

Available online at www.sciencedirect.com



DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 3998-4002

www.elsevier.com/locate/disc

# On the minimum degree forcing *F*-free graphs to be (nearly) bipartite

Note

Tomasz Łuczak<sup>a, 1</sup>, Miklós Simonovits<sup>b, 2</sup>

<sup>a</sup>Adam Mickiewicz University, Faculty of Mathematics and CS, ul. Umultowska 87, 61-614 Poznań, Poland <sup>b</sup>Alfréd Rényi Mathematical Institute, Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13-15, Hungary

> Received 11 June 2003; received in revised form 11 June 2007; accepted 27 June 2007 Available online 22 August 2007

#### Abstract

Let  $\beta(G)$  denote the minimum number of edges to be removed from a graph *G* to make it bipartite. For each 3-chromatic graph *F* we determine a parameter  $\xi(F)$  such that for each *F*-free graph *G* on *n* vertices with minimum degree  $\delta(G) \ge 2n/(\xi(F)+2) + o(n)$  we have  $\beta(G) = o(n^2)$ , while there are *F*-free graphs *H* with  $\delta(H) \ge \lfloor 2n/(\xi(F)+2) \rfloor$  for which  $\beta(H) = \Omega(n^2)$ . © 2007 Elsevier B.V. All rights reserved.

MSC: primary 05C35; secondary 05C15; 05C38; 05C75

Keywords: Extremal graph theory; Bipartite graphs; Odd cycles; Chromatic number

# 1. Introduction

A well-known theorem of Turán [13] states that a  $K_{p+1}$ -free graph on *n* vertices with maximum number of edges is *p*-partite (for p = 2 this fact was already proved by Mantel [8]). This result was subsequently generalized in different directions (see Bollobás' excellent monograph [2] devoted to this subject, or the surveys [10,11]).

The Erdős–Simonovits theorem [4], easily following from the Erdős–Stone theorem [6], generalizes Turán's theorem for all graphs *F* with chromatic number p + 1. It says that for any  $\eta > 0$ , any graph *G* with *n* vertices and at least  $(1 - 1/p) \binom{n}{2} + \eta n^2$  edges contains *F*, provided *n* is large enough. Hence, the 'critical' density of *F*-free graphs depends only on the chromatic number  $\chi(F)$  of *F*. Erdős and Simonovits [3,9] showed also that for such an *F* and every  $\alpha > 0$  there exists an  $\eta(\alpha) > 0$  such that for *n* large enough every graph *G* with *n* vertices and at least  $(1 - 1/p) \binom{n}{2} - \eta n^2$  edges can be made *p*-partite by omitting at most  $\alpha n^2$  edges.

For  $F = K_{p+1}$  the chromatic number of dense *F*-free graphs has been investigated in more detail. The main result on this problem is due to Andrásfai et al. [1] who proved that

$$\max\{\delta(G): v(G) = n, \chi(G) \ge p+1, K_{p+1} \not\subseteq G\} = \left(1 - \frac{1}{p - (1/3)}\right)n + O(1), \tag{1}$$

E-mail addresses: tomasz@amu.edu.pl (T. Łuczak), miki@renyi.hu (M. Simonovits).

<sup>&</sup>lt;sup>1</sup> Partially supported by KBN Grant 2 P03A 016 23.

<sup>&</sup>lt;sup>2</sup> Supported by the Grants OTKA T034702 and OTKA T038210.

<sup>0012-365</sup>X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.06.047

where v(G) denotes the number of vertices of a graph *G*. Observe that in the above result the 'density' of a graph *G* is measured by its minimum degree  $\delta(G)$  rather than the number of edges. This approach is motivated by the fact that if we try to maximize the number of edges in the  $K_{p+1}$ -free graphs,  $p \ge 2$ , then the additional condition that  $\chi(G)$  is large decreases the number of edges only by O(n) (for instance one can boost the chromatic number of a  $K_{p+1}$ -free graph by adding to it a triangle-free component of large chromatic number). For the minimum-degree problem, the change in the critical value is more noticeable and leads to a non-trivial structural result. Erdős and Simonovits [5] generalized (1) to arbitrary *F* with at least one critical edge, i.e. with  $e \in E(F)$  for which  $\chi(F - e) < \chi(F)$ .

