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Abstract

Generalizing some results of P . ERnbs and sonic of L . MosER and J. W. MOON we give lower bounds *on
the number of complete p-graphs K p of,graphs in terms of the numbers of vertices and edges. Further, for
some values of n and E we give a complete characterization of the extremal graphs, i.e. the graphs S of n
vertices and E edges having minimum number of K,'s. Our results contain the proof of the longstanding

conjecture of P. ERUbs that a graph G" with [n 2/4] + k edges contains at least k[
]

triangles if k < n/2.

0~ Notation

The graphs in this paper will be denoted by capital letters . We shall exclude loops
and multiple edges, and all graphs will be non-oriented.

Let G be a graph : e(G) will denote the number of edges of G, v(G) = n the number of
vertices. If x is a vertex, st(x) will denote the set of neighbors of x, that is the set of
vertices joined to x . o(x) will denote the cardinality of st(x), that is, the degree of x and if
we consider more graphs on the same set of vertices, stdx), QG(x) will denote the star
and the degree in G. If G is . a graph and A-is a set of vertices of G, then G(A) will denote
the subgraph spanned by A. For given n1 , . . ., nd Ka(n1 , . . ., nd) is the complete d-
partite graph withn1 vertices in its ith class . Kd:= Kd(1, ., 1) is the complete d-graph
and kd(G) denotes the number of complete Kd's of G. If A is a set of vertices and edges of
G, G - A denotes the graph obtained by deleting the vertices and edges ofA from G and
deleting all the edges incident to a vertex in A. If (x, y) does not belong to G, G +(x, y) is
the graph obtained by adding the edge (x, y) to G.

l. IatroOction

Let fp(n, E)=min {kp(G):e(G)=E, v(G)=n} .

ProMea 1. Determine the function fAn, E) .

Pro`kss 2 Characterize the extremal graphs for given n and E, i.e. those graphs S for

which v(S)=n, e(S)=E and kp(S) = fp(n, E) .
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then

The history of Problem 1 is the following.
In 1941 TuRAN [7] proved . that if n= -r (mod p-1) and O<rSp-2 and if

-2

	

r
"n, p) =

	 p	
1	 (n2 -r2)+ 2

2(P - )

then every G on n vertices having at least m(n, p) + 1 edges contains at least one K,, . For
E= m(n, p) there exists exactly one graph T",P-1 having n vertices and E edges and .
containing no K,, . This T"'P-' is a KP_ 1(n1 , . . ., n,,_ 1 ) where I:n i=n and Inj-n/d) < 1 .
RADEMACHER proved (unpublished) that any G with n vertices and >_ m(n, 3) + 1 edges

[!2]
contains not only one but at least

	

K3's. ERDOS [2, 3], (first only for p=3, then
for any p >= 3) proved the following .

. Theorem A. Let Uk denote a graph obtainedfrom T""P- 1 by adding k edges to it so that
the new edges belong to the same class having maximum number ofvertices (i.e. [n/d] + 1
if n/d is not an integer, n/d otherwise) and the new edges do not form triangles, if this is
possible. Then there exists a constant c,, > 0 such thatfor k < c,n, Uk is an extremal graph
of Problem 1 ; i.e. if

v(G) = n e(G) = e(Uk)= m(n, p-1)+ k ,

k,,(G)~--k,(Uk)=k f

	

n+i

O;Si ;gp-3

	

1

Problem 3. (ERDOs). How large can cP be in the theorem above?

Remark 1. If we add k + 1 or more edges to the first class ofG Kp _ 1(k + 1, k, k, . . . ,

k, k - 1), then each new edge will be contained only in (k -1)k' 3 KP's and it is easy to
see that this construction is better than .,UkP -1 ) . Thus Thaorem A does not hold for

1
cP>

p-1'
This paper contains an improvement of Theorem A (see Theorem 4 below) which

yields that in Problem 3 the answer is .c=1/(p-1). For p= 3 the proof of this was given
in [5] . The result will follow from a much more general theorem characterizing the
extremal graphs of Problem 1 for many values of n and E. Before stating our results we
introduce some notation.

Let p, n and E be integers such that p > 3 and m(n, p) ;S E < 2 , We write E in

the form

and set d= Lt] . Thus
m(n,d+l)SE<m(n,d+2) .
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We set k = E- m(n, .d + 1). The numbers p and d will be considered fixed and n large
relative to them .

The first theorem we state was proved for p=3 by GOODMAN [4] and it readily .
follows from results of MooN and MOSER [6]. We shall give a self-contained proof

because some steps in the proof will be used later .

