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Abstract. Sinclair and Jerrum derived a bound on the 
mixing rate of time-reversible Markov chains in terms 
of their conductance. We generalize this result, not as- 
suming time-reversibility and using a weaker notion of 
conductance. We prove an isoperimetric inequality for 
subsets of a convex body. These results are combined 
to simplify an algorithm of Dyer, Frieze and Kannan 
for approximating the volume of a convex body, and 
to improve running time bounds. 

0. Introduction and preliminaries 

Recently Dyer, Frieze and Kannan (1989) de- 
signed a polynomial time randomized algorithm to a p  
proximate the volume of a convex body K in R”. A 
crucial step of the algorithm is to generate a random 
point in a convex body. This is achieved by making 
a random walk on the lattice points inside the body. 
The analysis of the algorithm depends on two factors: 
a theorem of Sinclair and Jerrum (1988) on the mix- 
ing rate of time-reversible Markov chains and on an 
isoperimetric inequality for subsets of a convex body. 

In this paper we improve both of these steps. We 
generalize the theorem of Sinclair and Jerrum (1988). 
In fact, we introduce a new proof technique to handle 
the mixing rate of a Markov chain. This will allow 
us to handle Markov chains in which the “small” sets 
need not have large conductance. As a byproduct, we 
can drop the time-reversibility assumption (this will 
not help us in the current application, however), and 
obtain a sharper bound for the mixing rate depending 
on the starting distribution. 

Dyer, Fkieze and Kannan point out that an im- 
provement in their isoperimetric inequality, in particu- 
lar the removal of the step of approximating the body 
by one with bounded curvature, would result in simpler 
and faster algorithms. We give a fairly simple proof of 
such an improved isoperimetric inequality. 
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Then we sketch how these results can be a p  
plied to modify the algorithm of Dyer, Frieze and 
Kannan. In particular, we improve the running 
time: to approximate the volume of a convex body 
in R” with relative error less than E and probabil- 
ity of error less than 6, their algorithm has to solve 
O(n23(log n ) ‘ ~ - ~  log( I/&) log( 1/6)) convex programs; 
our one needs only O(n16(log n)6 log(n/&) l o g ( n / 6 ) ~ - ~ )  
simple membership tests. While this is still far from 
being practical, there is hope of further improvements. 

Acknowledgements. We are glad to acknowledge 
discussions on the topic of this paper with Ravi Kan- 
nan, Mike Steele, and Doma Szaisz. We are particularly 
greatful to Imre B k h y  for pointing out an error in an 
earlier version of the manuscript. 

Preliminaries. A convez body is a compact and full- 
dimensional convex set in R”. For two convex bodies 
K1 and K2, we consider their Minkowski sum: 

and also the (less standard) notation 

K1- K2 = {Z E R” : K2 + z G Ki}. 

For algorithmic purposes, a standard way to de- 
scribe a convex body K as an input is a well-guaranteed 
weak separation oracle, which means the following: 

Definition (Weak separation oracle). For any y E 
Qfi we may ask the oracle whether y belongs to K 
or not; together with this query, we also include an 
error tolerance 6 > 0. The answer will be “YES” or 
“NO”. The “YES” answer means that the distance of y 
from K is at most 6; the “NO” answer means that the 
distance of y from R” \ K is less than 6. In this case, 
we also require a “proof” of this fact, in the form a 
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hyperplane cTz 5 7 through y which almost separates 
y from K in the sense that 

(If y is near the boundary of K, then either answer is 
legal.) 

In addition, we assume that we know the radius 
r of some ball contained in K (but not necessarily the 
center of the ball) and the radius R of another ball with 
center 0 containing K. (The number of bits needed to 
describe both of these balls is part of the input size.) 

These assumptions about the way convex bodies 
are given are equivalent (up to polynomial time re- 
ductions) with several other natural descriptions; see 
Griitschel, LovLr and Schrijver (1988). Often we have 
better descriptions, e.g. membership in K can be 
tested without error. This is the case e.g. when K 
is given as the solution set of a system of linear in- 
equalities (with rational coefficients). 