In this paper we study the conditions under which, for a given (small) 3-chromatic graph *F*, all *F*-free graphs with high minimum degree can be made bipartite by omitting  $o(n^2)$  edges. The main result of this note, Theorem 1, states that for every  $\alpha > 0$  and  $\eta > 0$  there exists  $n_0$  such that if the minimum degree of a *F*-free graph *G* on  $n > n_0$  vertices is greater than  $a(F)n + \alpha n$ , for an appropriate parameter a(F) > 0, then *G* can be made bipartite by omitting at most  $\eta n$  edges. The lower bound for  $\delta(G)$  is, basically, best possible, since there is a family of 'blown-up odd cycles'  $H_n$ , such that  $H_n$  is *F*-free, has minimum degree  $\delta(H_n) = \lfloor a(F)n \rfloor$ , and cannot be made bipartite by removing fewer than  $\Omega(n)$  edges. In fact, we show that our result is 'stable' and each 'extremal' large graph *G* is 'close' to such a 'blown-up odd cycle'  $H_n$ . We also remark that, in the case of the general 3-chromatic graphs *F*, in the assertion of Theorem 1  $\eta n$ cannot be replaced by  $n^{1-\varepsilon}$  for some  $\varepsilon > 0$  (Example 5).

Finally, we mention that recently Győri et al. [7] studied dense *F*-graphs with large minimum degree when *F* is an odd cycle, obtaining much more precise information on the structure of extremal graphs in this special case.

# 2. Notation

All graphs we consider in this paper, usually denoted by F, G, H with or without sub- and superscripts, are simple graphs without loops and multiple edges. For a graph G, by V(G) we denote the set of its vertices, by E(G) the set of the edges of G, v(G) = |V(G)|, e(G) = |E(G)|, and  $\delta(G)$  stands for the minimum degree of G. We write  $F \subseteq G$  when F is a subgraph of G, not necessarily induced. If  $F \not\subseteq G$ , then G is F-free.

A graph *G* can be homomorphically mapped into *F*, if there exists a map  $\phi : V(G) \to V(F)$  such that for each  $\{v, w\} \in E(G)$  we have also  $\{\phi(v), \phi(w)\} \in E(F)$ ; in such a case we write  $G \to F$ . For a graph *F* and a natural number *m*, a new graph  $F^{(m)}$  is obtained from *F* by 'blowing-up' each vertex to the size *m*, i.e. by replacing the vertices  $v_1, \ldots, v_n$  of *F* by sets  $V_1, \ldots, V_n, |V_1| = \cdots = |V_n| = m$ , and each edge  $\{v_i, v_j\} \in E(F)$  by a complete bipartite graph  $K_{m,m}$  with bipartition  $(V_i, V_j)$ . Therefore, for instance,  $F^{(m)} \to F$  and the chromatic number  $\chi(F)$  of *F* can be defined as

$$\chi(F) = \min\{p \colon F \to K_p\} = \min\{p \colon F \subseteq K_p^{(v(F))}\}.$$

Observe that if *G* can be homomorphically mapped into *H*, and *H* can be homomorphically mapped into *F*, then, clearly, *G* can be homomorphically mapped into *F*. Thus, for instance, if *G* is homomorphically mapped into an odd cycle  $C_{2k+1}$ ,  $k \ge 2$ , then it can also be homomorphically mapped into  $C_{2k-1}$ . We also remark that a bipartite *G* can be homomorphically mapped into  $K_2$  and so it can be homomorphically mapped into every non-empty graph, in particular, into any odd cycle.

For a 3-chromatic graph F we define another parameter  $\xi(F)$  setting

$$\xi(F) = \max\{k : k \text{ is odd and } F \to C_k\}$$
$$= \max\{k : k \text{ is odd and } F \subseteq C_k^{(v(F))}\}.$$

Note that  $\xi(F)$  cannot be larger than  $g_{\text{odd}}(F)$ , the length of the shortest odd cycle contained in *F*.

Finally, by  $\beta(G)$  we denote the minimum number of edges that must be deleted from G to make it bipartite.

#### 3. Main theorem

The main result of this note can be stated as follows.

**Theorem 1.** Let *F* be a 3-chromatic graph. Then for every  $\alpha$ ,  $\eta > 0$ , there exists an  $n_0$  such that for every *F*-free graph *G* with  $v(G) = n \ge n_0$  and

$$\delta(G) \ge \left\lfloor \frac{2n}{\xi(F) + 2} \right\rfloor + \eta n, \tag{2}$$

we have  $\beta(G) \leq \alpha n^2$ .

