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ABSTRACT 

We give a randomized algorithm using O(n7 log’ n )  separation calls to approximate the 
volume of a convex body with a fixed relative error. The bound is O(n6 log4 n )  for 
centrally symmetric bodies and for polytopes with a polynomial number of facets, and 
O(n5 log4 n )  for centrally symmetric polytopes with a polynomial number of facets. We 
also give an O(n6 log n )  algorithm to sample a point from the uniform distribution over a 
convex body. Several tools are developed that may be interesting on their own. We extend 
results of Sinclair-Jerrum [43] and the authors [34] on the mixing rate of Markov chains 
from finite to arbitrary Markov chains. We also analyze the mixing rate of various random 
walks on convex bodies, in particular the random walk with steps from the uniform 
distribution over a unit ball. @ 1993 John Wiley & Sons, Inc. 

0. INTRODUCTION 

A. Survey of Results 

Computing the volume of a (high-dimensional) convex body is an ancient, basic, 
but extremely difficult task. In fact, there are negative results in this direction: 
Bfiriny-Furedi [ 5 ] ,  improving a result of Elekes [MI, proved that if the convex 
body is given by a separation oracle (a natural framework that allows the 
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polynomial-time solution of many algorithmic problems), then any algorithm that 
approximates the volume within a factor of no(”) necessarily takes exponential 
time. Dyer-Frieze [15] and Khachiyan [26, 271 showed that the problem of 
computing the volume exactly (deterministically) is # P-hard, even for explicitly 
described polytopes. (A strong improvement of this is due to Brightwell and 
Winkler [9], who proved that the exact determination of the number of linear 
extensions of a poset-which is the volume of a related polytope-is also 
#P-hard .) 

A breakthrough in the opposite direction is due to Dyer, Frieze, and Kannan 
[ 171, who designed a polynomial time randomized algorithm to approximate the 
volume of a convex body K in R”. Their algorithm has two input parameters E, 

6 > 0, and computes a random variable 5 such that with probability at least 1 - 6, 
the volume of K is between (1 - E ) [  and (1 + ~ ) 3 .  Several improvements of the 
original algorithm have been given. The following list describes these improve- 
ments. Our main interest is the dependence of the running time on the dimension 
n ,  and we include a column to indicate this. (The * after the 0 means that we 
suppress factors of log n ,  as well as factors depending on the error bounds E ,  6 
and the “badness” of the original data.) 
Dyer, Frieze, Kannan [17] O*(n”) O(n23 log’ n ~ - ’  log(l/E) log(1/6)) 
Lovisz and Simonovits [34] 0 * ( n I 6 )  O(nI6 log’ neP4 log(n/e) log(n/S)) 
Applegate and Kannan [44] 0*(n1O) O(nL0 log’ ne-’ log’(l/r) log(1/6) 

Lovisz [32] O*(n”)  
Dyer and Frieze [16] 0 * ( n 8 )  O(n8C2 log(n/e) log(n/S)) 
Lovasz and Simonovits (this O*(n7)  O(n7 log’ ne-’ 10g3(l/e) log(1/6)) 

log log( 1 /a )) 

paper) 
It is interesting to give a short survey of those ideas whose various combina- 

tions lead to these improvements. The Dyer-Frieze-Kannan algorithm consists of 
two main phases: the first, preliminary phase makes the body “reasonable round” 
by applying an affine transformation to  the given body K so that the image 
contains the unit ball B and is contained in the concentrical ball with radius n3”; 
this is achieved by a known application of the ellipsoid method (see Grotschel, 
LovPsz and Schrijver [22]). Then a sequence of bodies K O =  B C K ,  C . - -  C 
Kk = K is constructed so that the ratio of the volumes of consecutive bodies is at 
most 2; these ratios are then estimated by a Monte-Carlo method, sampling from 
Ki+, and counting how often Ki is hit. 

The most important ingredient is an algorithm to generate a random point 
from the uniform distribution over a convex body. This is achieved by taking a 
random walk on the lattice points inside the body, and stopping after an 
appropriately large (but polynomial) number of steps. The analysis of the 
algorithm depends on two factors: a theorem of Sinclair and Jerrum [43] on the 
mixing rate of time-reversible Markov chains and on an isomperimetric inequality 
for subsets of a convex body. 

The arguments are complicated by singularities on the surface of the body in 
two ways: first, they mean “comers” that the random walk will reach too slowly, 
and second, they weaken the isoperimetric inequality, whose proof by Dyer, 
Frieze, and Kannan [17] depends on methods from differential geometry. Dyer, 
Frieze, and Kannan get around this difficulty by approximating the body by 
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another convex body with a smooth surface, at the cost of a substantial increase in 
the running time, which amounts to the solution of O*(n23) convex programs, or 
(using ellipsoid-type methods for the solution of these programs), to  0 *(n27)  
membership tests in K. 

Khachiyan-Karzanov [25] and Lovisz-Simonovits [34] proved the isoperimet- 
ric inequality in a best possible form (up to a constant). Reference [34] gives a 
new, more elementary proof method, which facilitates further generalizations. 
Reference [34] also contains a generalization of the Sinclair-Jerrum result by 
allowing small exceptional sets and by using information about the initial dis- 
tribution in estimating the convergence s eed to the uniform distribution. These 
ideas improve the running time to O*(n ) membership tests. 

Applegate and Kannan [4] suggest another way to handle some of the 
difficulties caused by nonsmoothness: consider volume computation as the inte- 
gration of the characteristic function of the body, and approximate this charac- 
teristic function by a smooth function. This requires the extension of the method 
of sampling from a uniform distribution over a convex body to sampling from a 
distribution with a log-concave density function. They show that the random walk 
technique, combined with the so-called “Metropolis rule,” gives a fast sampling 
procedure. The proof involves an extension of the isoperimetric inequality from 
the usual volume (Lebesgue measure) to measures with a log-concave density 
function. 

A further improvement comes from the simple but elegant observation that by 
“sandwiching” the body between two concentrical cubes instead of two concentri- 
cal balls, a ratio of O(n) can be achieved instead of the ratio of O(n3’*). (The 
running time includes the square of this ratio.) They give an O*(n’O) implementa- 
tion of these ideas. 

Dyer and Frieze [16] show that the Applegate-Kannan method can be further 
improved by two further ideas: using the improvement of the Sinclair-Jerrum 
estimate as mentioned above, and by showing that the errors, being almost 
independent, accumulate in a slower rate. They improve the running time to 
O*(n6) membership tests. They also obtain the best possible constant in the 
isoperimetric inequality. 

All the previously mentioned methods are based on random walks on lattice 
points. Lovisz [32] sketches the analysis of a random walk where each step is 
chosen from the uniform distribution over the unit ball centered at the current 
position. Somewhat surprisingly, the analysis depends on the same isoperimetric 
inequality. Replacing the random walk on lattice points by this, but leaving the 
other ingredients of the algorithm in [34] essentially intact, improves the running 
time to ~ ( n ” ) .  

In this article we describe a randomized volume algorithm which requires 
O*(n7)  membership tests. Our algorithm builds on virtually all of the ideas 
mentioned above; yet we feel that the combination is very natural and leads to an 
algorithm which is conceptually quite simple. 

A first observation is that once we replace the volume computation by 
integration, the integrand need not approximate the characteristic function of the 
body: only its integral has to approximate the volume. This enables us to use 
much smoother functions and a large ball as the domain of integration, which 
eliminates most of the errors due to boundary effects. 

Another unexpected but important benefit is that in the first phase, only 
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“approximate sandwiching” is needed: it suffices to achieve by an affine trans- 
formation that 2 /3  of the volume of the unit ball B is contained in K and 2 /3  of 
the volume of K is contained in the “almost circumscribed” ball mB. We show 
that this can be achieved in randomized polynomial time with m = n, and in 
special cases even better (e.g., for centrally symmetric polyhedra, rn = O(log n)). 
Since m2 is a factor in the running time, this leads to substantial improvements: 
O*(n6) for centrally symmetric bodies or for polyhedra with polynomially many 
facets, and O*(n’)  for centrally symmetric polyhedra with polynomially many 
facets. We suspect that the ratio m = n is not optimal even for general convex 
bodies; as far as we can tell, even m = O(log n )  is possible. This could lead to 
substantial improvement in the running time. 

While our volume algorithm is basically simple, we have to do some more 
extensive preparations. One of these consists of extending the Sinclair-Jerrum 
result and its generalizations to Markov chains whose state space is an arbitrary 
measure space (Section 2). These extensions are basically rather straightforward 
from the discrete case, especially having found the right formulation (see Feller 
[20] for treatment of general Markov chains). 

Section 3 introduces log-concave functions and gives the proof of an even more 
general version of the isoperimetric inequality. While the Applegate-Kannan 
form would suffice to prove the error estimates for our main algorithm (with a 
little worse bound), the more general form is more convenient to apply and has 
some corollaries that are interesting also from a geometric point of view. 

Section 4 discusses the issue of generating a random point from a distribution 
with a log-concave density function. While the volume algorithm involves very 
“nice” functions only, we derive general bounds on the mixing rates of various 
random walks on general convex bodies. These bounds depend on isoperimetric 
inequalities; while these inequalities use the basic isoperimetric inequality men- 
tioned above, they may be of interest in their own right. Our sampling algorithm 
is “truly” polynomial, i.e., polynomial in both n and in log(l/E), where E is the 
error bound. 

Section 5 contains the volume algorithm and its analysis. 
To conclude this introduction we have to remark that we do not take the 

shortest route to  obtain an O*(n’) volume algorithm. Substantial parts of our 
preparations aim at gaining factors of log n or log( 1 / E ) ,  or  simply mathematical 
beauty. Thus, we could restrict ourselves to finite Markov chains; s-conductance 
could be left out; the central limit theorem and its treatment in the Hilbert space 
could be replaced by the results of l.c, at the cost of a factor of log n ;  it would 
suffice to use the isoperimetric inequality of Applegate and Kannan instead of the 
results in 2.b, at the cost of a factor of 1 / ~ ;  and we could restrict ourselves to 
stepping in a unit ball in Section 4. 

B. Computational Model 

There is no standard finite encoding of a general convex body; various 
subclasses may be encoded as solution sets of systems of linear inequalities 
(polyhedra), convex hulls of lists of vectors (polytopes), level sets of concave 
functions (e.g., unit balls of norms), etc. A general approach is to consider an 
oracle, i.e., a black box that answers certain queries about the body. The most 
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natural oracle is a membership oracle, which returns, for every query x E R”, the 
answer YES or NO to the question “Is x E K?” This is, however, sometimes too 
strong, sometimes too weak. For algorithmic purposes, the most usual way to 
describe a convex body K as an input is a well-guaranteed weak separation oracle. 
We refer to Grotschel, Lovhsz, and Schrijver [22] for a discussion of the relative 
strengths of these oracles; under rather reasonable technical assumptions, these 
are equivalent. 

Definition (Weak separation oracle). For any y E Q“ and error tolerance 6 > 0 ,  
the oracle returns either YES or NO. The YES answer means that the distance of y 
from K is at most 6 ;  the NO answer means that the distance of y from R“\K is less 
than 6. In this case, it also returns a proof of this fact in the form a hyperplane 
c’x 5 y through y which almost separates y from K in the sense that 

max(c‘x: x E K} I y + S I C [  . 

(So if y is near the boundary of K, then either answer is legal; Icl= 1.) 
In addition, we assume that we know the radius r of some ball contained in K 

(but we do not necessarily know the center of the ball) and the radius R of 
another ball, with center 0 containing K. (In [22] this assumption is phrased as 
“the oracle is well guaranteed.”) The number of bits needed to describe both of 
these balls is part of the input size. Without loss of generality, we may assume 
that this contributes [log RI + llog r( bits to the input size. 