For each convex body K, there exists a unique 
ellipsoid E with minimum volume containing it, called 
the L6wner-John ellipsoid of the body (see Grctschel, 
LovLz and Schrijver 1988). An important property of 
the L6wner-John ellipsoid is the following: 

Theorem 0.1. If we shrink the Lo’wner-John ellipsoid 
of a conuez body K from its center by a factor of n, we 
obtain an ellipsoid that i s  contained in K.  

The L6wner-John ellipsoid itself may be difficult 
to compute. However, an ellipsoid E with the follow- 
ing somewhat weaker properties can be computed in 
polynomial time, using a version of the shallow cut el- 
lipsoid method due to Yudin and Nemirovskii (1976); 
cf. GrGtschel, LovLz and Schrijver (1988). We call 
an ellipsoid E a weak Lo’wner-John ellipsoid for K, if 
E contains K and if we shrink E from its center by a 
factor of n3I2, we obtain an ellipsoid that is contained 
in K. 

Theorem 0.2. For every convez body, a weak Lo’urner- 
John ellipsoid can be computed using O(n4 log(R/r) 
operations with numbers with O(n2(1 log RI + Ilogrl) 
digits. 

1 
We remark that if K is given in a more explicit 

manner (e.g., as the solution set of a system of linear 
inequalities or the convex hull of a set of vertices) then 
the factor n3I2 can be improved to 2n. 

1. Rapid mixing of Markov chains 
and random walks on graphs. 

Let M = (Q : t = 0,1,. . .) be a finite Markov 
chain with state set V (IV( 2 2)) and transition prob- 
abilities pi,- ( i , j  E V). Let N = IV(. We shall as- 
sume that the Markov chain is irreducible (i.e., every 
state can be reached from every other) and pii 2 1/2 
(both assumptions are only technical). As well known, 
the distribution of ut tends to a probability distribu- 
tion q E RV over V as t + 00 (q is the left eigen- 
vector of P belonging to the eigenvalue 1). By the 
irreducibility, q ( i )  > 0 for every i .  The Sinclair- 
Jerrum theorem estimates the rate of this convergence 
for time-reversible Markov chains (Markov chains sat- 
isfying pi,q(j) = p,iq(i)) in terms of the “conductance’ 
of the Markov chain. To strengthen their result, we de- 
fine a version of ‘conductance” that disregards small 
sets. Also, we do not need time-reversibility. 
Dehition. (Conductance) Let 0 5 p 5 1/2. The p- 
conductance of the Markov chain is the largest number 
@,, such that for every set S 

C q(i)Pij 2 3, min { q(S) - CC, q(V \ S) - CC } a  

(The left hand side is the probability that if a state 
is drawn from the final distribution, it belongs to S 
and the next state will belong to V \ S.) Note that 
not only the right hand side is symmetric in S and 
V \ S, but so is the right hand side: a simple compu- 
tation (using that q is a left eigenvector) shows that 

The 0-conductance is simply called the conduc- 
tance. 

Obviously, the larger p the larger is the p- 
conductance. Rom the assumption that pii 2 1/2 it 
easily follows that the p-conductance is at most 1/2, 
and if \VI 2 4 then it is strictly smaller. 

Originally, Sinclair and Jerrum used O-conduct- 
ance, which measures a kind of ‘connectivity” of the 
Markov chain. The conductance is 0 iff there are two 
states such that there is no way to get from the first 
to the second. In some cases, there is a small set of 
states isolated (or almost isolated) from the rest, and 
p-conductance is introduced to measure connectivity 
more ‘globally”. 

Let p t ( i )  denote the probability of the event that 
ut = i (i E V). Then pt(i) -+ q ( i )  (t -+ CO), and for 
the difference we have the following bound, which for 
time-reversible chains (and in a slightly weaker form) 
was found by Sinclair and Jerrum (1988). Set qo = 
min{q; : i E V}. 
Theorem 1.1. For an arbitrary starting distribution, 

V, 

i E S  
j € V \ S  

, iES  q(i)pii = C i e v \ s  q( i )p i j -  
l € V \ S  j E S  
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If we only know the p-conductance for some p > 0, 
then the Markov chain may have some states which 
are almoet inaccessible and hence we cannot assert 
anything about the pointwise convergence. But more 
important for our purposes is the convergence rate in 
the 11 metric. To analyse this, we consider for every 
0 5 z 5 1 the ‘moP pt(S) - q(S) as a function of 
q(S). For technical reasons, we introduce the follow- 
ing, slightly different quantity: 

where the maximum is taken over all weights 0 5 wi 5 
1 with Ci wiq( i )  = z. Note that h(z) is an upper 
bound on the error we are interested in: if q(S) = z 
then pt(S) - q(S) occurs in the maximum when w is 
the incidence vector of S .  

