}+2\right) e(H)$ when $H$ has no isolated vertices. In [5] the following results were proved.

1. Any connected graph with $e(G) \leq n(G)+1$ is Ramsey size-linear.
2. Any graph with $e(G) \geq 2 n(G)-2$ is not Ramsey size-linear.
3. Any graph of the form $K_{1}+T$ is Ramsey size-linear, where $T$ is a tree (or forest) and $K_{1}+T$ is the graph obtained by joining a single vertex $v$ to every vertex of $T$.
4. Any (bipartite) graph with extremal number $\operatorname{ext}(G, n)=O\left(n^{3 / 2}\right)$ is Ramsey size-linear.
5. If $G$ is obtained from $G_{1} \cup G_{2}$ by identifying a vertex of $G_{1}$ with a vertex of $G_{2}$ and if $G_{1}$ and $G_{2}$ are Ramsey size-linear then so is $G$.

It is also clear that any subgraph of a Ramsey size-linear graph is also Ramsey size-linear.

As a consequence of Property 2, the graph $K_{4}$ is not Ramsey size-linear. In particular it has been shown that

$$
C(n / \log n)^{5 / 2} \leq r\left(K_{4}, K_{n}\right) \leq C^{\prime} n^{3} /(\log n)^{2}
$$

The lower bound is due to Spencer [8] using the Lovász Local Lemma, and the upper bound is due to Ajtai et al. [1]. Erdős [3] asked for a proof or disproof that $r\left(K_{4}, K_{n}\right) \geq n^{3} /(\log n)^{c}$ for some $c$, offering US\$ 250 for a solution.

It is therefore of interest whether any graph $G$ which is a topological $K_{4}$ is Ramsey size-linear. In particular, is the graph $G$ formed by subdivision of an edge of $K_{4}$ one or more times Ramsey size-linear? In this note we show that if $G$ is any Ramsey size-linear graph and $x, y \in V(G)$ then we can join $x$ and $y$ by a path of suitable length so that the resulting graph is Ramsey size-linear. Hence for any graph $G$ it is possible to subdivide the edges so that the resulting graph is Ramsey size-linear. In particular, for $K_{4}$, subdividing one of the edges four times is sufficient. It is an open question as to whether $K_{4}$ with an edge subdivided just once is Ramsey size-linear.

Assume $T$ is a tree (or forest) and $G$ is any graph. Let $x$ and $y$ be vertices of $G$ (possibly equal) and define a graph $G_{T}$ as follows. Let $x_{1}, \ldots, x_{t}$ be the vertices of $T$. Take $t$ copies of $G$ and fix in each of them a vertex corresponding to $x$ and a vertex corresponding to $y$. Now join $x$ in the $i$ th copy to the $x$ in the $j$ th copy if $x_{i} x_{j} \in E(T)$. Join $y$ in each copy to a single new vertex $w$. The resulting graph will be $G_{T}$ (see Fig. 1).


FIGURE 1. The graph $G_{T}$.

Theorem 1. Assume $T$ is a forest, $G$ is Ramsey size-linear, and $x, y \in V(G)$ (possibly equal). Let $G_{T}$ be defined as above. Then $G_{T}$ is Ramsey size-linear. Indeed we can take $C_{G_{T}}=C_{G}+2+2(n(T)-1) n(G)$.

Proof. We prove the result by induction on $n(H)$. The result clearly holds for $n(H)=1$ since then $r\left(G_{T}, H\right)=1$. Adding an isolated vertex to $H$ can increase $r\left(G_{T}, H\right)$ by at most 1 . Hence we may assume $H$ has no isolated vertex. Let $v \in H$ be a vertex of minimum degree $\delta=\delta(H)$ and assume the result holds for $H-v$. Hence if we have a 2 -coloring of $K_{n}$ without a red $G_{T}$, and $n \geq C_{G_{T}}(e(H)-\delta)+(n(H)-1)$, then it must contain a blue $H_{1}$ isomorphic to $H-v$. Let $N$ be the set of vertices of $H_{1}$ corresponding to the neighbors of $v$ in $H$. Let $S$ be the set of vertices of $K_{n}$ that do not lie in $H_{1}$. If a vertex $u \in S$ is joined to all the vertices in $N$ by blue edges then adding $u$ to $H_{1}$ gives a blue $H$, hence we may assume every vertex of $S$ has at least one red edge to $N$. For each $u \in S$ pick one such edge. This partitions $S$ as a disjoint union $\cup_{w \in N} S_{w}$ according to the rule that $u \in S_{w}$ if $u w$ is the chosen red edge incident to $u$.

Now use the fact that $r(G, H) \leq\left(C_{G}+2\right) e(H)$ to find many vertex disjoint copies of red $G s$ in $S$. We can find by induction a total of at least $s=\left(|S|-\left(C_{G}+2\right) e(H)\right) / n(G)$ such copies since $S$ spans no blue $H$. Let $X_{w}$ be the set of the $x$ s of these $G s$, such that the corresponding $y$ s are in $S_{w}$. Hence $\sum_{w \in N}\left|X_{w}\right| \geq s$.

If $s>(r(T, H)-1)|N|$ then there must be some $w \in N$ such that $\left|X_{w}\right| \geq$ $r(T, H)$. Since the subgraph spanned by $X_{w}$ contains no blue $H$, it must contain a red $T$. This red $T$ together with the graphs $G$ it meets and the vertex $w$ form a red $G_{T}$.