We remark that for the main part of our algorithm a weak membership oracle 
(defined by relaxing the weak separation oracle in the obvious way) suffices. 

Notation and Preliminaries. B denotes the euclidean unit ball, vol(K) is the 
volume (Lebesgue measure) of the set K, and conv(X) denotes the convex hull of 
the set X E  R”. 

We shall repeatedly use the following fact. 

Lemma 0.1. Let H be a halfspace in R” and B ,  a unit ball whose center is at a 
distance t from H. (So we speak of the halfspace not containing the center.) Then 

(a) if t s  l / f i ,  then 

(b) if l > t > l l f i  then 

w 
1 

VOI(B) < VOI(H n B )  < - (1 - t2)(“ + 1) /2  vol(B) . 1 2 (n+1)/2 

1 o m  ( l -  h/Ti 

1. CONDUCTANCE OF MARKOV CHAINS 

A. Markov Schemes and Markov Chains 

We extend the theory of conductance and rapid mixing from the finite case to 
arbitrary Markov chains. See Halmos [23] for fundamentals of measure theory, 
and [34] for the discrete versions of some of these results. 
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Let (R, d) be a a-algebra. For every u E a, let P, be a probability measure 
on R, and assume that for every A E d, the value P,(A) is measurable as a 
function of u.  We call the triple A = (a, d, { P,: u E R}) a Markov scheme. A 
Markov scheme, together with an initial distribution Q, on R, defines a Markov 
chain, i.e., a sequence of random variables w,, w , ,  w 2 , .  . . with values from R 
such that w, is chosen from distribution Q, and w , + ,  is chosen from distribution 
P ,  (independently of the value of w,, . . . , w , - , ) .  So we have 

Prob(w,+, E A I w, = u l ,  . . . , w, = u l )  = Prob(w,+l E A I w ,  = u l )  = PJA) 

foreveryu, ,  . . . ,  u i E a a n d A E d .  
Let (R, d, p )  be a measure space and let f :  R X R- R 

function (with resect to the product measure p X p )  such that 

an integrable 

1 for all u E Q .  Then fdefines a Markov scheme by 

If such a function f exists, then we call it the transition function of the Markov 
scheme (with respect to the measure p) .  The transition function is symmetric if 
f ( x ,  y )  = f( y ,  x). We could describe (somewhat artificially) our volume algorithm 
using Markov chains having transition functions, but some related Markov 
chains-which could conceivably replace them-do  not have transition functions. 
We give the proofs for the general case, but the reader may find them easier to 
follow in terms of transition functions. 

A probability measure Q on (0, d) is a stationary distribution for the Markov 
scheme if choosing w, from this distribution, w ,  will have the same distribution 
(then, of course, so does every w i ) .  This is equivalent to saying that for all A E d, 

1, P,(A) dQ(u) = Q(A) . 

From now on we shall fix one stationary distribution Q. (We are not concerned 
here with the existence of such a distribution; this will exist and in fact be 
explicitly given in the applications we consider. In all cases relevant for us, the 
uniqueness of the stationary distribution will be implied, e.g., by Theorem 1.4, 
below .) 

In the theory of finite Markov chains, matrices and their eigenvalues play a 
central role. To extend some results from finite to general Markov chains, we 
consider the Hilbert space L z  = LZ(R, d, Q) with the inner product 

Every Markov scheme defines a positive linear operator M :  L Z +  L z  by 
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So (Mf)(u) is the expected value  off(^;+^), given that wi = u. More generally, 
( M k f ) ( u )  is the expected value  off(^;+^), given that wi = u. 

Consider a Markov chain where the first element (and hence the other 
elements as well) are from the stationary distribution. In terms of the Hilbert 
space, we have for any function f E L2, 

A Markov scheme is time-reversible if (roughly speaking) for any two sets 
A,  B E d, it steps from A to B as often as from B to A. Formally, this means that 

fB P U W  d Q ( 4  = fA Pu(B) d Q b )  . (1-1) 

It is easy to see that is suffices to require this relation for disjoint sets A and B. 
Condition (1.1) can be written as 

Another equivalent formulation is that the operator M is self-adjoint. If the 
Markov scheme can be described by a transition function f with respect to Q, then 
time-reversibility is equivalent to the symmetry of the transition function. 

If the Markov scheme is time-reversible, then for any function f E L2, applying 
(1.2) with F(u, u )  = f ( u ) ,  we get 

(f,f) k(f3 . f )  = ~ I , f n ( f ( x ) ~ f ( y ) ) 2 d P y ( X ) d Q ( y ) ~ O r  (1.3) 

Consequently, 

Equality holds here for a constant function. Thus the spectral radius of M is 
exactly 1. 

B. Laziness of Markov Chains 

We call a Markov scheme lazy if P,(u) 2 1 /2 at each node. This condition is 
technical; its main advantage is that (in the time-reversible case) it implies that 
the operator M associated with the Markov scheme is positive semidefinite. In the 
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discrete case this follows from the fact that if the diagonal elements of a 
symmetric matrix majorize the sum of absolute values of the rest of their row, 
then the matrix is positive semidefinite. To see the positive definiteness in 
general, observe that 2M - I is also a self-adjoint operator associated with a 
Markov scheme, and hence for any function f E Lz,  by (1.4), 

Every Markov scheme can be made lazy by simply tossing a coin at each step and 
making a move only if it is tails. So (at the cost of a little slow-down) we can 
assume that M is positive semidefinite, which will be very convenient. One nice 
consequence of laziness is that if the chain is time-reversible and we generate a 
Markov chain from the stationary distribution, then the elements of the chain are 
positively correlated in the following sense: 

Lemma 1.1. Let w , ,  w 2 ,  . . . be a time-reversible Markov chain generated by a 
lazy Markov scheme A with w,, from the stationary distribution Q .  Then for any 
function f E L ’, 

E ( f ( w ; ) f ( w j ) )  2 E ( f ( w i ) ) E ( f ( w j ) )  = ~ ( f ( w 0 ) ) ’  

Proof. 
of stationary distribution, we have 

Let j > i .  Since all the wi have the same distribution Q by the definition 

since M is positive semidefinite. Applying this inequality to the function f -  
E( f (wo) ) ,  we obtain the lemma. 

C. Conductance and Rapid Mixing 

We define the ergodicflow a: d-[0,1] of the Markov scheme by 

@ ( A )  = \A P J f W  d Q ( u ) .  

This value is the probability of the event that in choosing wo from the stationary 
distribution we have w,, E A but w ,  $ A .  From the assumption that Q is 
stationary, we get 
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Note that this computation also works backward: if Q’ is any probability 
distribution on R such that the set-function 

@’(A) = I P,(R\A) dQ’(u) 
A 

is invariant under complementation, then Q ’ is stationary. This observation 
provides a sometimes convenient way to verify that a given distribution is 
stationary. 

The conductance of the Markov scheme is 

for every 0 I s 5 1, the s-conductance is defined by 

We call the value 1 - P,,(u) the local conductance of the Markov scheme at 
element u. If u is an atom (i.e., Q(u)>O), then this is just @(u)lQ(u).  So in this 
case the local conductance is an upper bound on the conductance. More general- 
ly, let 

H, = { u  ER: PJu) > 1 - t }  , 

and let s = Q(H,) .  Then 

As a consequence, if s < 1 /2 then the (s/2)-conductance of the scheme is at most 
2t. 

Let Qk denote the distribution of wk, i.e., let 

Q k ( A )  = Prob(wk E A) 

for A E A?. By definition, we have the recurrence 

Qk(A) = P u ( A )  dQk-i(u) . 

It is well-known (and will also follow from our results below) that if @(A) > 0 
for all A E JQ with Q(A)  > 0, then Qk+ Q in the I ,  distance. Our main point will 
be to give a bound on the rate of convergence. 

To measure the speed of convergence, we consider all measurable functions 

g: R+ [0,1] with g dQ(u) = x , 

and define the distance function of Q and Qk by 
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hk(x)  = SUP g dQk - x = In g[dQk - dQl 
8 

where the supremum is extended over all these functions. (We shall see below 
that this supremum is always attained.) If g(u) is the incidence function of A,  we 
see that hk(x)  2 0. Using that all g I 1 we have hk(x)  I 1 - x .  In the case of a 
finite Markov scheme with N atoms and with uniform stationary distribution, 
h k ( j / N )  can be obtained by adding up the j largest “errors” Q,(w) - (l /N).  

It follows easily from the definition that hk(x)  is a concave function of x.  
This somewhat artificial definition will be clearer from the following lemma. 

Lemma 1.2. ( i )  For every set A E I with Q ( A )  = x ,  we have 

( i i )  If Q is atom-free, then 

hk(X) = SUP [Qk(A) - Q(A)I . 
A € d  

Q(A)=x 

(iii) For every 0 < x < 1 ,  there exists a function g that is 0 - 1 valued except 
possibly on a Q-atom, attaining the supremum in the definition of hk(x) .  

Proof. The upper bound in (i) is immediate if we notice that the incidence 
function of A is one of the functions g considered in the definition of hk( Q(A)) .  
The lower bound follows by complementation. Assertion (ii) follows from 
assertion (iii) immediately, so it suffices to prove (iii). 

Let g :  fl- [0,1] be any measurable function with g d Q  = x .  Let U be a 
measurable subset of fl with Q(U)=O and Q k ( U )  maximum (such a subset 
clearly exists). Let Q’ and Q; be the restriction of Q and Qk to fl\U. Then Q; is 
absolutely continuous with respect to Q‘, so the Radon-Nikodym derivative 
c$ = dQ;/dQ’ of Q; with respect to Q’ exists. 

Let, f o r t r O , A , = U U { u E f l \ U : ~ ( u ) r r }  a n d s = i n f { t : Q ( A , ) s x } .  Note 
that A ,  = (I { A r :  t < s } .  Let A’ = u { A r :  t > s } ,  then A’C A,  and +(u) = s for 
every u E A,\A’. Moreover, Q(A’)  I x I Q(A,).  Choose a measurable set B with 
A’ A, ,  Q ( B )  9 x ,  and Q ( B )  maximum (such a set clearly exists). 

In 

B 
Assume first that Q ( B )  = x. Then 
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So the incidence function of B achieves the supremum in the definition of hk(x) .  
Second, assume that Q ( B )  < x. Then for every W C A,\B, we have either 

Q( W) = 0 or Q ( W )  > x - Q ( B ) .  Hence the measure Q ,  restricted to A,\B, is 
concentrated on atoms; let V be any of these. So Q ( V )  > x  - Q ( B ) .  Let 
B ’ = B U V .  

Now we have, as above, 

Let f be the incidence function of B and f’, the incidence function of B’. Let 
A = (x - Q ( B ) ) / Q ( V ) .  Then 

In [(l - A)f + A f ’ ]  dQ = Q ( B )  + AQ(V) = x , 

and 

So the function (1 - A)f + Af’ achieves the supremum in the definition of hk(x ) .  

Below we shall call x an extreme point of a convex (concave) function, if it is 
not on (in case of a discontinuous function above (below)) a chord of the 
function. 

It follows from this lemma that the extreme points of the concave function 
hk(x)  are those where the supremum is attained by the incidence function of a 
measurable set. It also follows that 

is half of the /,-distance of Q and Q,. The Markov chain is called rapidly mixing 
if this distance is O(Ok), where (1 - O ) - ’  is polynomial in some natural input size. 

The main lemma we need is a natural extension of Lemma 1.4 of Lovasz and 
Simonovits [34]: 

Lemma 1.3. Let (a, d, Q )  be atom-free, s L 0,  and k 2 1. If s 5 x 5 112, then 

1 
2 h & ( X )  5 - ( h k - , ( X  - 2@JX - s)) + h,- , (x  + 2@,,(x - s))) . 
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If 1 / 2 s x ~ l - s ,  then 

LOVASZ AND SIMONOVITS 

1 
2 h, (x )=  - ( h k - 1 ( ~ - 2 @ s ( 1 - x - s ) ) + h , - , ( x + 2 @ s ( 1 - x - s ) ) ) .  