The following alternative definition of h (z )  gives 
a certain converse to this observation. Let us order the 
elements V = { V I , .  . . , UN} so that 

Pt 2 ... 2 - Pt(U1) 2 P t ( 4  
Q(V1)  d U 2 )  q ( u N )  ’ 

and let Xk = q(ui ) .  Find the index k such that 
Xk-1 5 Z < Xk. Then 

k- 1 

The proof of the equivalence of the two definitions is 
left to the reader. 

It follows that h(z) is a concave piecewise linear 
function on the interval [0,1]. ’hivially 0 5 h(z )  5 1 
for all t and z and h ( 0 )  = h(l) = 0. Note that 
max, &(z) is attained at  one of the Xi ,  and it is exactly 
half of the 11-distance of pt and q. 

To motivate the generalbation of Theorem 1.1 to 
the case when only information on 9, (but not on 
90) is available, note that we cannot expect to be able 
to say anything about h(z) if z 5 p or z 2 1 - p 
(the Markov chain may have a set of states of measure 
p isolated from the rest, having too high or too low 
probability), and hence we shall restrict our attention 
to the interval p 5 z 5 1 - p. Let t& be the linear 
interpolation function 

and C, the constant 

(it is easy to see that the maximum exists). Then for 
the initial distribution and for every p 5 z 5 1 - p, we 
have the inequality 

b ( z )  I t,(z) + c . m i n { f i ,  J-1. 
The following is our main theorem on the mixing rate 
of Markov chains: 

Theorem 1.2. For every p 5 z I 1 - p and t 10, 

To derive Theorem 1.1, observe that if p = 0 then 
the worst initial distribution is concentrated on a single 
node, and we have L G 0 and C I 116.  In general, 
we want to choose p appropriately. The best choice of 
p depends on a trade-off between the first and second 
terms. To make G(z) small, we have to choose a small 
p. We can make the second term small by choosing a 
sufficiently large t; but to get a fast convergence, we 
want 9, large, and for this we want to choose a large 
P. 

The following is a somewhat simpler corollary of 
the theorem, which is valid for all subsets: 

Corollary 1.3. Let H ( p )  = max{ho(p), ho(1- p ) } .  
Then for every S V and every t 2 0, 

The proof of Theorem 1.2 is by induction on t, 
using the following lemma, which strengthens the fact 
that h(z)  5 h-l(z) for all z. 

Lemma 1.4. Lett  2 1. If p 5 2 5 112, then 

h (  t .) - <;( - h-l(z-2(z-lc)9,)+h-~(z+2(z-p)9,)). 

ht(z) I # t - l ( Z  - w-  2 - P)%) 

+ ht - l (Z  + 2(1- z - p)O,)).  

If 112 5 z I 1 - p, then 

Proof. We prove the first inequality; the second is 
analogous. Let the ordering V = {VI,.  . . ,UN} and 
the numbers X i  be defined as after the definition of 
h(z). By the concavity of h, it suffices to prove the 
inequality for z = Xk. Then 

k 

ht(z) = C(Pt(.i) - q ( u j ) ) -  
j=l 



Let ui = Cjlkpij (where pij is an abbreviation of 
PUiUj). Clearly 

and 
0 5 % 5 1 - pi; 5 1/2 (i > k ) .  