Theorem 1. Let v(G)=n, e(G)=E, then

(1)

	

kP G) > t
n P

t

Theorem 2. Let C be an arbitrary constant. There exist positive constants 6 and C
such that if0 < k < on2 and G is a graph on n vertices for which

P

(2)

	

kP(G)
t

	

+ Cknp' 2

then there exists a Kin,, . . . , nd) such that En1= n, ni
-dnI

< C',k- , and G can be

obtained from this K,I(nl , . . ., nd) by adding less than C'k edges to it and then deleting
less than C'k edges from it.

Remark 2. Theorem 2 is a "stability theorem" in the following sense Let Uk be the
graph.obtainedfrom T"•d by adding k edges to it (see Theorem A), then the k "extra edges"

d-1 n p-2

are contained in (approximately) k
-2 d

	

Kr's and the graph T"-d has

t n P
KP's. Thus (2) means that G does not have much more Kr's than an extremal

t
graph. Theorem 2 asserts that in this, case . G" is very similar to T"•d . This theorem is
interesting only if k/n2 is sufficiently small.

Remark 3. Theorem 2 is sharp : C'..,.Ik- cannot be replaced by o(,Ik-), C'k can-

not be replaced by o(k) . Indeed, if we add 3k edges to and delete k edges from

Kd
(,n
+ k ,

d
- k , d,' . ,

d
, then for the resulting graph G

k G
)S-

(,n
P d
)+k,,2))

d-1 n I _
2< n P

t
+k d-1 n I _2

~d

	

(tj

	

-2 d

while

e(G) =m(n, d+ 1)+k

To formulate our main result we need to describe some classes of graphs .
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Definition 1. Let U0(n, E) denote the class of those graphs with n points and E edges
which arise from a complete d-partite graph So by adding edges so that these new edges
formno triangles. Let U 1 (n, E) denote the subclass where allnew edges are contained in .
the same colorclass of S o .

Definition 2. Let U2(n, E) denote the class of those graphs S with n points and E
edges which have a set Wof independent points such that S - W i$ complete d-partite,
and every point in W is connected to all points of all but one color-classes of S - W.

Theorem 3. There exists a positive constant 6 = 6(p, d) such that if 0-:5 k < an2 then
every extremal graph for Problem 1 is in the class U 1(n, E) if p ;>-4 and is in the class' -
Uo(n, E) u U2(n, E) if p=3. In this latter case there exists at least one extremal graph
in U1(n, E) :

We regard this theorem as a complete solution of Problem 1 for the values of n and E
under consideration . However, this interpretation requires some explanation, since not
all graphs in the classes U 0, U1 or U2 have the same number of K; s and hence, not all
of them are extremal . But once we know that our graph is in U0, U1 or U2, its structure
is simple enough to determine the best choice by simple arithmetic. Some remarks are
in order here :

Proposition 1. Let S e U 1(n, E) be extremal. Let So = Kin,, . . . , nd), n 1 z . . . ? nd
Then all edges in E(S)-E(S 0) are spanned by the largest class. Furthermore, Ini - nil51
for i, j > 2.

Given a sequence ; nl z . . . z nd, all graphs with the above structure have the same
number of K,,'s. Hence their structure is completely determined if we know the value of
n1 . This can be done by simple arithmetic which is not discussed here. We remark that it
turns out that

(3)
n d-1k

	

k

	

n 1k=d+
d

n+ n ni =-- ;-.+

Proposition 2. If S E U0(n, E) is an extremal graph, then (for k 5 Sn2) by moving all
edges of E(S)-- E(S0) to the largest color-class we can construct an e U1(n, E) for which
kk(3`) 5 k,,(S) . If we moved edges from a smaller class to a larger one, or if p ~:4, then
kp(S) > kAS), which contradicts that S is extremal. Thus if S U1(n, E), then p = 3 and all
the edges of E(S)-E(S0) belong to color-classes of maximum size in S .

Proposition 3. Let S e U 2(n, E) be an extremal graph. Then every x e W is connected
to all points of all but a possibly smallest color-class of S- W. Let Bo be a smallest color-
class of S - W. Then, if we change the graph S by connecting every x e W to all points of
S - W - Bo and an appropriate number of points in B o, we get another extremal graph S' .
This graph S' is in U, (n o E).
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These remarks make the following .conjecture plausible :

Conjecture : For every n and E (n >=no(p)) there is an extremal graph in U1(n, E).

Let us consider the case when p = d + 1 and-k <
d

. Let S be an extremal graph in

U 1(n, E) . Let So =Kin1 , . . ., nd) and n 1 . : . . >_nd . If the choice of S is not unique,
choose one with n1 minimal. We claim that n1 5nd+ 1, i.e. So = T".d. Suppose that
n, >= nd +2. Let r denote the number of edges in E(S) - E(S0). Then simple computation
and (3) yield that

n
(4)

	

r5k+ E

	

-n, 2 5
n
+0(1) .

i=1 d

	

d

We have
kp(S)=r n2 . . .nd,

but if we add r+ nd -nl + 1 edges to Kin, -1, n2 , . . ., nd _ 1 , nd+ 1), then we get a graph
S' with the same number of edges but, by the extremality of S and n 1 , with kp(S')kks(S) .
Hence

or

(5)

r •n2 . . .nd 5(r+nd-n l +l)n2 . . .(nd +1),

r~:(nl-nd-1)(nd+l) .