Proof. We prove the first inequality; the second is analogous. By Lemma 1.2(ii), 
there exists a set A with Q(A) = x and hk(x)  = Q,(A) - Q(A). Define, for u E a, 

2P,(A) - 1 ,  if u E A ,  
if u e A ,  

1 i f u E A ,  
dU) = { *;,(A) , if u $A . 

Also set x i  = 

1. Moreover, since Q is stationary, 
gi dQ. Then-by the laziness of the w a l k 4  5 gi 5 1 and 0 5 xi 5 

f n  

xI  + x2  = In ( g ,  + g2) dQ = 2 In P,(A) dQ = 2x . 

Now we have 

so 
1 

1 1 

h k ( x )  = €!,(A) - x = 5 (In g, dQ,-, - xI)  + (In g2 @ , - I  - X Z )  

5 5 hk-I (X1)  + j h, - , (x2 )  . 

Moreover, we have 

x2 - x = 2 P,(A) dQ + Q(A) - x = 2 I P,(A) dQ(u) 2 2aS(x - s) , 
Cl\A 

and so 

x* - x = x - XI 2 2@.,(x - s) . 

Hence, by the concavity of h,- ,, 

The assumption that (a, d, Q) is atom-free cannot be dropped from Lemma 
1.3; this is shown by the example of the lazy random walk on a triangle, which has 
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conductance 1/2, and so the inequality will fail for x = 1 /2  and p = 0 for every 
nonuniform starting distribution. However, we can observe the following facts: 

(a) The inequalities of Lemma 1.3 remain valid for every x such that 

hk(x) = SUP [Qk(A) - Q(A)I 
A€& 

Q W = x  

(b) The inequalities remain valid for every x such that Ix - 1 /21> a ,  where a is 

(c) The following weaker inequalities remain valid: If s + a 5 x I 1 /2, then 
the maximum measure of an atom. 

1 hk(x)  I j (h,-,(x - 2Qs(x - s - a) )  + h,-,(x + 2Qs(x - s - a) ) ) .  

If 1 / 2 1 x  5 1 - s, then 

1 
hk(x)  5 j (h,-,(x - 2Q,(1 - x  - s - a) )  + h,-,(x + 2Qs(1 - x - s - a))) 

[The last two facts follow using part (iii) of Lemma 1.2 instead of part (ii).] 
Combining these facts, we obtain the following slightly weaker inequality valid for 
all Markov chains: 

Lemma 1.3*. 
s 2 0, and assume that a ,  s < 118. If s 5 x 5 1 /2, then 

Let a be the maximum measure of an atom in (a, d, Q ) ,  k 2 1, 

If 1/21x11-s, then 

1 
2 hk(X) 5 - (hk-,(x - Qs(l - x - s)) + h,-,(x + Qs(l - x - s))) . 

The following theorem is a slight extension of Theorem 1.2 of [34]. 

Theorem 1.4. 
s c x s l - s  wehave 

Let 0 I s I 1 12, and assume that c l ,  c2 are chosen so that for every 

h,(x) 5 c, + c2 m i n { m ,  vl - s - x }  . 

Then for every k 2 0 and s 5 x 5 1 - s, we have 

hk(x)  5 c1 + c2 m i n { m ,  m } ( l -  7)k 
Proof. 
k 2 1, let s I x 5 112, and apply Lemma 1.3: 

By induction on k. If k = 0, then the assertion is obvious. Assume that 
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1 
hk(X) 5 j (hk-,(X - 2@,(X - S)) + hk-,(X + 2@,(X - S))) 

~ x - 2 a s ( x - S ) - s  

5c1+c , -1 - -  . ( 
For 1/2 5 x I 1 - s the bound follows similarly. 

Corollary 1.5. Let M = supA Q , ( A ) / Q ( A ) .  Then for every A 

lQk(A) - Q(A)I 5 fi(1- j a’) 

R, 

l k  

Proof. The definition of M implies that for all 0 5 x 5 1, we have h,(x) 5 M x .  
Also trivially h,(x) 5 1 - x .  Hence h,(x) s fl min{f i ,  G}. Thus by 
Theorem 1.4, 

h ( x )  5 fi min { fi, G} ( 1 - i a’) < fi ( 1 - i a’) , 

from where the assertion follows. 
The following Corollary is interesting on its own but will not be used in our 

algorithm. On the other hand, some other versions of these algorithms or proofs 
did use it. 

Corollary 1.6. 
sume that each atom has Q-measure 5 ~ 1 2 .  Then for every A GR, 

Let O < s s 1 / 2  and H,=sup{ lQ , (A) -  Q(A)I: Q ( A ) S s } .  As- 

Remarks. (1) The factor 2 can be discarded if Q is atomfree. We shall need only 
this case, however there are many important cases where the limit distribution is 
discrete, for example the uniform distribution over the grid points of a convex set. 
Still, in the cases that may need such an inequality, the limit probability of each 
atom is negligible compared to s and the inequalities are practically the same as in 
the atomfree cases. (2) If there are atoms of size >s then (1.5) may be violated. 

Proof. Changing the original distribution by an arbitrarily small amount we may 
achieve that the extreme points of h,(x) partition (0 , l )  into subintervals shorter 
than s. It is enough to prove the assertion for this case. If 0 5 x 5 s and x is an 
extreme point, then we have 
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Because of the concavity, for any x we may select an x ’  > x - s > x / 2  which is 
extreme. Now, by the concavity, 

ho(x) 5 (x /xo )ho(x ’ )  5 2 h o ( x f )  5 2H, . 

Similarly, for an extreme point x in (1 - s, l ) ,  we have 

and if this x is not an extreme point, we still have ho(x) I 2H,. Since for fixed x 
and. k increasing, 

is nonincreasing, the above inequalities remain valid for k>O as well. Hence 
(1.5) is trivial for 0 5 x 5 s  and for l - s s x s l .  

Next we show that for every s 5 x 5 1 - s, 

2HS h 0 ( x ) 5 2 H , + - - .  
S 

Let s1 be the largest extreme point IS. By the concavity of ho(x),  

Hence we have for every s 5 x 5 1 that 

Similarly, we have for 0 5 x 5 1 

So by Theorem 1.4, 
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D. A Central Limit Theorem 

We prove a simple Central Limit Theorem for time-reversible Markov chains. It is 
quite possible that this can be extended to all Markov chains by methods similar 
to those in the previous chapter; but currently our proof makes use of time 
reversibility, mainly through Lemma 1.1. 

We need a lemma that may be viewed as a spectral result about the operator 
M. For finite Markov chains, several of the first results establishing the rapid 
mixing property used the spectrum of the matrix M. Some of these techniques 
extend to the infinite case without any difficulty. 

Lemma 1.7. Let At be a time-reversible Markov scheme 
Then for every function f E L 2  with E( f )  = 0, we have 

Proof. 
number r such that Q ( { x :  f ( x ) >  r } ) s  1 /2  and Q ( { x :  I 

We adapt the proof in [43]. We use the identity 

with conductance a. 

(1.3). Choose a real 
f ( x )  < r } )  I 1 /2 .  Let 

g(x)  = max{ f ( x )  - r, O}. Replacing f by -f if necessary, we may assume that 

Let A(t )  = { x  E R: g2(x) > r } .  Then we have 

2 24, Q ( A ( t ) )  dt = 24, In g2(x )  dx = 24,” g1I2 , 

since by the choice of r, Q(A(t) )  5 1 /2  if t 2 0. On the other hand, we have by 
Cauchy-Schwarz, 

In Il Ig2(4 - g2(y) l  dp,.(x) W Y )  

Here the second factor is easily estimated: 
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so 

Hence 

which proves the lemma by (1.3). 

Corollary 1.8. 
Then for every function f E L z  with E( f) = 0, we have 

Let At be a time-reversible Markov scheme with conductance 0. 

Proof. Let M denote the restriction of M to the invariant subspace 
From Lemma 1.7 we get (see [4la]) that Il&ll5 1 - a 2 / 2 ,  and hence 

E( f )  = 0. 

Theorem 1.9. Let At be a time-reversible Markov scheme with stationary dis- 
tribution Q ,  let w l ,  w 2 , .  . . be a Markov chain generated by At with initial 

dktribution Q. Let F E L 2  and 6 = c F(wi) .  Then 
r- 1 

i = O  

Proof. We may assume that E( 8)  = In F dQ = 0. Then we have, by Lemmas 1 . 1  
and 1.7, 

~'(5) = ~ ( 5 ~ )  = C ~ ( ~ ( w i ) ~ ( w j ) )  = Z E(F(wo)F(w~j-i~)) 
Oc i , j sT - I  Oai, j a T -  1 

r- 1 T- 1 

= T ( F , F ) +  C 2 ( T - k ) ( F , M k F ) < 2 T  2 ( F , M k F )  
k = l  k = O  

4T Qi 

5 2 T  5 ( F ,  M k F )  5 2 T  ( 1  - $)k[IF112 = llF1I2. 
k=O k =O 
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E. The Metropolis Filter 

We conclude this section by describing a version of the Metropolis algorithm [37], 
which can be used to modify a given time-reversible Markov scheme so as to 
achieve a given stationary distribution. The use of this method in volume 
computations was initiated by Applegate and Kannan. 

Consider a time-reversible Markov scheme Jcc on the a-algebra (a, a), and let 
F: R-*R be a non-negative measurable function. Assume that the integral 

is finite. Recall that we denote by pF the measure with density function F, i.e., 

for every measurable set S. Clearly Q F  = (1 / F ) p F  is a probability distribution on 

We generate a Markov chain ( w o ,  wl, . . .) of elements of R as follows. Given 
wk, we generate a random element u from the distribution P,,. If F(u) 2 F(wk), 
we let w k + ]  = u.  If F(u) < F ( w k ) ,  then we “flip a biased coin” with heads 
probability F(u) lF(w , ) .  If we see head, we move to  w k + ]  = u.  Else, we let 
wk+l = w k .  Note the simple but very important property of this method that we 
do not use the density function F / F  of the desired limit distribution, but only the 
ratios F( u)  / F( u )  . 

(Q, a). 

The transition probabilities of this new Markov scheme are given by 

where 

is the probability that we had to stay because the coin tossing came out wrong. 
We call this new Markov scheme A I F  the filtering of Jcc by F. 

Lemma 1.10. 
time-reversible with stationary distribution Q F .  

If A is time-reversible, then the Markov scheme A I F  is also 

Proof. 
that for any two disjoint measurable sets A and B ,  we have 

By our remark after the definition of ergodic flow, it suffices to verify 
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Substituting for Pf and QF, this is equivalent to 

or 

1 - 
F A B  F B A  I min{F(u), F(u)} dP,(u) dQ(u) = 1 I min{F(u), F(u)} dP,(u) dQ(u) . 

This equality follows from the assumption that A is time-reversible. a 

Remark. For us, the important property of A / F  will be that QF is stationary. 
This is only true if the original Markov scheme A is time-reversible (the 
time-reversibility of & / F  is a convenient, but not crucial, side benefit). There are 
many other ways to generate a Markov chain with given stationary distribution 
Q F  (from the known Markov chain A) ,  but the Metropolis filter is in a sense 
optimal because it has the largest conductance. 

2. LOG-CONCAVE FUNCTIONS AND ISOPERIMETRIC INEQUALITIES 

A. Log-concave Functions 

We collect some known facts about convex bodies and log-concave functions. 

