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Abstract

For a graph L and an integer k ≥ 2, Rk(L) denotes the smallest
integer N for which for any edge-colouring of the complete graph KN

by k colours there exists a colour i for which the corresponding colour
class contains L as a subgraph.

Bondy and Erdős conjectured that for an odd cycle Cn on n ver-
tices,

Rk(Cn) = 2k−1(n− 1) + 1 for n > 3.

They proved the case when k = 2 and also provided an upper bound
Rk(Cn) ≤ (k + 2)!n. Recently, this conjecture has been verified for
k = 3 if n is large. In this note, we prove that for every integer k ≥ 4,

Rk(Cn) ≤ k2kn + o(n), as n→∞.

When n is even, Yongqi, Yuansheng, Feng, and Bingxi gave a con-
struction, showing that Rk(Cn) ≥ (k − 1)n − 2k + 4. Here we prove
that if n is even, then

Rk(Cn) ≤ kn + o(n), as n→∞.
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1. Introduction

In this note we shall consider Ramsey problems connected to edge-colourings
of ordinary graphs with k colours, for a given k ≥ 2, and try to ensure
monochromatic cycles of a given length. We shall use the standard notation.
Given a graph G = (V,E), v(G) denotes the number of vertices and e(G)
the number of edges in G. For a subset W of V , G[W ] is the subgraph of G
induced by the vertices in W .

For graphs L1, . . . , Lk, the Ramsey number R(L1, . . . , Lk) is the minimum
integer N such that for any edge-colouring of the complete graph KN by k
colours there exists a colour i for which the ith colour class contains Li as
a subgraph. For L1 = L2 = . . . = Lk = L, we set Rk(L) := R(L1, . . . , Lk).

The behaviour of Ramsey number R(Cn, Cm) has been studied by several
authors, for example, Bondy and Erdős, [2], Faudree and Schelp, [4], Rosta,
[10], and it is completely described and well-understood. Among others, it
is known that

R2(Cn) =

{
2n− 1, if n ≥ 5 is odd,
3n
2
− 1, if n ≥ 6 is even.

Bondy and Erdős [2] conjectured that Rk(Cn) = 2k−1(n−1)+1 for odd n > 3.
The conjectured extremal colouring, giving the lower bound, can be easily
constructed recursively: for two colours, take two disjoint sets of size n − 1
and colour all pairs within each set by colour 1 and all pairs joining them by
colour 2. For i = 3, . . . , k, take two disjoint copies of the colouring for i− 1
colours and colour all pairs joining these two copies by colour i. The final
k-colouring has 2k−1(n − 1) vertices and every monochromatic component
has either only n− 1 vertices or it is bipartite and therefore does not contain
odd cycles.

As for the upper bound for Rk(Cn), k ≥ 3,  Luczak [9] proved that if n is
odd, then R3(Cn) = 4n + o(n), as n→∞. Later, Kohayakawa, Simonovits,
and Skokan [7, 8] showed that R3(Cn) = 4n− 3 for all odd, sufficiently large
values of n. The conjecture is still open for k ≥ 4. Bondy and Erdős [2]
remarked that they could prove Rk(Cn) ≤ (k + 2)!n for n odd. In this note
we shall give an upper bound which is correct up to O(k) factor.

Theorem 1. For every k ≥ 4 and odd n,

Rk(Cn) ≤ k2kn+ o(n), as n→∞.
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The Ramsey number Rk(Cn) behaves rather differently for even values
of n. From [4] and [10], we know that R2(Cn) = 3n/2− 1 and, for large even
n, Benevides and Skokan [1] proved that R3(Cn) = 2n. Yongqi, Yuansheng,
Feng, and Bingxi [11] gave a construction yielding

Rk(Cn) ≥ (k − 1)n− 2k + 4.

Here we prove the following.

Theorem 2. For every k ≥ 2 and even n,

Rk(Cn) ≤ kn+ o(n), as n→∞.

The difference between the lower and upper bounds is only n+ o(n) and
we think that the lower bound is sharp.

2. Tools

We shall make use of the following result of Erdős and Gallai, [3].

Theorem 3. Let n ≥ 3. For any graph G with at least (n−1)(v(G)−1)/2+1
edges, G contains a cycle of length at least n.

The next lemma of Figaj and  Luczak ([5], Lemma 9) describes some
structural properties of graphs without long odd cycles.

Lemma 4. If no non-bipartite component of a graph G contains a matching
of at least n/2 edges, then there exists a partition V (G) = V 1 ∪ V 2 ∪ V 3 of
the vertices of G for which

(A) G has no edges joining V 1 ∪ V 2 and V 3;
(B) the subgraph G[V 1 ∪ V 2] is bipartite, with bipartition (V 1, V 2);
(C) the subgraph G[V 3] has at most n(|V 3|−1)/2 edges and each component

of G[V 3] is non-bipartite.

Notice that Lemma 4 defines a decomposition of V (G) into sets V 1, V 2,
and V 3, and we shall call V 3 the sparse set.
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3. Odd cycles

Our proof of Theorem 1 is based on the following lemma of Figaj and  Luczak;
see Lemma 3 in [6] for a more general statement.