Recall that q is a left eigenvector of the matrix (pij), 
i.e., ELl q(vi)pij = q(vj); furthermore, 

Moreover, 0 5 5 1 and 

N N 

i 5 k  i=l i l k  

Since, by definition, h+1(z) is the maximum of 

i=l 

subject to 0 I y; 5 1 and cEl q(v;)yi = z, this shows 
that h,(z) _< h,-l(z). To get the stronger inequality 
in the lemma, consider the following numbers: 

and 

It remains to estimate z - z' = z" - z: 

by the definition of 9,. So 2' 5 z - 2(z - p)9,  and 
similarly, z" 2 z + 2(2 - p)GP. The lemma follows by 
the concavity of h-1. I 

Let G = ( V , E )  be a graph on N vertices. The 
random walk on G is defined as follows. Let d be at 
least twice the maximum degree of G. Start at a ran- 
dom node (drawn from some distribution). At each 
step, if we are at a node with degree r, then we move 
to each neighbor with probability l /d  and stay with 
probability (d - r)/d. Let be the random node we 
are at after t steps. Clearly, (ut : t = O,1 , .  . .) is a sym- 
metric Markov chain. It follows from the basic theory 
of Markov chains that if G is connected, then the dis- 
tribution of Q tends to a uniform distribution over V 
as t -+ 00. (Here we need that d is larger than the 
minimum degree of G; otherwise, this would not hold 
for d-regular bipartite graphs. The assumption that d 
is at least twice the maximum degree is technical.) 

Let m be a natural number. The m-conductancc 
of the graph G is defined as the p-conductance of the 
random walk on G, where p = m/lVl. This can be 
cast in graph-theoretical terms as follows. For S C V, 
we denote by f ( S )  the total number of edges joining 
S to its complement V \ S. The mconductance is the 

349 



minimum of f ( S ) / ( d (  IS1 - m))  over all non-empty sets 
S V with m < IS[ < N/2. 

The conductance measures if there is a bottleneck 
in the graph: whether we can delete a small set of edges 
and disconnect the graph into large parts. It is strongly 
connected to the second largest eigenvalue of the graph 
(see Alon and Milman (1985), Alon (1986), Dodsiuk 
and Kendall (1986)). Graphs with very good con- 
ductance properties are the -called expander graphs. 
These are those graphs having conductance larger than 
a constant c > 1; we shall need only that the conduc- 
tance be a t  least p(n) - ' ,  for some polynomial p. 

In terms of random walks on graphs, we can for- 
mulate the following consequence of theorem 1.2: 

Corollary 1.5. Let (.t : t = 0,  1,. . .) be a random 
walk on a graph G = (V, E) with N nodes. Assume 
that for every set H V with at most m elements we 
have 

/Prob(uo E H )  - 5 c .  N 
Let am denote the m-conductance of G.  Then for ev- 
ery S V we have 

We shall apply this corollary in a situation when 
the starting distribution is reasonably spread out so 
that choosing p sufficiently small, c will be small. 

2. An isoperimetric inequality 

Dyer, Riese and Kannan conjectured that an in- 
equality of the following type must hold. 
Theorem 2.1. Let K be a convez set i n  R" with 
diameter d .  Assume that a surface with (n  - 1)- 
dimensional measure f splits K into two sets K* and 
K**. Then 

min{vol(K*),vol(K**)} < f d .  

We in fact prove a slightly stronger result that is 
easier to  state since it avoids the difficulties associated 
with the notion of ( n  - 1)-dimensional measure. 

Theorem 2.2. Let K be a convez set i n  R" with di- 
ameter d .  Let K' U B U K" be a decomposition of K 
into three closed parts such that the distance of K' and 
K" i s  at least t .  Then 

min{vol(K'), vol(K")} 5 -vol(B). d 
t 

To get theorem 2.1, let B be the closed ( t / 2 ) -  
neighborhood of K* n K**. We use that 

vol(B) 5 f t  + o ( t ) .  

Remove the interior of B from K* and K**, apply 
theorem 2.2, and let t + 0: theorem 2.1 follows. 

Proof of Theorem 2.2. (sketch). Let E be the 
Lijwner-John ellipsoid of K. First, we remark that if K 
is "needle-like' in the sense that - for an c > 0 which 
later will tend to  0 - all but a t  most one of the axes of E 
are shorter than et, then it is easy to  obtain a slightly 
weaker inequality. Consider the projection of K on the 
longest axis of E, and let a1 and 43 be the endpoints 
of this projection. Let r = la2 - 011, e = (a2 - a l ) / r ,  
and let H, be the hyperplane through a1 + se orthog- 
onal to this axis. Let f ( s )  be the (n - 1)-dimensional 
volume of H, n K. By the Brun-Minkowski Theorem 
(see e.g. Bonnesen and Fenchel(1934)), this function is 
unimodal in the interval 0 5 3 5 r, i.e., it is increasing 
for some (a1,a3) and decreasing for (as, 0 2 ) .  