Definition. 
satisfies, f o r a l l x , y € I W " a n d O < A < l ,  

(Log-concave function.) A function f :  R"+ R, is log-concave if it 

f (  Ax + (1 - A)y) 2 f ( X ) * f (  y)('-*) . 
Equivalently, a (non-negative) function is log-concave if its support K = { x  E 
R": f ( x )  > 0) is convex, and log f is a concave function on K. 

Every non-negative function that is concave over a convex domain is log- 
concave (we define its value to be 0 outside the original domain). In particular, 
the characteristic function of a convex body is log-concave. Log-concave functions 
include many density functions important in statistics, e.g., e-x2 and e-Ix'. 

It is obvious that the product and the minimum of two log-concave functions is 
log-concave (not their sum!). The following fact (see Dinghas [13] and PrCkopa 
[40], [41]) is much less obvious: 

Lemma 2.1. 

tions (assuming that it is well-defined) is log-concave. 
The convolution h(x) = g(u)f(x - u) du of two log-concavefunc- 

a 
1.. 

If F is a nonnegative integrable function on R", then we denote by pF the 
measure with density function F, i.e., 
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Applying Lemma 2.1 with g chosen to be the characteristic function of the convex 
body - K, we obtain the following Brunn-Minkowski type theorem: 

Corollary 2.2. Let K R" be a convex body and F :  R" + R, a log-concave 
function. Then pF(x + K) is a log-concave function of x .  w 

Specializing further, we obtain 

Corollary 2.3. Let K and K' be two convex bodies and t > 0. If the set { x  E R": 
vol(( K' + x )  n K) > t }  has an interior point, then it is a convex body. In particular, 
the set K, = { x  E K: vol((x + K) f l  K) 2 (1  - s) vol(K)} is a convex body for any 
O<s<l. 

Another consequence of Lemma 2.1 we shall need is the following, which we 
obtain by choosing K in Corollary 2.2, a rectangle aligned with the axes having 
edges of length E in k directions and 1 / ~  in the remaining directions, and then 
letting E - 0 .  

Corollary 2.4. 

for any subset { x , ,  . . . , x k }  of variables, 

If F : R"+ R, is a log-concave function with finite integral, then 

- - IR F dw, * . . dx, is a log-concave 
function of the remaining variables. w 

B. lsoperimetric Inequalities for log-concave Functions 

method similar to that of [34] was used by Payne and Weinberger [39]). 
The following general lemma is a refinement of the bisection method of [34] (a 

Lemma 2.5. (Localization lemma) Let g and h be upper semi-continuous Lebesgue 
integrable functions on R" such that 

and h(x) dx > 0 . 

Then there exist two points a ,  b E R" and a linear function I : [0,1] - R, such that 

I lo l(t)"-'g((l - t)a + tb) dt > 0 and lo' l(t)"-'h((l - t)a + tb) dt > 0 . 

We may formulate the conclusion informally, in a more transparent way, as 
follows: if both g and h have positive integrals, then there exists an infinitesimally 
narrow truncated cone such that the restrictions of g and h to this body have 
positive integrals. It is easy to show that we could not further restrict the family of 
these test bodies; cones or cylinders would not be enough. 

Proof. We may assume that g and h are continuous: In fact, they arise as limits 
of monotone (strictly) increasing sequences of integrable continuous functions 
gk+ g and h, -+ h,  and we have 
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FE gk = IRn g > 9 

so for k large enough, we have h, > 0. If we know the 
validity of the lemma for continuous functions, then it follows that there exist two 
points a ,  b E R" and a nonnegative linear function 1 such that 

g ,  > 0, and similarly 
I R n  6. 

1 1 lo l(t)"-'&(( 1 - t ) a  + tb )  dt > 0 and lo l(t)"-'h,((l - t )a  + tb )  dt > 0 , 

and then 

1' l(t)"-'g(( 1 - t ) a  + tb )  dt L 0 and l(t)"-Ih((l - t ) a  + tb)  dt 2 0 l 
Note that it is enough to know that the conclusion holds with L O  instead of > O .  
Indeed, if we know the result with LO, then we can apply it to g - a and h - a in 
place of g and h ,  where a is an everywhere positive continuous function with a 
small integral, which implies strict inequality for the original functions. 

Claim 1. There exists a sequence of convex bodies KO 2 K ,  2 K , ,  . . . such that 

g(x)  dx > 0 and h(x) dx > 0 , 
Ki JK. 

and K = n j  Ki is a point or a segment. 

For KO we may choose any sufficiently large ball. Given K i ,  we choose a 
halfspace H such that 

g(x) dx = I g(x)  dx * I K i n H  2 Ki 

Let us call the boundary hyperplane of such a halfspace bisecting. Replacing H by 
the complementary halfspace if necessary, we may assume that 

h ( x ) d x > O .  
K i n H  

Thus K j + ,  = K j  fl H will satisfy (2.1). What we have to show is that we can 
choose H so that the K j  shrink to a 0-dimensional or 1-dimensional body. To this 
end, let us remark that given any (n  - 2)-dimensional affine subspace A ,  there is 
at least one bisecting hyperplane containing it. This follows by a trivial continuity 
argument, obtained by rotating the hyperplane about A .  

Let A,, A , ,  . . . be all (n - 2)-dimensional affine subspaces with rational 
coordinates, ordered in a single sequence. Let K i + ,  be obtained from Ki by 
cutting in into two by a bisecting hyperplane Pi through A i ,  and choosing the 
appropriate half. 

We show that K = n j  Ki is at most 1-dimensional. Assume that it has 
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dimension at least two, then its projection onto one of the planes spanned by two 
coordinate axes (say axes 1 and 2) is still 2-dimensional, and so has a rational 
interior point (r l ,  r 2 ) .  The affine subspace defined by x1 = r l ,  x2 = r2 is one of the 
A,; but then Pi properly partitions K, and so also Ki+l,  which contradicts the 
construction. 

If K is a single point u, then it follows from the continuity of g and h that 
g(u) 2 0 and h(a) 2 0, and so the conclusion holds for b = a and 1 = 1. So assume 
that K is a proper segment, and let a and b denote the endpoints of K. 

Claim 2. 
such that 

There exists a concave function $ : [0, 11- R,, not identically zero, 

1' $(t)"-'g((l - r)a + tb) dt 2 0 , 

1' $(r)"-'h((l - t )a  + tb) dt 2 0 .  
(2.2) 

Without loss of generality, a = 0, b = e l .  Consider an i 2 i,. Set 

z, = { x  E R": XI = t }  

and 

Let a, and pi denote the minimum and maximum of x1 over K,. Clearly a, 5 0 and 
pi 2 1; moreover, a,+ 0 and pi+ 1 as i+ 03. The function +, is concave on the 
interval [a,, pi] by the Brunn-Minkowski Theorem. 

We can select a subsequence of the indices i for which +,(t) converges to a limit 
$(t) for every 0 I t I 1. (This is a version of the Blaschke Principle; alternatively, 
we can notice that the functions $, are uniformly equicontinuous in every interval 
[s, t ]  with 0 < s < t < 1, and hence the Arzela-Ascoli Lemma implies that the 
sequence has a pointwise convergent subsequence.) Obviously, the limit function 
$ is also non-negative, concave, and 

+(t)"-' dt = 1 . 

Now we have (with x = (t, y ) ,  t E R, y E Rn-') 

x vol(Ki)$i(t)"-l dt , 

and hence 
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The left-hand side is non-negative, while the right-hand side tends to 16 g(t, O)+( t )" - '  dt. So this integral is non-negative. The same argument applies 
to h.  This proves the claim. 

To conclude the proof, we choose a, b E K so that for an appropriate not 
identically zero concave function + 2 0, (2.2) is satisfied, and 

(i) la - b )  is minimal. 
We may assume again that a = 0 and b = e l .  We may also assume that @ is 
continuous (it could only have discontinuities at 0 or 1). If + is linear, we 
are done, so suppose that + is not linear. Let 0 5 a I p I 1 be chosen so 
that 

(ii) + is linear on the interval [a, p] and p - a is maximum [subject to (i)]. 

It follows by a standard compactness arguments that such a pair of points and 
function 4 exist. Define 

where p ( x )  is the first coordinate of x .  For every convex body L, let 

Also consider the convex body K' defined by 

(In other words, we consider for every 0 I t I 1 the (n - 1)-dimensional simplex 
S, spanned by the points te,, te, + +(t)e2,  . . . , re, + @(t)e , .  The union of these 
simplices is a convex body K'.) Then 

1' +(t)"-'g(te,) dt L 0 , ( n - l ) !  0 

and similarly 

fK, h ( x )  dx 2 0 

By (i), one of these integrals is 0; we may assume without loss of generality that 

Consider two real numbers 0 < (T < 1 and T > 0, and the (n - 2)-dimensional 
affine subspace A defined by the equations x1 = (T and x2  + - - - + x ,  = T. Assume 
that A intersects the interior of K'. Then there is a hyperplane H through A that 
splits K' into two convex bodies LA and L i  such that 
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JLA d X  = a x )  dr = 0 

We may assume that the notation is chosen so that 

Then 

LA must intersect both 2, and 2, ; (*I 
else, +LA satisfies (2.2) and violates (i). There will be two different possibilities: 
either LA “faces down” (it contains the point (1/2)e1) or it “faces up”. Condition 
(*) implies that H cannot be orthogonal to the x,-axis, and hence (using that it 
contains an (n - 2)-dimensional subspace A of a special form) it can be defined by 
an equation x2  + * - + x ,  = I (x l )  where I is a linear function. If LA faces down, 
then (*) implies that I ( O ) ,  I( 1) 2 0 and 

We are going to show that choosing A appropriately, we get a contradiction at 
either (i) or (ii). We distinguish three cases according to whether both + ( O )  = 
+(1)=0 or one of them, say + ( O ) = O  but $(1)>0 or both + ( O ) ,  +(1)>0. 

Case 1. + ( O )  = $( 1) = 0. Consider the affine subspace A defined by x ,  = 1 /2 and 
x2 + - * - + x ,  = T. Then LA cannot face up by (*). It follows from I (O) ,  I( 1) 2 0 and 
1(1/2) = T that I( t )  tends to 0 uniformly on [0,1] if T+ 0, and so (2.3) implies that 
+LA is linear on an interval whose length tends to 1, contradicting (ii). 

Case 2. $ ( O )  = 0 and +( 1) > 0 (say). Consider the affine subspace A defined by 
x1 = a and x2 + . . + x ,  = T, where T = +(l)a. If LA faces up, then (*) implies 
that I(t)  = +(l)t and so considering $LA we get a contradiction by Case 1 (since 
$LA vanishes at both ends). So assume that LA faces down. Then (*) implies that 
0 s  I(1) I +(1) and so (2.3) implies that 4, is linear in the interval [a, 11, which is 
longer than p - a if r~ is small enough. 

Case 3. + ( O ) ,  +( 1) > 0. Consider all continuous convex (!) functions 
7 :  [O,l]+R+ such that O s q ( O ) s $ ( O )  and O s q ( l ) s + ( l ) ,  and the convex 
body K,, defined by 

0 5 x ,  5 1 , x * ,  . . . , x ,  2 0 ,  

q ( x , )  5 x2  + . . . + x ,  5 + ( x , )  

satisfies 

g(x)  dr = 0 , and 
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Choose an 7 for which 
considering 

~ ( t )  dt is maximal. If ~ ( 0 )  = +(O)  or ~ ( 1 )  = +(1), then 

we get a contradiction by either Case 1 or Case 2. ($$ itself does not necessarily 
contradict to (i) and (ii) but in both cases we obtained linear parts of length 
almost 1.) So assume that ~ ( 0 )  < +(O)  and ~ ( 1 )  < +(1). 

intersection point of the segments connecting (0, ~ ( 0 ) )  to 
to (1, q-( l)), and consider a hyperplane H through the 
by x ,  = a, x2 + - * * + x ,  = T, which cuts K,, into parts M 

Let (n, T) denote the 

affine subspace defined 
and M' for which 

(1, +(1)) and (0, +(ON 

Note that by the choice of (a, T), either both M and M' intersect Z ,  and Z, or 
none of them does; but the latter case is ruled out by (*). Let M face up and M' 
face down. Then M = K, and so by the maximality of v, we must have 

But the K'\M is a truncated cone and we have 

and 

which contradicts (ii). 