Lemma 5. Let a real number c > 0 be given. If for every ε > 0 there exist
a δ > 0 and an n0 such that for every odd n > n0 and any graph G with
v(G) > (1 + ε)cn and e(G) ≥ (1− δ)

(
v(G)
2

)
, any k-edge-colouring of G has a

monochromatic non-bipartite component with a matching of (n+ 1)/2 edges,
then

Rk(Cn) ≤ (c+ o(1))n, as n→∞.

Hence, Theorem 1 follows from the next lemma.

Lemma 6. Given a natural number k ≥ 4 and an ε > 0, let n be a sufficiently
large odd integer, δ = ε/22k+4 and N = (1+ε)k2kn. Suppose that G is a graph
with v(G) ≥ N and e(G) ≥ (1 − δ)

(
v(G)
2

)
. Then in any k-colouring of the

edges of G, there exists a monochromatic non-bipartite component containing
a matching of (n+ 1)/2 edges.

Proof. Assume to the contrary that there exists a k-edge colouring of G
without a monochromatic matching of (n + 1)/2 edges in a non-bipartite
component. We may also assume that ε < 1 and v(G) = N . Indeed, if
v(G) > N and

e(G) ≥ (1− δ)
(
v(G)

2

)
, (1)

then, iteratively removing (v(G)−N times) a vertex of minimum degree, we
obtain a subgraph of G with N vertices and at least (1− δ)

(
N
2

)
edges.

For every colour i, let Gi be the spanning subgraph of G induced by the
edges coloured by i. Then no Gi contains a matching of (n + 1)/2 edges in
a non-bipartite component, otherwise Gi would satisfy the conclusion of the
lemma.

We apply Lemma 4 to Gi for every i ∈ [k] := {1, . . . , k} and obtain a
partition into V 1

i , V 2
i , and the sparse set V 3

i . For every i ∈ [k], set X1
i = V 1

i

and X2
i = V 2

i ∪ V 3
i . Notice there are 2k sets of the form

k⋂
`=1

Xj`
` , where

j` ∈ {1, 2} for every `. Since V 1
i , V 2

i and V 3
i is a partition of V (G) for every

i, it is clear that these sets are pairwise disjoint and form a partition of V (G).



5

The graph G has N = (1 + ε)k2kn vertices, therefore, there is a choice

of j` ∈ {1, 2}, ` = 1, 2, . . . , k, such that the size of the set X =
k⋂

`=1

Xj`
` is at

least N/2k = (1 + ε)kn > kn.

For every i, if there is and edge e of colour i in X, then it must be
contained in V 3

i (by (A) and (B)). Hence, it is contained in an odd component
(by (C)). Since there is no monochromatic matching of (n+ 1)/2 edges in a
non-bipartite component, X contains no cycles longer than n in colour i, so,
by Theorem 3, there are at most n(|X| − 1)/2 edges of colour i with both
endpoints in X. Hence,

e(G[X]) ≤ kn(|X| − 1)/2. (2)

On the other hand, from (1), we have

e(G[X]) ≥
(
|X|
2

)
− δ
(
N

2

)
. (3)

Comparing (2) and (3) yields

|X| ≤ kn+ δ
N(N − 1)

|X| − 1
.

Using assumptions ε < 1, δ = ε/22k+4, N ≤ k2k+1, and |X| > kn, we have
that

δ
N(N − 1)

|X| − 1
≤ 2δ

N2

|X|
≤ 2δ

(k2k+1)2

kn
≤ εkn

2
.

Thus,

(1 + ε)kn ≤ |X| ≤ kn+
εkn

2
,

which is a contradiction.

Remark 7. The methods of Figaj and  Luczak and the proof above give a
slightly stronger result than Theorem 1.

Given a natural number k ≥ 4 and an ε > 0, there exist a δ > 0 and an n0

with the following property. Suppose that n > n0 is odd, N ≥ (1 + ε)k2kn,
and G is a graph with v(G) ≥ N and e(G) ≥ (1 − δ)

(
v(G)
2

)
. Then in any

k-colouring of the edges of G, there exists a monochromatic cycle Cn.

These types of theorems are not much more difficult than the ones on the
colourings of the complete graphs, however, these are the forms we use in
our applications.
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4. Even cycles

In the proof of Theorem 2 we shall use another case of the lemma of Figaj
and  Luczak (Lemma 3 in [6]).

Lemma 8. Let a real number c > 0 be given. If for every ε > 0 there exist
a δ > 0 and an n0 such that for every even n > n0 and any graph G with
v(G) > (1 + ε)cn and e(G) ≥ (1− δ)

(
v(G)
2

)
, any k-edge-colouring of G has a

monochromatic component containing a matching of n/2 edges, then

Rk(Cn) ≤ (c+ o(1))n.

Now we prove Theorem 2.

Proof. For an arbitrary 0 < ε < 1, consider any k-colouring of a graph G
on N > (1 + ε)nk vertices and with at least (1 − ε/3)

(
N
2

)
edges. One of

the colours must have at least 1
k
(1 − ε/3)

(
N
2

)
> 1

2
n(N − 1) + 1 edges, so,

by Theorem 3, this colour contains a cycle of length at least n + 1. This
implies the existence of a matching covering n vertices in a monochromatic
component. Hence, Lemma 8 implies that Rk(Cn) ≤ (k + o(1))n.
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