Assume that a1 E K' and a2 E K". Assume 
that (moving from a1 toward 0 2 )  u1 is the last s for 
which H, n K' # 0 and u2 is the first one for which 
H ,  n K" # 0. Then u2 - u1 2 (1 - 2e)t. By symmetry 
we may assume that f (u1)  5 f ( u 2 ) .  Hence, by the 
unimodularity, f (3) 5 f (u1)  for s E [0, u l ] .  Therefore 

vol(K') I f (u1) . r- 

Similarly, 

d ( B )  2 f (u1) . (1 - 2 ~ ) t ,  

implying 
vol(K') < vo1( B). 

This proves the "needle-like" case (with the E error). 
We prove the general case by way of contradic- 

tion. By the so-called "Ham-Sandwich" Theorem, 
there exists a hyperplane that is orthogonal to the 
plane spanned by the two largest axes of E and cuts 
both K' and K" into two parts with equal volume. (If 
n = 2,  then the orthogonality condition is vacuous.) 
If K violates the theorem, then a t  least one half of it 
(with K', K" and B restricted accordingly) also vio- 
lates it. 

What remains to be seen is that repeating this 
procedure, the second largest axes of the Lijwner-John 
ellipsoids of the bodies tend to 0. Suppose not, then 
we can find a series of bodies K' 3 K 2  3 ... such 
that Km+' arises from K" by a series of bisectings as 
above and the second largest axis of their L6wner-John 
ellipsoids remains larger than E .  We may assume that 
the planes of the two largest axes of these ellipsoids 
converge to a plane II. 

Let K," be the projection of K" on II. Then by 
the choice of ll and by theorem 0.1, K," contains a disk 
with radius E/n. Below we shall derive a contradiction 
by showing that the area of K," tends to 0. 

(1 - 2 E ) t  



First of all, the assertion of theorem 2.2 is obvi- 
ous if vol(B) 1 ivol(K). So assume that vol(B) < 
ivol(K) and the same holds for the corresponding 
parts after each bieection. One can relatively easily 
show that if a hyperplane H orthogonal to Il (i.e., or- 
thogonal to some line in ll) cuts K" into two parts 
with volume 1 ivol(K) each, then it cuts KP into 
two parts with area at least (1/9n2)th of the area of 
Ki'' (e.g. because it follows that the width of Km or- 
thogonal to H on both sides of H is at least (1/3n)th 
of its total width; then the same holds for K,", which 
in turn implies that at least (1/9na)th of the total area 
of KY is on each side of H). 

Since for large enough m, the hyperplane used 
to cut K' n K" and K" n Km into equal pieces is 
almost orthogonal to H, it follows that we have at 
least (l/lOna)th of the area of K," on both sides of H. 
Hence the area of KY+' is at most 1 - 1/10n2 times 
the area of KF. Hence this area tends to 0 with m, 
which is a contradiction. I 

3. The conductance of lattice graphs 

We can use the isoperimetric inequality in the pre- 
vious section to estimate the conductance of lattice 
graphs. 

Recall that a lattice point means a point in R" 
with integral coefficients. Let cube mean a unit cube 
whose center is a lattice point and whose edges are 
parallel to the axes. 

Let K be a convex body in R". We are inter- 
ested in lattice points in K; however, we have only 
a weak separation oracle, and we may not be able to 
tell exactly which lattice points belong to K. There- 
fore we shall carry out our arguments for a set V of 
lattice points such that the centers of cubes contained 
in K belong to V along with some further centers of 
cubes intersecting K. The set of lattice points declared 
as members of K by a weak separation oracle, called 
with error tolerance 1/2, will certainly have this prop 
erty. Define a graph G on V by connecting two nodes 
(lattice points) if and only if they have distance 1. Let 
us call G a weak lattice graph associated with K. It has 
(typically) exponentially many nodes (about vol( K)), 
but it has maximum degree 2n. G need not be con- 
nected; but "typically" it has a giant component H 
containing all lattice points sufficiently deep inside K. 