As an application, we derive the following isoperimetric inequality, which is a 
slight extension of the inequality by Dyer and Frieze [16] (which, in turn, is a 
slight extension of the inequality by Applegate and Kannan [4 ] ) .  

Theorem 2.6. Let K R" be a convex body, 0 < t < 1, and K, U K2 U K3 be a 
partition of K into three measurable sets such that for any two points a ,  b E K, the 
distance of K ,  n [a ,  b ]  and K2 n [ a ,  b ]  is at least t (a  - bl. Then for any log-concave 
function F with support K, 

2t 
PF(K3) 2 ct min{PF(K,), PF(K2)) ' 

(This theorem is tight when F = 1 and K is a cylinder.) 
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Proof. Assume, by way of contradiction, that 

We may assume that K ,  and K, are open (we can delete the boundary of K and 
enlarge K ,  and K2 slightly to open sets so that both the assumptions and the 
indirect hypothesis remain true). 

Let 

(0 7 otherwise, 

and 

if x E  K , ,  

F(x)  , if x E K3 , 

otherwise, 

Then, by the indirect hypothesis, 

Thus by Lemma 2.5, there exist two points a, b E R" and a linear function 
I :  [O , l ] -  R, such that 

[ f(u)"-'g((l - u)a + ub) du > O  and f (u)"- 'h( ( l -  u)a + ub) du>O.  

(2.4) 

Let 

Hi = {u: (1 - U ) U  + ub E Ki} , 

and 

G(u) = l ( ~ ) " - ' F ( ( l -  U ) U  + ub) . 

Then (2.4) can be written as 

min I G(u) du 

Let pG be the measure on [0,1] with density function G. 

2t I", G(u) du .= - 1 - t i = 1 , 2  
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Claim. F o r O ~ s < s + t ~ l  wehave 

(Note that if we were content with the coefficient t instead of 2 t / ( l -  t), then 
the claim would be trivial, and in fact at this point we would only have to use that 
the function G is unimodal.) 

We may assume that G(u) = ecu for some constant c > 0. To see this, note that 
there are constants co > 0 and c such that G(s) = cOecS and G(s + t) = cOec(s+f). By 
the log-concavity of G, we have G(u) L cOecu for s < u < s + t and G(u) 9 cOecU 
otherwise. Thus it suffices to prove the claim for G(u) = coecu. Obviously, we may 
assume that co = 1. If c = 0 then the assertion is obvious, so we may assume that 
c # 0 and (without loss of generality) that c > 0. Thus we want to show that 

1 .  ec(s+r )  - e cs 2 - 2t min{ecs - 1, ec - ec(s+r) 
1 - t  

One can easily see that the worst case is when ecs - 1 = ec - ec(s+r), i.e., when 

1 + ec 
ecs = - 

1 + ecr ' 

in which case we want to show that 

(e" - 1) - 1 + ec > - 2t (--I). 1 + ec 
l + e c ' -  I - t  l + e c f  

Introducing x = ecr and A = l / t  we get 

( A  - i)xA+' - ( A  + i)xA + ( A  + i ) ~  - ( A  - 1) L O .  

We have x > 1 and A > 1. Moreover, the function f ( x )  on the left-hand side 
satisfies f( 1) = f'( 1) = f"( 1) = 0 and 

f"(x) = ( A  + l)A( A - l)(xA-' - P2)  L 0 

for x 2 1, and therefore f(x) 2 0 for all x 2 1. This proves the claim. 
The claim proves the assertion for the (intuitively worst) case when H3 consists 

of a single interval. In the general case, one could easily simplify H3 until it 
consists of one or two intervals and treat this case directly. To give an argument 
that is easier to describe, for each maximal interval Z = (a ,  b )  contained in H3 and 
of length at least t we color the interval [0, a]  red if pG([O, a ] )  < p,([b, 11); 
otherwise, color the interval [b ,  11 red. By the claim, each interval Z introduces a 
red set with p,-measure at most (1 - t)/(2t)pG([Z]). So the whole red set will 
have measure at most (1 - t)/(2t)pG(H3). 

It suffices to show that either H ,  or H, is totally red. Suppose not, then the 
uncolored set U intersects both H ,  and H,. By our construction, U is an open 
interval. By the assumption that the distance of H ,  and H,  is at least t ,  U n H3 
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contains an interval of length at least t. But then there is an adjacent red 
interval-a contradiction. rn 

Corollary 2.7. Let K C [w" be a convex set, 0 < f < 1,  and K, U K, U K,, a 
partition of K into three measurable sets such that for any two points a ,  b E K ,  the 
distance of K, n [ a ,  b]  and K, f l  [a ,  b]  is at least tla - bl. Then 

2t 
1 - t  VOI(K,) 2 - min{vol(K,), vol(K,)} . 

In particular, i f  (in any norm) K has diameter d and the distance of K ,  and K, is at 
least 1,  then 

min{voI(K,), vol(K,)} . 2 
vOl(K,) 2 - d - 1  

The Localization Lemma has several applications in convex geometry; for 
example, it gives a simple proof of Lemma 2.1, and implies Brunn-Minkowski 
type results for balls and other bodies. There will be treated in detail elsewhere; 
here we formulate one consequence, which will be handy in our volume algo- 
rithm. 

Theorem 2.8. Let F be a log-concave function on [w", and let 

Then for every u 2 1,  

Proof. Assume that 

Similarly, as in the proof of Theorem 2.6, it follows from Lemma 2.5 that there 
exist two points a ,  b E R" and a linear function I :  [0, l]+ OX, such that, setting 

G(t)  = l(t)"-'F((l - t)a + tb) , 
H ,  = { t : O s  t s l , ( l -  t)a + t b E B }  , H2 = { t : O s t s l , ( l -  t )a+ tbEuB\B},  

H, = [ O ,  l]\H,\H, , 

we have 

and 
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Clearly G is log-concave, H ,  is an interval, and H ,  and H3 consist of one or two 
intervals. 

We may assume that OE HI (i.e., a E B); otherwise we may choose a point 
s E H ,  such that 

Then we can replace [ a ,  b ]  by either [a ,  (1 - s)a + sb] or [(l - s)a + sb, b ] .  So let 
u + l  

2 H ,  = [0 ,  a ] ,  H2 = [cy, p ]  and H3 = [ p ,  11. It follows easily that p L - ff. 
We can choose co, c > 0 so that 

and 

G(t) dt = J B coe-cf dt . (2.8) 

Then we have G(t) 2 toe-" for all (Y I t I p ;  otherwise, it would follow from the 
log-concavity of G that G(t)  < coe-cr either for all 0 I t I a or for all p 5 t 5 1, 
contradicting the choice of co and c. So, by (2.7) and (2.8), 

But then by (2.5) we have 

and so, by (2.9), 

1 

I - - e - c p  < - e - c a ( u + l ) / 2  c; - (#u+1)/2 
G(t) dt 1,- toe-" dt 

G(t)  dt [ toe-" dt 
9 

(2.9) 

contradicting (2.6). 

As a special case we obtain 
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Corollary 2.9. Let K be a convex body in R" and let 8 = vol(K\B)/vol(K). Then 
voi(K\uB) I e("+l)/* vol(K). 

For this special case, the bound in Corollary 2.9 could be improved to 
(1 - (1 - 8l'")(u + 1)/2)" if (1 - O1'")(u + 1) /2<  1 and 0 otherwise. We shall 
only need a simpler version of the last assertion, to which we give a simple proof. 

Lemma 2.10. Let K be a convex body in R" and let 8 = vol(K\B) /vol(K). Then 

2n K C -  B .  
1 -8  

Proof. Let x be a point in K farthest from the origin, and let R = 1x1. Replacing 
K by conv((K rl B) U { x } )  we decrease 0, and therefore decrease 2n/(l- 8 ) .  So 
we may assume that K=conv((KnB)U{x}).  Blowing up K\B from x by a 
factor of (R + 1)/(R - l) ,  we get a set containing K. Thus 

Hence 

We conclude this section with one more lemma of similar type. 

Lemma 2.11. Let 0 I t I 1. If vol(K\(x + K)) 5 (1 /2) vol(K), then 
vol(m(tx + K)) s (7t/10) vol(K). 

Proof. Consider the function defined for u E [0,1] by 

V O ~ K  n (UX + K ) )  
vol(K) +(u) = 

By Corollary 2.2, 
have 

is log-concave. Moreover, +(O) = 1 and +( 1) 2 1 /2. Hence we 

,I,/ tl  > 3 --I 

7t 
30 vol(za(I2 + K)) I ( 1  - 2-') vol(K) < - vol(K) 

3. RANDOM WALKS AND SAMPLING IN CONVEX BODIES 

A. Random Walks with C-steps 

In Section 2 we analyzed general Markov chains, i.e., random walks in abstract 
measure spaces. Now we turn to the special case when the underlying domain is 
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R“ (or a convex body), and the step is chosen uniformly from the unit ball about 
the current point. For the time being, we allow an arbitrary norm, but for the 
algorithmic applications we only need the case of a euclidean ball. 

Let G be a centrally symmetric convex body in R”, with its center at the origin, 
and K, any convex body. We generate a Markov chain of points in K as follows. 
Let uo be drawn from some initial distribution on K. Given uk, we flip a coin and 
if it is heads, we let uk+l = uk. Otherwise, we generate a vector u from the 
uniform distribution on G, and consider uk + u. If uk + u E K ,  we let uk+l = 
uk + u,  otherwise we let uk+l  = uk. We call this the lazy random walk in K with 
G-steps. It is straightforward to see that this is a time-reversible Markov scheme 
A ( K ,  G )  and the uniform distribution on K is stationary. 

We shall analyze, more generally, a filtered version of this random walk. Let F 
be a nonnegative log-concave function on K ,  and let F =  F(x) dx. Let p ,  
denote the measure with density function F and Q, = (1 /F)p , .  Specializing the 
definition of the Metropolis F-filtering for this case, we have, for any measurable 
set A with x F A ,  

fK 

and 

By Lemma 1.10, the measure QF is stationary for our Markov scheme. Also note 
that this Markov scheme is lazy. 

Our main goal is to estimate the mixing rate of the F-filtered lazy random walk 
with G-steps. By the results of Section 2, it suffices to estimate its conductance. 
Our main result in this section asserts that the conductance of this Markov scheme 
is determined in a sense by its local conductance. 

Recall that we denote by H, the set of points x E R“ such that we have a chance 
of less than t of making a step from x (where 0 5  t I 1/2), i.e., 

min{ F(x) ,  F( y ) }  dy < 2tF(x) vol(G) . L+G 
We have noticed that setting s = Q,(H,)/2, the s-conductance is at most 2t. 

The main theorem of this section asserts that if the local conductance is large 
and the “diameter” of K is small, then the (global) conductance is large. Here the 
“diameter” of K is measured by l/8, where 8 is the largest number such that for 
all x ,  y E K ,  

1 
2 vol( G n (8(x - y) + G)) 2 - vol( G) . 

Then 1/8 is indeed the diameter in the norm whose unit ball is 
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{x: vol(G n ( x  + G)) 2 vol(G)/2} . 
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If G = B is the euclidean ball, then Lemma 0.1 implies that 8 is asymptotically 
c/(.\/?id), where d is the euclidean diameter of K and c = 1.4825. . . . 

Theorem 3.2. Let 0 I t I 1/2, 0 < 8 < 1 and s = Q J H , ) .  Assume that for all 
X , Y E K ,  

1 
2 voi(c n (e (x  - y )  + G)) 2 - voi(G) . 