Furthermore, for every  $\alpha > 0$  there exist an  $\bar{\eta} > 0$  and an  $\bar{n}_0$  such that each *F*-free graph *G* with  $v(G) = n \ge \bar{n}_0$  and

$$\delta(G) \geqslant \left\lfloor \frac{2n}{\xi(F) + 2} \right\rfloor - \bar{\eta}n,\tag{3}$$

contains a subgraph G' with at least  $e(G) - \alpha n^2$  edges such that  $G' \to C_{\xi(F)+2}$ .

The proof of Theorem 1 is based on the following simple observation on graphs not containing short odd cycles (cf. [1]).

**Lemma 2.** Let G be a graph on n vertices not containing odd cycles shorter than  $2\ell + 2$ .

(i) If 
$$\delta(G) > \left\lceil \frac{2n}{2\ell + 3} \right\rceil,\tag{4}$$

then G is bipartite.

(ii) If

$$\delta(G) > \left\lceil \frac{2n}{2\ell + 3} \right\rceil - \eta n,\tag{5}$$

for some  $\eta$ ,  $0 < \eta < 1/(18\ell^2)$ , then G contains an induced subgraph G' such that  $G' \to C_{2\ell+3}$  and  $v(G') \ge v(G) - (2\ell+3)(\eta n+3)$ , so that  $e(G') \ge e(G) - (2\ell+3)(\eta n+3)n$ .

**Proof.** Let us assume that G is not bipartite and let  $C_{2k+1} = v_1v_2 \dots v_{2k+1}v_1$ ,  $k \ge \ell + 1$ , be a shortest odd cycle contained in G. Then, clearly,

$$e(V(C_{2k+1}), V(G) \setminus V(C_{2k+1})) \ge (2k+1)(\delta(G)-2).$$
(6)

On the other hand, since  $C_{2k+1}$  is the shortest odd cycle in *G*, each vertex from  $v \in V(G) \setminus V(C_{2k+1})$  must have at most two neighbors in  $C_{2k+1}$  and so

$$e(V(C_{2k+1}), V(G) \setminus V(C_{2k+1})) \leq 2(n - (2k+1)).$$
(7)

Note that if (4) holds, then (6) contradicts (7), so (i) follows.

Now, let us consider the case when the minimum degree of G fulfills the weaker condition (5). If  $v_1$  denotes the number of vertices adjacent to exactly one vertex of  $C_{2k+1}$  then, from (6),

$$v_1 + 2(n - v_1) \ge (2k + 1)(\delta(G) - 2) + (2k + 1),$$

and so

$$v_1 \leq \frac{4n(\ell-k+1)}{2\ell+3} + (2\ell+3)(\eta n+3).$$

Consequently, we infer that  $k = \ell + 1$  and all but at most  $(2\ell + 3)(\eta n + 3)$  vertices of *G* are adjacent to two vertices of  $C_{2k+1} = C_{2\ell+3}$ . Note also that if  $v \in V(G) \setminus V(C_{2k+1})$  has two neighbors in  $C_{2\ell+3}$ , then, to avoid odd cycles shorter than  $2\ell + 3$ , they must lie at distance two in  $C_{2\ell+3}$ . Hence, all but  $(2\ell + 3)(\eta n + 3)$  vertices of *G* can be partitioned into sets  $V_1, \ldots, V_{2\ell+3}$ , where each  $w_i \in V_i$  is adjacent to  $v_{i-1}, v_{i+1} \in V(C_{2\ell+3})$  (here and below we add modulo

 $2\ell + 3$ ). Since  $g_{\text{odd}}(G) = 2\ell + 3$ , the only edges contained in  $V_1 \cup \cdots \cup V_{2\ell+3}$  are those joining  $V_i$  and  $V_{i+1}$  for some  $i = 1, 2, \ldots, 2\ell + 3$ . Hence, for the subgraph G' spanned in G by  $V_1 \cup \cdots \cup V_{2\ell+3}$  we have  $G' \to C_{2l+3}$ .  $\Box$ 

**Proof of Theorem 1.** Since the proof is based on a standard application of the Regularity Lemma [12], here we only sketch the argument.

We start with a simple observation. Consider a graph *H* whose vertex set can be partitioned into  $W_1, \ldots, W_k$ , where *k* is an odd number not larger than  $\xi(F)$ ,  $|W_i| = m$ , and the bipartite graph induced by each pair  $(W_i, W_{i+1})$  is  $\varepsilon$ -regular and contains at least  $\sqrt{\varepsilon}m^2$  edges. One can easily argue that for sufficiently large *m* and sufficiently small  $\varepsilon = \varepsilon(k) > 0$  such a graph always contains a copy of  $C_k^{(v(F))}$  and thus a copy of *F* as well.