To be able to apply the Sinclair-Jerrum theorem, 
we need an estimate on the conductance of G. Unfor- 
tunately, we cannot claim that the &conductance of 
this graph is good, but there is a sufficiently small m 
for which the m-conductance is sufficiently large. 

Theorem 3.1. Assume that the conuez body K R" 
contains a ball with radius r and is contained in a ball 
with radius R. Let G = (VI E) be a weak lattice graph 
associated with K and m 2 4n3/2vol(K)/r. Then the 
m-Conductance of G is at least 1/(4Rn). 

Proof. Let S be any subset of V with m 5 IS1 5 
(V(/2, and, as before, let f(S) denote the number of 
edges in the lattice graph G connecting S to V \ S. 
Let U ( S )  and U(V \S) denote the union of cubes with 
center in S and V \ S, respectively. Unfortunately, the 
sets U ( S )  and U(V \ S) do not cover K; but they do 
cover the convex body K -9, to which we shall be able 
to apply our isoperimetric inequality. So consider the 
sets HI = (K-Q)nU(S) and Hz = (K-Q)nU(V\S). 
Let o be the (n- 1)-dimensional measure of the surface 
H1 n Ha. By our theorem 2.1, 

min{vol(H1),vol(H2)} 5 2Ra 5 2Rf(S). 

We expect vol(H1) to be close to IS1 and vol(H2) to be 
close to IV \ SI. This is not true in general, since U ( S )  
may consist of cubes meeting K - Q only in a very tiny 
set. However, a simple geometric argument omitted 
here shows that the number of such cubes is at most 
4n3/2vol(K)/r 5 m, and hence vol(H1) 2 IS1 - m. 
Similarly, vol(H2) 2 IV \ SI - m 2 IS1 - m. Hence 

1 

4. The  volume algorithm 

We use basically the same algorithm as Dyer, 
fiieze and Kannan (1989). However, the results in 
the previous sections and other observations will en- 
able us to simplify the arguments and improve running 
times. In particular, we do not have to make the body 
"smooth". 

So we describe a randomied algorithm that, given 
a convex body K in R", (by a weak separation oracle, 
together with two positive numbers r and R such that 
K is guaranteed to contain a ball with radius r and is 
contained in the ball with radius R about the origin), 
a 6 > 0 and an E > 0, computes a number 5 such that 
with probability at least 1 - 6, 

We may assume that e, 6 < 1/10. The algorithm will 
be polynomial in n, 1/e, log(1/6), I log RI and I log T I .  
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(a) Set 

We denote by B the unit ball and by Q, the cube 
with unit edges parallel to the axes, with center at 
the origin. 

(b) To avoid the bodies of extremely elongated 
forms, apply a linear transformation to K ,  which 
makes it well rounded: we may assume that we have 

JIB K 5 QB. 

This is achieved by constructing a weak Lijwner-John 
ellipsoid (Theorem 0.2), and then applying a linear 
transformation that maps this onto the ball 9B. 

(c) For i = 0,1, .  . . , k,  define the convex body K; 
as the intersection of K with the ball (1 + (l/n))'JIB. 
For i = 0, we get the ball JIB, while for i = k we get K .  
This way we succeded in joining the ball to the body 
K with unknown volume by an increasing sequence of 
convex bodies "fairly smoothly" : 

(d) Consider the lattice of all integral points. Also 
consider a cube with edge-length 1 and edges parallel 
to the axes about each integral point. When we say 
"cube", we mean one of these. Let V denote the set of 
all integral points for which the weak separation ora- 
cle, called with error bound 1/2, concludes that they 
are contained in K (this is essentially Z" n K, except 
possibly for some lattice points near the boundary of 
K). For i = 0, 1, ..., k, let V; = V n (1 + (l/n))'$B. 