2s 1 
te 7 Then the --conductance of the Markov scheme A ( K ,  G ) / F  is at least - t2e. 

Proof. Translating into more elementary terms, we want to prove the following. 
Consider a splitting of K into two measurable sets S, and S,. Then 

2s 
to 

Of course, we may assume that Q F ( S i )  > - for i = 1, 2, or else the assertion is 
obvious. Note that vol(G) min{ Q,(S , ) ,  Q F ( S 2 ) }  is a trivial upper bound on 
left-hand side. 

Let, for i = 1,2, 

2t 
x E Si: pF((x + G) n S 3 - i )  2 3 vol(G)F(x)] , 

Sy = Si\S:\H, , 
and 

S, = S; U S; U H, , 

The key observation in the proof is the following. 

Claim. 
2t If x, E Sy and x2 E S; then vol((x, + G)\(x, + G)) > 7 vol(G). 

Assume (by way of contradiction) that 

Note that (3.3) is symmetric in x ,  and x2. So we may assume that F ( x , )  5 F(x2). 
Let Gi = xi + G. Since x 2  ji? H, ,  we have 

min{ F(x, ) ,  F( y ) }  dy 2 2tF(x,) vol(G) . (3.4) 
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Moreover, (3.3) implies that 

2t 
min{ F(x,) ,  F( y ) }  d y  5 3 F(x2) vol(G) . 

/G~\GI 

and hence 

(3.5) 

(3.7) 

Subtracting (3.7) from (3.6), we obtain 

Using the trivial inequality 

we derive that 

and hence 
2t 

/G,nSZ min{F(x,), F(Y) )  dY > 7 Fb,) vol(G) * 

But this inequality says that x1 E Si, a contradiction. This proves the claim. 
We can rephrase the claim as follows: If x1 E S; and x2 E Si then 

2t 
3 vol(C\((x2 - xl) + G)) > - vol(G) . 

Hence Lemma 2.11 implies that for all x1 E S; and x2 E S!, 

1 
vol( G\( (x2  - xl) + G)) > vol(G) . 

Consider any a, b E K such that Sy n [a ,  b] and Sg fl [a, b] are nonempty, and 
let p ( b  - a1 be the distance of these sets. Then by the above, vol(C\((21/20t) 
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plb - u1 + G)) > (112) vol(G). On the other hand, by the definition of 0, 
vol(G\(BIb - a1 + G)) 5 (1 12) vol(G). Hence p > (20/2l)te. 

So we can apply Theorem 2.6 to get that 

40 
hfdS3)’ 21 te min{PF(SI), PF(S;)) . 

This is equivalent to 

40 
PAS,) > 21 temin{Q~(Sy), QF(S;)) - 

Here 

and so 

To complete the proof, we estimate the conductance as follows. 

t t I I min{F(x), F(y)} dy dx 2 - vol(G)QF(S; U S;) = - vol(G)QF(S,\H,) F Sl s2 3 3 
y E x + G  
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Remark. The fact that we estimate the 2s/(t8)-conductance is certainly not best 
possible. Under some additional constraints, e.g., if F is a constant, the same 
lower bound holds for the s-conductance. Since we don’t need this improvement 
(in fact, we only use the case s = 0), we don’t discuss these versions of Theorem 
3.2 in this article. 

Corollary 3.3. 
then its conductance is at least t28/7. 

If the local conductance of A ( K ,  G ) / F  is at least t at each point, 

The following Lipschitz type condition gives an easy way to handle the local 
conductance of the filtered Markov scheme: 

Corollary 3.4. If F(u) 2 t ,F(u) whenever u - u E G ,  and the local conductance of 
&(K,  G )  is at least t ,  at each point, then the conductance of &(K,  G ) / F  is at least 
( t , t , ) ’en.  

B. Sampling from a Convex Body 

Generating an approximately uniformly distributed point in a convex body K is 
not only the crucial step in the algorithm of Dyer, Frieze, and Kannan, but an 
important algorithmic question in statistics, optimization, simulation, and other 
fields; cf. Smith [42], Berbie et al. [6], McGeoch and Hoogs [36]. In this article we 
need a modified version, sampling from a non-uniform distribution on a ball. But 
we shall also make use of the uniform case to test whether one convex body is 
(approximately) contained in another. In fact, uniform sampling from a general 
convex body can be reduced to nonuniform sampling from a ball, as we are going 
to show. 

We generate this random point by using a random walk with B-steps. One 
could of course use any other centrally symmetric convex body G, provided one 
has an easy way of generating a random point from the uniform distribution over 
G. This would allow cubes, cross-polytopes, and others (and in fact the cube 
would perhaps be the most attractive from the programming point of view). The 
only reason why we choose the euclidean ball is that it is this case in which we can 
guarantee the best value of 8 in Theorem 3.2. 

A random point in the euclidean ball can be generated, for example, as 
follows. Let t,, . . . , 6, be independent random variables from a standardized 
normal distribution, and let 77 be uniformly distributed in [0,1]. Let pi = 771”’,$i/ v m ,  then uo = ( p,, . . . , p,,) is uniformly distributed over B. 

The idea is contained in the following lemmas. Let K be a convex body 
containing the origin in the interior and x E R”. We denote by 4 ( x )  = & ( x )  the 
least nonnegative number t for which x E tK. (If K is centrally symmetric, this is 
just the norm determined by K.) We set F(x) = FK(x) = e-? Thus 0 < F(x) 5 1. 

Lemma 3.5. 
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Proof. Let H :  R++R be any function such that h(t)t"-' dt exists. To 
evaluate 

we partition the space into layers S, = { x :  t 5 4 ( x )  5 t + dt} . The measure of such 
a layer is 

( t  + dt)" vol(K) - t" vol(K) = nt"-' vol(K) dt . 

Hence 

h ( 4 ( x ) )  dx = n - v ~ l ( K ) - / ~  0 h(t)t"-' dt . 

In particular, we have 

fRn F(x)  dr = n *vol(K). tn-'e-' dt = n !  vol(K) . m 

(The fact that we obtain the factor l ln!  is nice but irrelevant: the point is that 
if g is any function of 4, then the integral of g over the space is the volume of K 
times a constant that depends on n only. It would be perfectly sufficient to use a 
good approximation of this constant.) 

To generate a uniform distribution over K we shall introduce a function A(s) 
mapping [O,m) onto [0, 1)' and transforming the probability distribution QF into a 
uniform distribution over K. Put 

1 I n  1 
A(s) = (m e-'r"-' d t )  . 

Lemma 3.6. 
then 

If u is a random vector in R" with density function e-""'l(n - l)!, 

is uniformly distributed over K. 

e-'. The set sK is mapped by H onto the set A(s) K. 
1 Proof. Set h(s) = - (n - l)! 

The probability of A(s) K in the uniform distribution is A"(s); the probability of sK 
in the distribution Qh is 

These two numbers are equal (that's how A was chosen). Similar assertion holds 
for the intersection of these sets with any fixed cone. This implies that H(u) is 
uniform. 
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Alternatively, the lemma can be verified directly by calculating the Jacobian of 
H. 

Let K be a convex body and assume the following: 

(Al) More than 2 /3  of the volume of B is contained in K. 
(A2) For some parameter l r m l n  , more than 2 /3  of the volume of K is 312 

contained in the convex body mB. 

Let an error bound E > 0 also be given. 
The following algorithm generates a random point in K #  

Sampling Algorithm. Set 

q = 2mn log(4 /~) ,  

t = 101°nq2(n log n + lOg(2/E)) . 

Starting from the uniform distribution over B, do a lazy random walk (u,,, . . . , u,)  
in qB, with B-steps, filtered by F. Compute 

w = H(u, )  . 

Theorem 3.7. 
computed by the Sampling Algorithm satisfies 

For every Lebesgue measurable set A K ,  the random point w 

IProb(H(u,) E A )  - - 

Moreover, it nee& O(n3m2 log2(1/E)(n log n + log(l/E))) membership tests and 
O(n4m2 log2( l / c ) ( n  log n + log( 1 / E ) ) )  arithmetic operations using numbers of 
O(1og n )  bits. 

We need some lemmas. Note that if follows from assumption (Al) and Lemma 
0.1 that the ball (1/3)n-”2 B is contained in K, and from assumption (A2)  and 
Lemma 2.10 that the ball 3nmB contains all of K. Hence 

The first lemma enables us to restrict our attention to qB. 

Lemma 3.8. 

1 
n! (1 - ;) vol(K) < - I,, F(x) dx 

Proof. Let K = K fl2mB, &x)  = +&) and & x )  = e-8(x! Then clearly F(x) < 
F(x) .  Applying (3.8) with 
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, i f O s t s 2 n ,  
h( t )  = [ s,' otherwise , 

we obtain 
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39 
40 

= n vol(K) e-'tn-' dt > - n! vol(K) 

13 
20 2 - n !  vol(K) . 

so 
r 7 

and hence by Theorem 2.8, 
log(4lc) 

~ ( x )  < (h) n! V~I(K) < 5 n! v o l ( ~ ) .  I R"\4 log(1 lc)nmB 4 

We shall also need an estimate on the conductance of the random walk used in 
the algorithm. 

Lemma 3.9. If K satkjies ( A l )  and p B l O G ,  then the conductance of 
& ( p B ,  B ) / F K  is at least l/(looOOpVZ). 

Proof. First we show that the local conductance of A ( p B ,  B ) / F ,  is at least 
1/25.  Let x E p B .  If y is a point chosen randomly from the uniform distribution 
over x + B ,  then the probability that y # p B  is less than 5 / 9 ,  by the assumption 
that p 11OVii .  By (Al ) ,  the probability that y # x  + K is at most 1 / 3 ;  thus with 
probability at least 1 / 9 ,  we have y E p B  n ( x  + K). Now for each such y ,  we have 

y E x  + K +(x )K  + K = ( 4 ( x )  + 1 ) K ,  

and hence 4( y )  s + ( x )  + 1 and thus FK( y )  2 (1 / e )FK(x) .  So the local conduct- 
ance is at least 1 / ( 9 e )  > 1/25 .  

Second, Lemma 0.1 shows that 

Thus the lemma follows by Corollary 3.3. 

Proof of Theorem 3.7. Let, for A Iw", 
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and 

Q,(A) = Prob(u, E A )  . 

Then for every A K, 

Prob(H(u,) E A )  = Prob(ur E H-'(A)) = Q,(H-'(A)) 

and by Lemmas 3.5 and 3.6, 

Thus it suffices to show that for every Lebesque measurable LIGR", we have 

IQt(U) - QAU)I 5 E .  

By Lemma 3.8, we have 

and similarly 

- PF(U n 4B)PF(R"\@) E - 1 4 .  
P A  @)PF(R") 

On the other hand, we can estimate Qk - Q ,  by CoroIlary 1.5: 

1 '  
IQr(U) - Q;(u)I 5 a ( 1 -  5 a2) 9 

Qo(A) 
Q d A )  

where M = supA - . Here we may restrict ourselves to sets in the support of 

Qo, namely to sets in B. The stationary distribution QL has a density function 
which can be estimated on B (by (3.9)) from below by e-3'?pF(qB). Since Q ,  is 
uniform on B, 

and by Lemma 3.9, 

1 
looooqfi - a r  
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Hence 
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The running time estimate is straightforward, except perhaps for the precision, 
whose discussion we omit here since it will be discussed in Section 4 in connection 
with the volume algorithm. a 

Remark. The following algorithm to generate a random point in K is perhaps 
more natural: Let uo be uniformly distributed over B. We do a lazy random walk 
(uo, u l ,  . . .) in K with G-steps, where G = - B (no filtering!), and stop after 
f = 0*(n4m2) steps. This algorithm achieves the same result, but the analysis is 
more complicated since we have to use s-conductance instead of conductance. 