Now, let us take a sufficiently large *F*-free graph *G* that fulfills (2) and apply to it the Regularity Lemma with an  $\varepsilon > 0$  that has the above property and is much smaller than  $\alpha$  and  $\eta$ . Consider the graph  $G^*$  with  $v(G^*) > 1/\varepsilon$ , whose vertices are the sets of the partition and two sets are joined by an edge of  $G^*$  if they form an  $\varepsilon$ -regular pair with density at least  $\sqrt{\varepsilon}$ . Since *G* is *F*-free, a standard argument shows that the graph  $G^*$  contains no odd cycles of length  $\xi(F)$  or shorter. We could choose  $\varepsilon > 0$  small enough so that v(G) (and thus also  $v(G^*)$ ) is sufficiently large and the difference between the densities of  $G^*$  and *G* is much smaller than  $\eta$  given in (2), say, smaller than  $\eta^5$ . But then,  $G^*$  contains an induced subgraph  $\hat{G}$ , with at least  $(1 - \eta^2)v(G^*)$  vertices and the minimum degree at least  $(2/(\xi(F) + 2) + \eta/2)n$ . Now, the first part of the assertion follows from Lemma 2(i). The second part of the assertion can be deduced from Lemma 2(i) in a similar way.  $\Box$ 

# 4. Final remarks

An edge  $e \in E(F)$  is critical, if  $\chi(F - e) < \chi(F) = 3$ . We note that for 3-chromatic graphs *F* with at least one critical edge the value of  $\xi(F)$  is equal to a 'more natural' parameter: the length of the shortest odd cycle  $g_{odd}(F)$ .

**Claim 3.** If  $\chi(F) = 3$  and *F* has a critical edge, then  $\xi(F) = g_{odd}(F)$ .

**Proof.** Let  $g_{odd}(F) \ge 2\ell + 1$  and let  $e = \{v, w\}$  be a critical edge of F. Clearly, without loss of generality, we can assume that F is connected. We partition the set of vertices of F into sets  $U_0 = \{v\}$ ,  $U_1, \ldots, U_{2\ell-1}, U_{2\ell} = \{w\}$  in the following way. The sets  $U_i$ ,  $i = 1, \ldots, 2\ell - 3$ , are the vertices that lie at the distance i from v in F - e. A vertex  $x \in V(F) \setminus \bigcup_{i=1}^{2\ell-3} U_i$  we put in  $U_{2\ell-2}$  if its distance from w in F - e is even; otherwise it goes to  $U_{2\ell-1}$ . From the condition  $g_{odd}(F) \ge 2\ell + 1$  it follows that each of the sets  $U_i$ ,  $i = 0, 1, \ldots, 2\ell - 3$  is non-empty. Moreover, one can easily verify that each edge of F different from e joins  $U_i, U_{i+1}$  for some  $i = 0, \ldots, 2\ell - 1$ , and so  $F \to C_{2\ell+1}$ . Now, to complete the proof, it is enough to observe that for no k such that  $2k + 1 < g_{odd}(F)$  we have  $F \to C_{2k+1}$ .  $\Box$ 

On the other hand, we remark that we may have  $\xi(F) = 3$  even for graphs F with arbitrarily large girth.

**Example 4.** Note that there exists a 3-partite graph F(m; k) with vertex set  $V_1 \cup V_2 \cup V_3$ , where  $|V_1| = |V_2| = |V_3| = m$  such that F(m; k) contains no cycles shorter than k but each pair of subsets  $W_i \subseteq V_i$ ,  $W_j \subseteq V_j$ ,  $i \neq j$ ,  $|W_i|$ ,  $|W_j| \ge 0.01m$ , is joined by an edge. Then  $g_{\text{odd}}(F(m; k)) \ge k$  but, clearly,  $\xi(F) = 3$ . The existence of F(m; k) follows from an elementary probabilistic argument. It is enough to generate a tripartite random graph putting each edge with probability, say,  $\log m/m$ , and then remove from it all the edges which belong to cycles shorter than k; with positive probability we end up with a graph F(m; k) which has all required properties.