(e) Generate a random point U in JIB from a 
uniform distribution. (This can be done e.g. as fol- 
lows. Let (I,. . . , (,, be independent random vari- 
ables from a standardized normal distribution, and 
let q be uniformly distributed in [0,1]. Let = ql/n(;/de+...+c, then U = (PI, . . . ,pn)  is uni- 
formly distributed over E'. 

Round U to the nearest integral point to get WO. If 
WO happens to be outside JIB, return 0 as the volume 
of K (the probability of this to happen is less than 

(f) We start from WO and take a random walk on 
the integral points as follows. At the j t h  step, where 

6 / ( 4 7 ) ) -  

(i - 1)t 5 j < i t ,  we are at an integral point uj in K. 
Toss a coin and if it is head, stay at  uj (this is only 
a technical detail, needed to be able to apply theorem 
1.2). Else, select one of the 2n coordinate directions at 
random, and consider the next integral point in that 
direction. If this integral point belongs to Vi, then 
move to it; else, stay at U,. After i t  steps, we are 
allowed to step on any integral point in &+I. The 
point wi = wit will be almost uniformly distributed 
over V; (see below); besides providing a random point 
in V;, wi also provides a good starting point for the 
next phase, when we walk in %+I, etc. The procedure 
terminates after kt steps, i.e., when wk is obtained. 

(g) Repeat (e-f) r times, called r u m  In each run, 
check for 1 5 i I k whether or not w; belongs to K-1. 

Let bi denote the number of runs in which we have 
w; E K-1. The random value ai = r/b; will estimate 
lKl/1~-11 (if bi = 0, then return 0 as the volume of 
K; the probability of this to happen will be much less 
than 6 / ( 4 k ) ) .  

(h) Estimate vol(K) = vol(&) by 

We owe some explanation here: why do we use 
this "concatenation" of Markov processes, instead of 
ordinary Markov processes? We could set out for each 
i from a fixed point and follow the procedure of Dyer, 
Frieze and Kannan; however, starting from the wrong 
point we would get trapped near the border with too 
large probability. Most likely, this does not happen 
when starting from a point deep inside the body, but 
technically it is easier to handle the case when we start 
from a random point in JIB and generate a nearly uni- 
form distribution on Vi recursively. 

5. Analysis of the algorithm 

To estimate the error of our algorithm we shall use 

Therefore the error of our estimate < comes from 
three sources: 
(El) vol(K) is only roughly equal to IVkI, and vol($B) 
is only approximately IVol. 
(E2) The integral point w; generated in step (f) is not 
really uniformly distributed over K. 
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(E3) We apply a Monte-Carlo calculation in (8); this 
has a standard deviation. 

Of these, (El) is easy to treat: it follows by ele- 
mantary geometric considerations that 

exp(-c/8)lvil I vol(Ki) I exp(c/8)IKl. 

Eetimating error (E2) is more difficult, partly be- 
cause the whole process ( v i  : j = O , l ,  ...) is not a 
Markov chain; but in the interval (i - 1)t 5 j < it it is 
one, and we can apply our previous results. 

Let p, be the probability distribution of U,, and 
let qi = pit(K-1). Let mi = [4n3//"vo1(Ki)/J,l and let 
Hi denote the maximum of Ip(i-l)t(T) - ITl/lKl( over 
all sets T C vi with IT1 5 mi. 

By Theorem 3.2, the mi-conductance of the lattice 
graph on vi is at least 1/(4nQ), and so by Corollary 
1.5 we obtain that for every S C Vi, 

Here the second term is less than c/(16k2) by the 
choice of t. Further, using the crude estimate that 
v, is contained in a cube of sise 2g, we get that 

" C  =(:) 5 s '  

if n 2 3 (for n = 2 the argument should be slightly 
modified). The first term in (3) can be estimated by 
induction on a .  An easy argument shows that 161 < 
4lK-11 holds for all 15 i 5 k. Using this, we have 

ml 4n3//" e <4-<-- -- 
vol(K1) J, 32k2' 

since vo is uniformly distributed over VO. Now (3) gives 
that (with the set T C vi, IT1 5 attaining the 
maximum in the definition of Hi)  

8n3I2 
J, 

< Hi-1 + - = Hi-1 + d. 
16k2 

Hence by induction, 

Applying (3) again, we get that 

Finally, we consider error (E3). For each k e d  t ,  

we independently repeat the experiment of generating 
a random integral point wi T times; By the law of large 
numbers (Chernoff's inequality), we derive that with 
probability at least 1 - 6/(2k), 

With probability at least 1 - 6/2, this holds simulta- 
neously for all i .  