E 

lOOn 

4. A VOLUME ALGORITHM 

A. Outline 

Let K be a convex body in R", given by a separation oracle, together with two 
numbers r ,  R > 0 such that K is contained in the ball RB and it contains some ball 
with radius r.  In addition to K, the input to the algorithm consists of two numbers 
0 < 6, Q < 1, bounds on the error probability and relative error. 

Our algorithm computes a (random) real number 6 such that with probability at 
least 1 - 6, 

(1 - E)VOl(K) 5 5 5(1+ E)VOl(K). 

We may assume that E ,  6 < 1. The algorithm will be polynomial in [log RI + 
llog rl, n ,  1 / ~ ,  and log(l/S). 

The algorithm consists of a preliminary part and a main part. The preliminary 
part transforms K by an affine transformation to a convex body A ( K )  so that the 
following two conditions (also formulated in Section 2) are met: 

(Al) More than 213 of the volume of B is contained in A ( K ) .  
(A2) For some parameter m E [l, n3"], more than 2/3 of the volume of A ( K )  

is contained in the convex body mB. 

The smaller m we can achieve, the faster the main part of our algorithm. We 
can always achieve m = n3'* deterministically, and m = n randomized, but for 
special cases like centrally symmetric bodies, or polyhedra with a polynomial 
number of facets, smaller values of m can be chosen, thereby reducing the 
running time of the main part. 

The second, main part computes the volume, based on the identity in Lemma 
3.5. In this part we only need a membership oracle for the body. 

We describe the algorithm in exact real arithmetic; we then show that rounding 
does not introduce substantial errors. 
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B. A Statistical Trick 

It will be convenient not to have to worry about the error probability S. The 
following well-known trick (see Jerrum, Valiant, and Vazirani [24]) shows that it 
suffices to solve the problem with S = 1 /3. Assume that we have an algorithm that 
computes a random variable l that falls in the interval I=  [ ( l -  ~)vol(K),  
(1 + ~)vol(K)],  with probability at least 213. Let s =  lOlog(l/S), and let us 
compute 2s + 1 independent values of 5, say l,, . . . , la+,. Let f;., be the median 
of them, i.e., the (s + 1)-st of them when ordered increasingly. We claim that 

Prob( ci0 E I )  2 1 - 6 

In fact, if the median is not in the interval I, then at least s + 1 of these 2s + 1 
values are outside I. But by Chernoff’s inequality [ l l ]  (see also Bollobis [7]), the 
probability that out of 2s + 1 independent events, all having probability at most 
1/3, more than half occur is at most e -  ( s 1 1 0 )  9 6. 

C. Preliminary Part 

We describe a deterministic and a randomized algorithm to achieve (Al) and 
(A2) in the general case, and randomized algorithms for special classes of convex 
bodies. 

(1) A standard application of the ellipsoid method (see [22]) gives that we can 
find an affine transformation A such that B C A ( K ) c n 3 / ’ B ;  such an affine 
transformation A can be computed using O(n4( [log RI + [log rl))  operations with 
numbers with O(n’(1log RI + llog rl))  digits. This way we have achieved m = n”’. 
This rounding was used in [17], [16], and [34]. For polyhedra given by explicit 
linear inequalities, rn = O(n) can be achieved by the same method. 

To improve this result, we have to examine why we lose a factor of n’lL for 
general convex bodies. Recall that the ellipsoid method maintains an ellipsoid E 
that contains the body K. An ellipsoid step replaces E by another ellipsoid 
containing K with smaller volume. For this, we use a cutting plane: a halfspace H 
also containing K. If H does not contain the ellipsoid El(2n) obtained from E by 
shrinking it from its center by a factor of 2n, then one computes an ellipsoid 
E‘ 2 E r l  H 2 K with smaller. volume than E. 

The crucial step in implementing this scheme is testing whether K contains 
El(2n) or, equivalently, whether an appropriate affine image A ( K )  contains the 
unit ball B .  Unfortunately, there is no polynomial-time test available for this (in 
fact, the problem is exponentially hard, by the results of [5]). In [22] the following 
approximation method was used: we test if the vectors -+e, (i = 1, . . . , n) belong 
to A ( K ) .  If the answer is no, we know A ( K )  does not contain B,  and have a 
vector in B\A(K). If the answer is yes, we know that the ball n-“’B belongs to 
A ( K )  (loosing the factor of n1I2). 

but this 
would cost a factor of n in the running time of the main part. Instead, we go on 
using a randomized test for B C A ( K )  by selecting T = [3 log nl independent 
random points in B, and testing if they belong to A ( K ) .  If one of them does not, 
we have a point in B\A(K) needed to carry out the ellipsoid step. If all of them 

(2) We could stop here having achieved (Al) and (A2) with m = 
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belong to A(K), we conclude that at least 213 of the volume of B must be in 
A(K). If less than 2/3 of the volume of B is contained in A(K), then the 
probability that we do not find a point in the difference is less than (2 /3)=s  
1 /(100n2 log n). The procedure lasts at most 25n2 log n ellipsoid steps, so the 
probability that it halts with A(K) containing less than 2/3 of B is less than 1/4. 

This gives a randomized algorithm that achieves (Al) and (A2), with m = 
O(n), with error probability less than 1/4. Note that (A2) is achieved in a much 
stronger sense: the ball mB in fact contains A(K). (Independently, a similar 
randomized rounding algorithm was worked out by U. Faigle, N. Gademan, and 
W. Kern [19].) 

(3) In the case of centrally symmetric bodies, exactly the same improvement 
over the ratio n in [22] works and one achieves (Al) and (strong) (A2) with 
m = ~ ( n " ' ) .  

(4) We can also turn things around and find an affine transformation that 
achieves (Al) in the strong sense that B is contained in A(K), while achieving 
(A2) in the original sense. For this, we can apply a polar form of the ellipsoid 
method, used by Lenstra [31]. In this, we maintain that the body A(K) contains 
the unit ball, and apply affine transformations to reduce the radius of the 
circumscribed ball. If A ( K )  contains a vector x with 1x1 >6n, then we can apply 
the following affine transformation: we expand the body K by a factor of 
1 + ( l / n )  in all directions orthogonal to x, shrink it by a factor of 3 in the 
direction of x, and translate it by -(2/3)x/lxI. The resulting body still contains B, 
and this operation reduces the volume of A(K) by a factor of (1 + l/n)"-'/3 < 
e/3. If we start with the result of ( l ) ,  then after at most O(n log n) applications of 
this step, the circumscribed ball can be reduced to 6nB. 

6nB and if not then find a point in 
6nB\A(K). We can do this by generating T = [log,,,(lOn log n)l independent 
random points in A(K) and testing if they belong to 6nB. If one of them does not, 
we have a point in A(K)\6nB needed to carry out the ellipsoid step. If all of them 
belong to 6nB, we conclude that at least 213 of the volume of A(K) must be in 
6nB. If less than 2/3 of the volume of B is contained in A(K), then the 
probability that we do not find a point in the difference is less than (2 /3)T5 

The cost of generating random points in A(K) is substantial: if we use the 
Samying Algorithm from the previous section (with E a small constant), we need 
O(n m' log n) membership tests and O(n5fi2 log n) arithmetic operations, where 
f i  is the Sandwiching Ratio for the Sampling (to test the containment and thus get 
a good Sandwiching Ratio for the volume algorithm). With a little trick, we can 
take m = 18n here: instead of testing if KC6nB we can apply the Sampling 
Algorithm to K' = A(K) n(18nB). This has good f i  and if a large part of K is 
outside of 6nB, then a large part of it will be outside of K', and we shall find a 
desired point in K\6nB. Indeed, it follows from Corollary 2.9 that if 
vol(A(K)\(6nB)) = 8 vol(A(K)) where 8 > 113, then vol(A(K)\( 18nB)) 5 
8* vol(A(K)) and hence vol(K'\(6nB)) 2 8 / ( l +  8 )  vol(K') > (1/4) vol(K'). 

We need to generate O(n log' n) random points altogether, which makes the 
cost of this phase O(n7 log3 n), at most a log factor more than the cost of the main 
part. 

At this point, it is not clear that we have won anything since the ratio 

Of course, we need to test whether A(K) 

1/(10nlogn). 
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m = O(n) can be achieved in a much simpler fashion following (2). But for the 
special case (which is perhaps the most important) when A(K)  is a polytope with 
a polynomial number of facets, we do gain more. If A(K)  has n' facets, then we 

can shrink A(K)  by a factor of y d y  and still have 2/3 of the volume of B in 
A(K).  Indeed, B is contained by A(K),  therefore we may apply Lemma 0.1 with 

t = yd? to get that each facet of A(K)  having been shrunk by a factor of t 
cuts off at most 

log n 
n 

1 2 (n+1)/2 1 - ~ / 2  1 vol(B) < - e 
tvz Y 3n vol(B) < 7 vol(B) - ( l - t )  

from B.  So for polytopes with a polynomial number of facets, (Al) and (A2) can 
be achieved with m = O(v-). 

( 5 )  Similarly, if K is a centrally symmetric polytope with a polynomial number 
of facets, then m = O(1og n) can be achieved in time not exceeding the time of 
the main part. 

D. The Main Volume Algorithm 

and vol(K f l  (mB)) 2 (2/3) vol(K). Let 
i = 0,1, . . . , we define the function 

Let us assume that K is a convex body such that vol(K fl B) I (2/3) vol(B) 
and F be defined as in Section 3. For 

Instead of computing the volume, we shall integrate the function F, using the 
formula of Lemma 3.5: 

1 
vol(K) = - n! F(x) dx , 

and the approximation provided by Lemma 3.8. Our algorithm follows the same 
general pattern as the algorithms in [16], [34], [4] and [17], but details are 
different (and in fact somewhat simpler). 

Volume Algorithm. (a) Set 

q = 4mn log( 1 / E )  , 
k=4nlogn , 
t = 10l2 nkq2e-' . 

(b) For i = 1 , .  . . , k, we do a lazy random walk (ub, . . . , us,) in qB, with 
B-steps, filtered by Fi. We use the notation of Section 3, but with qB playing the 
role of K. Thus 
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The first walk starts at a point generated from the distribution QFo. The ith walk 
starts where the (i - 1)-st ended. We compute 

(The first t steps of each phase serve to get close to the stationary distribution 
of the given phase. So the points u: ( j = t + 1, . . . ,2 t )  will have a distribution 
over qB that is very close to QFi. Also note that Fi = FKi, where Ki = K n2""B. 
Therefore, a, will be a good estimate on 

The last t steps ensure independence from the next phase. The first t steps of each 
phase could be replaced by a shorter walk and the last t steps could be omitted, at 
the cost of a more complicated analysis. 

(c) Estimate vol(K) by 

6 = (a, - * ak)-' VOI(B) . 

E. Analysis of the Algorithm 

Theorem 4.1. If K is a convex body such that vol(K n B) 2 (213) vol(B) and 
vol(Kn (mB))r(2/3)vol(K), and 6 is the estimate on vol(K) given by the 
Volume Algorithm, then 

Prob((1- E ) &  <vol(K) < (1 + E ) [ )  r 3 / 4 .  

Moreover, the algorithm uses 

kt = O(n3mZ~-2(log m + loglog(l/E))2(n + log(l/e))' log(l/e)2) 

membership oracle calls and 

ktO(n) = O(n4m2~-2(log m + loglog(l/E))'(n + log(l/E))' log(l/e)') 

arithmetic operations on numbers with O(1og n + log( lie)) bits. 

(Ordinarily, a membership test takes at least n arithmetic operations, it has to 
look at the coordinates, so the running time will be dominated by the membership 
tests.) 