Now $r(T, H) \leq r\left(T, K_{n(H)}\right)=(n(T)-1)(n(H)-1)+1$ (see [2]). Hence it is sufficient if $s>(n(T)-1)(n(H)-1)|N|$. However, $n(H)|N| \leq 2 e(H)$, so it is enough that $s>2(n(T)-1) e(H)$, or $|S|>\left(C_{G}+2+2(n(T)-1) n(G)\right) e(H)$. Since $n=|S|+n(H)-1$, the result follows with $C_{G_{T}}=C_{G}+2+2(n(T)-1)$ $n(G)$.

Corollary 2. If $G$ is Ramsey size-linear and $x$ and $y$ are two vertices in the same component of $G$ (possibly the same vertex), then the graph $G^{\prime}$ obtained by adding a path (cycle if $x=y$ ) of length $r$ between $x$ and $y$ is also Ramsey size-
linear provided $r \geq d(x, y)+3$, where $d(x, y)$ is the distance between $x$ and $y$ in $G$. If $x$ and $y$ lie in different components of $G$ then $G^{\prime}$ is Ramsey size linear for any $r \geq 0$.

Proof. Let $T$ be a path of length $r-d(x, y)-2 \geq 1$. Then $G_{T}$ contains a subgraph isomorphic to $G^{\prime}$ by taking one copy of $G$ joined to one end of $T$, with $x$ and $y$ joined by $T$, a path of length $d(x, y)$ in the copy of $G$ at the other end of $T$ and then a path of length 2 via $w$. The result follows since a subgraph of a Ramsey size-linear graph is Ramsey size-linear. If $x$ and $y$ belong to distinct components of $G$ then the graph obtained by identifying them is also Ramsey size-linear. Adding a path $x \ldots x^{\prime}$ of length $r$ to $x$ first and identifying $x^{\prime}$ and $y$ now proves the second part.

The graph $K_{4}$ with an edge deleted is Ramsey size-linear by Property 3 above. Taking $x y$ as the deleted edge and applying Corollary 2 shows that $K_{4}$ with an edge subdivided four times is Ramsey size-linear.

Corollary 3. If $G$ is a graph such that every cycle in $G$ contains at least four consecutive vertices of degree 2, then $G$ is Ramsey size-linear.

Proof. By removing suspended paths of length 5 from $G$ we can obtain a graph $T$ without cycles, i.e., a forest. Now $K_{1}+T$ is Ramsey size-linear and given any $x, y \in V(T)$ there is a path of length at most 2 joining $x$ and $y$ in $K_{1}+T$. Applying Corollary 2 we can add paths of length $5 \geq d(x, y)+3$ to $K_{1}+T$, thus replacing the suspended paths we removed from $G$. (Note that $x$ may be equal to $y$.) Finally, removing the vertex of $K_{1}$ gives the graph $G$.

It is an interesting question as to how much Corollary 2 can be improved. As a special case, we have the following important question.
Question 1. Is the graph $G$ obtained from $K_{4}$ by subdividing one of its edges once Ramsey size-linear?

Also one can ask a more general question.
Question 2. Is it always the case that if $G$ is Ramsey size-linear and $G^{\prime}$ is obtained from $G$ by joining two vertices by a path of length 2 then $G^{\prime}$ is necessarily Ramsey size-linear?

If the answer to this last question is Yes, then any graph is Ramsey size-linear unless it contains a subgraph $H$ with no cut vertex and $\delta(H) \geq 3$. On the other hand, any graph $H$ with no cut vertex and $\delta(H) \geq 3$ cannot be constructed by joining vertices of a smaller graph by paths of length 2 or by identifying vertices of two smaller graphs as in Property 5 above. We can therefore also ask the following question.

Question 3. Is it always the case that if $G$ has no cut vertex and the minimum degree of $G$ is at least 3 then $G$ is not Ramsey size-linear?

If the answer to the last two questions is Yes, then we would obtain a complete characterization of Ramsey size-linear graphs.

## REFERENCES

[1] M. Ajtai, J. Komlós, and E. Szemerédi, A note on Ramsey numbers. J Comb Theory Ser A 29 (1980), 354-366.
[2] V. Chvátal, Tree-Complete Graph Ramsey Numbers. J Graph Theory Vol. 1 (1977) 93.
[3] P. Erdős, "Problems and Results on graphs and hypergraphs; similarities and differences," Mathematics of Ramsey Theory, Algorithms Combin., Vol 5, J. Nešetřil and V. Rödl (editors), Berlin, Springer-Verlag, 1990, pp. 12-28.
[4] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, A Ramsey problem of Harary on graphs of prescribed size. Discrete Math 67 (1987), 227-234.
[5] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, Ramsey size linear graphs. Comb Prob and Comp 2 (1993), 389-399.
[6] A. Sidorenko, An upper bound on the Ramsey number $r\left(K_{3}, G\right)$ depending only on the size of $G$. J Graph Theory 15 (1991), 15-17.
[7] A. Sidorenko, The Ramsey numbers of an $N$-edge graph versus a triangle is at most $2 N+1$. J Combin Theory Ser B 58 (1993), 185-195.
[8] J. Spencer, Asymptotic lower bounds for Ramsey functions. Discrete Math 20 (1977/78), 69-76.