It is easy to observe that the assertion of Theorem 1 does not hold if we set in (2)  $\alpha = 0$ . Indeed, the appropriately 'blown-up' cycle  $C_{\xi(F)+2}$  on *n* vertices has the minimum degree  $\lfloor 2n/(\xi(F) + 2) \rfloor$ , but in order to make this graph bipartite one needs to delete at least  $\lfloor n/(\xi(F)+2) \rfloor^2$  edges. It is perhaps slightly more surprising that, as the following example shows, one cannot replace  $\beta(G) \leq \alpha n$  by  $\beta(G) \leq n^{1-\varepsilon}$  for any  $\varepsilon > 0$ , even if *F* contains critical edges.

**Example 5.** For given integers  $\ell$ , and m, let  $F(2\ell + 1, m)$  be a graph with vertex set  $V(F(2\ell + 1, m)) = \bigcup_{i=1}^{2\ell+1} V_i$ , where  $|V_1| = |V_2| = 1$ ,  $|V_i| = m$  for  $i = 3, ..., 2\ell + 1$ , and each of the pairs  $(V_1, V_{2\ell+1})$  and  $(V_i, V_{i+1})$ ,  $i = 1, ..., 2\ell$ , spans a complete bipartite graph. By G(n; m) we denote a graph whose vertex set consists of seven sets  $W_1, ..., W_7$ , where  $|W_i| \ge \lfloor n/7 \rfloor$ , for i = 1, 2, ..., 7. The pairs  $(W_1, W_2)$ ,  $(W_2, W_3)$ ,  $(W_3, W_4)$ ,  $(W_5, W_6)$ , and  $(W_6, W_7)$  induce

complete bipartite graphs; the pairs ( $W_4$ ,  $W_5$ ) and ( $W_1$ ,  $W_7$ ) span  $K_{m,m}$ -free bipartite graphs B with minimum degree  $\Omega(n^{1-2/(m+1)})$ . The existence of the bipartite graphs B follows easily from the probabilistic method, provided n is large enough. Indeed, it is enough to generate a random bipartite graph G of size  $2\lfloor n/7 \rfloor$ , in which probability of an edge is  $cn^{-2/(m+1)}$  for some small constant c > 0, and check that in such a graph, with probability at least 1/2 when n is large enough, every vertex is incident to at least  $0.01cn^{1-2/(m+1)}$  edges which are contained in no copies of  $K_{m,m}$ . Thus, removing all copies of  $K_{m,m}$  from G leads to a graph B which, with positive probability, fulfills our requirements.

Now note that G(n; m) is an  $F(2\ell + 1, m)$ -free graph with minimum degree larger than n/7, but to make it bipartite one has to omit  $\Omega(n^{2-2/(m+1)})$  edges.

# Acknowledgments

We started to work on dense *F*-free graphs during our visit at Isaac Newton Institute in September 2003; we wish to thank the Institute for its support and hospitality. We also thank the referees for helpful comments.

### References

- [1] B. Andrásfai, P. Erdős, V.T. Sós, On the connection between chromatic number, maximal clique and minimal degree of a graph, Discrete Math. 8 (1974) 205–218.
- [2] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
- [3] P. Erdős, Some recent results on extremal problems in graph theory (results), Theory of Graphs (International symposium, Rome, 1966), Gordon and Breach, New York and Dunod, Paris, 1967, pp. 118–123.
- [4] P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51–57.
- [5] P. Erdős, M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973) 323–334.
- [6] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.
- [7] E. Győri, V. Nikiforov, R.H. Schelp, Nearly bipartite graphs, Discrete Math. 272 (2003) 187–196.
- [8] W. Mantel, Problem 28, soln. by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh, W.A. Wythoff, Wiskundige Opgaven 10 (1907) 60–61.
- [9] M. Simonovits, A method for solving extremal problems in graph theory, in: P. Erdős, G. Katona (Eds.), Theory of Graphs, Proc. Coll. Tihany (1966), Academic Press, New York, 1968, pp. 279–319.
- [10] M. Simonovits, Extremal Graph Theory, in: L.W. Beineke, R. J Wilson (Eds.), Selected Topics in Graph Theory, Academic Press, London, New York, San Francisco, 1983, pp. 161–200.
- [11] M. Simonovits, Paul Erdős' influence on extremal graph theory, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, pp. 148–192.
- [12] E. Szemerédi, On regular partitions of graphs, in: J. Bermond et al. (Eds.), Problemes Combinatoires et Théorie des Graphes, CNRS, Paris, 1978, pp. 399–401.
- [13] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452 (in Hungarian).