Combining this theorem with our discussions in the preliminary part, we obtain 
several corollaries. For sake of simplicity, we assume here that E > 2-", and 
Rlr  < n". We only give the number of oracle calls; each oracle call goes with O(n) 
arithmetic operations on numbers with O(1og n) bits. 
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Corollary 4.2. (a) If K is a convex body given by a well-guaranteed separation 
oracle, then we can compute a random value l using O(n’~-’log’ n log’ 
( 1 / ~ )  log(1/6)) oracle calls, so that 

(b) If K is centrally symmetric, or K is a polytope with a polynomial (in n)  
number of facets, then we need only O(n6E-2 log4 n log2(1/E) log(1/6)) member- 
ship tests. 

(c) If K is a centrally symmetric polytope with a polynomial ( in  n) number of 
facets, then we need only o ( ~ ~ E - ~  log4 n log2(1/E) log(1/6)) oracle calk. W 

Proof of Theorem 4.1. We need some preliminary observations. Since Fi = FKi, 
the functions Fi are log-concave. Note that each Ki also satisfies conditions (Al) 
and ( M ) ,  and we have 

F, = exp(-lxln 1 / 2  ) 5 Fl 5 - - 5 Fk = F . 

Let Wi = fqB Fi dy. Then Lemma 3.8 implies that 

(1 - i ) n !  vol(Ki) < W, < n! vol(Ki) . 

For the case i = 0, the value 

exp(-filxl) dx = n-n’zn! vol(B) 

is easily computed, and W, is within a factor of 

Claim 1. 

Up to an error of E ,  this follows immediately from the observation that it is 
essentially the ratio of the volumes of Ki-, and Ki. Precisely, we have 

1 1 
Fi-,(2-””x) dx 2 - Fi(x) dx = - Wi . 2 f q B  2 

- 
- 5 f q B  

Let P; denote the distribution of the p-th point in the i-th random walk, and 
consider, as in Section 1, the distance function h; of Pj and QF,. Since the latter 
measure is atom-free, we have by Lemma 1.2(ii), 
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(i = 1 , .  . . , k), where A ranges over all measurable subsets of qB with Q,(A) = 
x .  For i = 0 we define h i ( x )  = 0. Let Q, = mini Q i ,  and r)  = (1 - @'/2)'. By Lemma 
3.9, 

-t&2 Hence4 to' > 104k/e2 and r)  < e . By e-' < l/x' (for x > 1) we have q < 
E 

10000000k' * 

Claim 2. For every O s x s l ,  i r l  and O I p I 3 t ,  we have 

[ 4 min{fi ,  G} , otherwise. 
2qmin{f i , t / i - -x} ,  i f t ~ p 1 3 t ,  h',(x) 5 

Proof. By induction on i. For i = 0 and p = 3t the assertion may be considered 
true. Let i > 0. Note that we have, for a suitable measurable set A C qB with 
Q,(A) = x ,  

h;(x) = P;(A) - x = Pi-' 3r ( 4 - x .  

2 
I - I Fi(u) du = 2Q,(A) = 2 x .  wi A 

Hence y - x I x .  Similarly 1 - y I 2( 1 - x ) .  Therefore, by the induction hy- 
pothesis, 

h&) = P:;l(A) - x = P:;'(A) - y + ( y  - x )  s h:;'(y) + min{x, 1 - x }  

5 211 min{-, -1 + min{f i ,  G} 
< (1 + 47) min{fi ,  t/i--x} . 

The case p < t follows trivially. 

Remarks. (a) The above induction uses that (1 + 4q)r) < 2~7, where the 4 comes 
from the previous induction phase. If we had a weaker estimate, say 9q in step 
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i - 1, we would get (1 + 1 8 ~ ) ~  < 29, and the induction still would go through 
yielding 29. This will be needed later. 

(b) This claim remains valid if we start our random walk from any other 
distribution P satisfying 

lP(A) - Q,(A)I < 4  m i n { m ,  -1 
and it is enough to assume that for each j < i, we walk at least t steps filtered by 
5. 

Consider two vertices u = ui and w = u: where i < j  and t < a, b I 2t. The next 
lemma estimates the correlation between f(u) = &-*(u)/F,.(u) and g(w)  = 
5 - 1 ( w )  /zy W ) .  

Claim 3. IE(f(u)g(wN - E(f(u))E(g(w)) l  I 49- 

Here the underlying idea is that the distribution of both u and w is very near to 
their limit distribution, therefore they are almost independent. 

Proof. Let us start another (inhomogeneous) random walk U:, Ufi+l, . . . , C{, 
where the transition probabilities from a 17 to the next are the same as from the u 
with the same indices, but the distribution of the starting point 65 is filtered by the 
function f in the following sense. Put 

then 1 I cf 5 2. Further, put 

Let Ft denote the distribution of IT: (i I k 5 j ,  0 I r I 2 t ) ,  and let 

Then we have 
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Let A C  q B ,  QF,(A)= z .  Then 

Hence by Claim 2, 

On the other hand, trivially 

K ~ ( Z ) <  1 - z 1 9 G .  

Thus we may apply the argument of Claim 2 [see Remark (a) following its proof] 
to the other Markov chain to get 

h',(z) 5 277 , 
and so 

- QF,15477. m 

Now we can turn to estimating the error of the algorithm. The error of our 
estimate t comes from the three main sources: 

I. W, # n! vol(K), W, # n! vol(B). This is taken care of by Lemma 3.8. 
11. The probabilistic error of our estimate 5 has itself three possible sources: 
(El) The distribution of the points u : , ~  generated in step (c) is not exactly 

(1 1 Wi) QFi- 
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(E2) The points u ; , ~  are not independent. 

( E 3 )  The sum used to estimate - '-' has a standard deviation. 

Claims 2 and 3 will be used to handle ( E l )  and ( E 2 ) ,  and Theorem 1.9 to 

We want to show that 

Y 

handle ( E 3 ) .  

Set a i /E(a i )  = 1 + pi, then (4 .2)  becomes 

3 k 

P r o b ( l - 5 < f l ( l + / 3 i ) 5 1 + z ) > ,  2 - i s ,  . 

We split those outcomes when the event fails into three cases, each having 
probability less than 1 / 12. 

Case 1. There exists an i such that 1 pi\ > 1 / 2 .  For a given i, we can estimate 
the probability of this by Chebyshev's inequality. Since E( pi)  = 0, and 
1 / 2  5 E ( q )  I 1 ,  we have 

Prob(Ip;l> i ) 5 4 D 2 ( p i ) .  

I 

By Theorem 1.9 applied with F = Fi- , /Fi  (which satisfies 0 I F 5 l ) ,  we get 

and hence 

Thus 

2 4 D2(a; )  5 - -= - 
t a 2  - 2500k 

Hence P(Ipil > 1 / 2 )  < e2/200k for a fixed i and the probability that there exists an 
i with lpil > 1 /2 is smaller than e2/200. 

Case 2. A similar argument settles the case when 2 p f > ~ / 8 .  Indeed, by 
Markov's inequality and (4 .3 ) ,  

k 

i = l  
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k 

Case 3. So assume that (Pil I 1 / 2  for all i and 2 5 e/8. Then 
i = l  

Ilog(l+ Pi)  - P i I  < ~t . 
If 

i = l  

then 

and hence 
k k 

i = l  i = l  

Since E( Pi) = 0, the probability of this can be estimated by Chebyshev’s 
inequality: 

Here 

The first term is at most e2/800 by (4.3). To estimate the second, write 

Here, with the notation of Claim 3,  

and hence by Claim 3, 

= E ( a i ) E ( f f j )  + 411 . 
Thus 
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and so 

whence by (4.4), 

111. Numericd errors come from two sources: first, we can compute 4 ( x )  only 
approximately and second, we have described the algorithm assuming that 
arithmetic operations with real numbers can be carried out exactly. We compute 
+ ( x )  with absolute error at most €In2; this means a relative error of €In2 in & ( x ) ,  
and hence a relative error of €In2 in a;. Thus this adds up to a relative error of 
keln2 < €110 in 5- 

Next we estimate the error coming from the fact that we calculate with finite 
precision, in fact to 100logn bits after the point. The run of the algorithm is 
determined by three random sequences: b: ,  bi ,  . . . , b,, . . . , independent ran- 
dom bits (to secure the lazyness), u:, ui, . . . , u'p, . . . independent uniformly 
distributed vectors in B (the jumps), and 7 : ,  7 : ,  . . . , T ? ,  . . . independent uni- 
formly distributed number in [0,1] (the Metropolis filtenng). We have 

i 

i 

- 
.ip+1- 

u; + .; , if b; = 1, u i  + u; E qB and 7: 5 Fi(u: + ui ) IF; ( t ( , ) ,  

otherwise. 

(4.5) 

In the actual computation, we get the vectors ua the numbers T ;  and the values of 
Fi with some error: let fi:? ?ip and pi be these rounded values. Then we determine 
the process Oi, Oi, . . . , 6 ; .  . . by 

- o;+, - 
O; + 6; , if bip = 1, 6; + z'i; E 4B and +; 5 Fi(uZ + u i ) / p i ( u ; ) ,  

otherwise. 

(4.6) 

We claim that with large probability, the same alternative is chosen in (4.5) and 
(4.6) at each step; this implies then that Iu; - O i l  < n-lo for all i and p, and 
hence the 6 we compute is within a factor of 1 + €12 to the true value. 

Assume that not always the same choice is made in (4.5) and (4.6), and 
consider the first occurrence of this. Then either (a) ub + u; E qB but 6; + 
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q B  (or vice versa), or (b) T; I Fi(u; + u; ) /F i (u ; )  but +; > ki(u; + u;) /Fi (u; )  
(or vice versa). If (b) occurs, then 1.; - Fi(u; + u ~ ) / F i ( u ' , ) I  < n-loo, and the 
probability that this occurs is less than 2/n"'. Assume that (a) occurs. Since we 
consider the first occurence, we have 1.; - i);) < n-90 and hence the distance of 

from the boundary of q B  must be less than n-89. Let S denote that La9- 
neighborhood of the boundary of qB.  It is easy to compute that Q , ( S )  < n-88, 
and therefore by Claim 2, 

Prob(ua E S) < n-44 . 

So the probability that either (a) or (b) ever occurs is less than 2ktln44 < 1/50. 
The running time of the Volume Algorithm is clearly dominated by the time 

needed to carry out the random walk. This takes kt moves, where each move 
takes the updating of n coordinates, one test of membership in q B ,  the evaluation 
of + ( x ) ,  and a constant number of arithmetic operations (where the evaluation of 
ex is considered as a single arithmetic operation; else, we need O(1og n) arith- 
metic operations). To evaluate + ( x ) ,  we find the largest t with tx E K by binary 
search with error ~ / n * ;  this takes O(log n + log(l/E)) membership tests. Thus the 
algorithm takes O(t(1og n + log(l/E))) membership tests and O(tn(1og n + log 
(11~))) arithmetic operations. Ordinarily, a membership test takes at least n 
arithmetic operations (it has to look at the coordinates), so the running time will 
be dominated by the membership tests. 

If we combine the preliminary part and the main part to a single algorithm, we 
face an additional difficulty: we have assumed that membership tests can be 
carried out not only for K but also in its affine image A ( K )  produced by the 
preliminary part in a single step. This is not justified if we only have an oracle for 
the original K, since then we have to apply each time the inverse of the affine 
transformation to get the point to be queried from the oracle. If the membership 
test takes n2 or more operations, this is majorized by that. However, for most 
sensible encoding of K (say, by linear or algebraic inequalities), we can compute a 
new encoding for the affine image and work with this. 

We may also leave K invariant and generate the random steps from an 
appropriate ellipsoid instead of the unit ball. This would solve the problem with 
the membership test but would increase the cost of generating the random step to 
O(n'), and hence would lead to essentially the same analysis. 
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