To sum up, we have with probability at least 1 - 6 
that the value of < is not 0 and for every 1 5 i I k, 

If this holds, then 

vol(K)(l - &) < < < vol(K)(l + €). 

Hence with probability 1 - 6, the number computed by 
our algorithm does indeed estimate the volume of K 
with relative error less than e. 

The running time of the algorithm consists of the 
following. 

(i) The time needed to "round" the body in step 
(b). This is achieved in polynomial time using the 
"shallow cut" version of the ellipsoid method. This 
takes O(n4 log(R/r)) operations with numbers with 
O(n'(1 logR(+(logrl)) digits; fordetailssee Griitschel, 
LovaSs and Schrijver (1988). The time needed for this 
phase is substantial but still negligible compared with 
the rest, at least aa long as R/r is not extremely large. 

This takes k t ~  moves, 
where each move takes the updating of one coordi- 
nate one test of membership in K (which we count 
as one step), and one test in the appropriate ball 
(which takes one arithmetic operation if we main- 
tain the squared distance of the random walking 
point from the origin). So this takes O(kt7) = 
O(n16(log n)6 log(n/t) log(n/6)c-') arithmetic opera- 
tions with numbers of size O(1ogn + Jlogel+ IlogSl). 

(iii) The cost of other operations (computing ai 

and < etc) is negligible compared with (ii). 

(a) The walking time. 
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6. Concluding remarks. 

We have formulated a simplest version of the algG 
rithm to show most directly the main ideas (the results 
in sections 1 and 2). Several methods present them- 
selves to  improve the rather inattractive bound on the 
running time obtained above. Here we mention some 
of these without going into the details; unfortunately, 
we have not been able to reduce the running time to 
anything remotely practical. 

1. In phase (a), instead of constructing a weak 
L6wner-John ellipsoid, it would suffice to construct an 
ellipsoid E and an ellipsoid E', obtained from E by 
shrinking from its center by a factor of 4, with the 
following properties: E "almost" contains K in the 
sense that 

vol(K \ E) 5 elvol(K) 

(where E is a sufficiently small number), and E' is 'al- 
most" contained in K in the sense that 

vol(E' \ K) 5 ~ l v o l (  E'). 

Using H. W. Lenstra's "dual" version of the ellip 
soid method (Lenstra 1983), with a randomized testing 
of the above conditions, one can construct such a pair 
with 4 = 2n. This saves a factor of n in the running 
time. It is conceivable that one can construct such a 
pair of ellipsoids with a substantially smaller 4. 

A more promising idea is to make larger steps dur- 
ing the random walk inside the body. We mention two 
such possibilities. 

2. One may generate a vector from an appropriate 
distribution, and try to  add it to the current point. If 
we remain in the body, we move to  the new point; 
else, we stay at  the old point. If the distribution of the 
step is centrally symmetric and sufficiently compact, 
then the resulting Markov chain has uniform limiting 
distribution. One expects that the mixing rate is better 
than for the random walk. We do not know, however, 
what is a good choice for the distribution and how 
to estimate the conductivity of the resulting Markov 
chain. The isoperimetric inequality in section 2 applies 
specifically to the "continuous" random walk. 

Let us modify the random walk on lattice 
points as follows. If we are at a lattice point U 

then we select a coordinate direction, i.e., a vector 
e E {e l , -e l , . . . , en , -e , , }  at  random, and find the 
largest integrals such that u+2se E K. Then we move 
to U + se. It is not difficult to see that this Markov 
chain has uniform limit distribution (note, however, 
that it is not symmetric!). Again, we conjecture that 
this Markov chain has a better mixing rate. 

3. 

Frieze proposed a similar procedure for generating 
a random point in a convex body: he chooses a random 
coordinate direction and then a random lattice point 
on the corresponding chord. Again, this Markov chain 
appears to have a better mixing rate but its analysis 
seems hard. 
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