Now, either n1 5 nd + 1 and hence So = 7",d
1, which we wish to prove, or by (3),

nd = d + 0(1), by (4) and (5)

(n1 -nd -1)(nd+1) 5_
d +0(1),

and therefore n1 = nd+ 2, if n is sufficiently large. By Proposition 1 n,:5nd +1 = n 1-1 for
i z 2. Thus, if So is the complete d-partite graph of S', then So = T""dand so k = r + nd -
-n1 +1=r-1. By (5),

a contradiction.
Thus, assuming Theorem 3, we have proved

Theorew 4 IfE= m(n, p -1) + k, where k <
L

n 1 then for p > 3 the only, for p= 3

one possible graph with n points and E edges, containing the least number of Kr's is
obtained by adding k edges to a largest class of T"" d.
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Theorem 4 is clearly a sharpening of ERnas's Theorem L

We investigate one more special case . Let 0 < x < 1 and E ;t x (i), n-+ oo. Let S be a

graph in U I(n, E) with minimum number of K r's. Then

kp(S) ^
f(x)

n

where f (x) can be determined as follows . If 1 -
1

S x -<- 1 -
1

and S is obtained
d- -

	

d+1
from So = Kd(n l , n2 , . . ., nd), then we put n I = ( 1-a)n and for i=.2,

(Here { . . } is the number of edges in the first class of Kd(n1, . . ., nd), { . } .
an p _

2
-d -1 is the number of Kp's containing such an edge. The next two terms

d-1

	

p-2
are the numbers of Kp's containing 1 or 0 vertices from the first class .) Thus

kp(S) N {Aa2 +Ba+C} •ap-2=F(a,x)
n

. . ., d, by

where A = A(x, p, d), B = B(x, p, d), C = C(x, p, d) are constants . easily calculated:
d

d«
F (a, x) = 0 yields a. quadratic equation, from which the optimal a can easily be

determined. Substituting this a in (*) we obtain flx).
Define

g(x) lim .inf ks(G) e(G) > x
nn)

	

2

3

Figure 1 shows what we know about the function g(x) . The dotted line shows the

Goodman bound. This is equal to g(x) when x =1- d,d integer. The broken line shows
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Fig. 1

the improvement given by BOLLOBAS [1] . This proves that between these points g(x) is
above the chords. Finally, the continuous line shows the function f (x) . This is concave

between the points x =1- 1 . If the conjecture formulated above is true, it follows that
d

g(x) = f(x). Clearly g(x) <_ f (x) and Theorem 3 implies that for each d there exists an

ad > 0 such that if 1- 1 5 x <_ 1- 1 + Ed then f (x) =g(x). Unfortunately, Ed is so small
d

	

d
in our proof that we did not even dare to estimate s2 .

2. Preliminaries : an inequality for the number of complete subgraphs

Let G be a graph with n points and E edges. Set k, = k,{G). For each complete (p -1)-
subgraph U, let t,, u denote the number, of points connected to exactly p - i -1 points of
U. Let t i denote the number of induced subgraphs which consist of a KP and a point
joined to exactly p - i - 1 points of this K,_, . Clearly, for every U

P - 1

t i u=n-p+ 1
1=o

465
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(8)

and hence
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Yt;,U=t ; for i>2 .
U

(6)

	

. kp_1- (n -p+1)=pto+2t1+t2+ . . .+tp_1 .
,

Denote, for each complete (p - 2)-graph V, by r v the number of complete (P -1)-
graphs containing V Then

(7)

	

Erv= (P- 1)kp-1 ,
Y

since each Kp _ 1 contains exactly p -1 Kp - 2's. .
Moreover

frv
= t1 + P P

V 2

	

2

since any two Kp- 1's containing a given V yield a graph counted in t o = kp or t 1
depending on whether or not they are joined or not. Those subgraphs counted in t arise

this way uniquely. and those counted in ti arise this way P I times.

Introducing the "deviation from average"

qv= kp
1
(p- 1)-rv,

p-2

	

)
we have by (7)

Fqv=kp-1 •(P-1) - Y n
v

kp-i (P-
1)- qV

2
2

	

rv = 2 kp-2

	

=
kp-'

(p.-1)2 +E gv= (P- 1)kp-
v 2

	

v

	

2

	

p-2

This, to = kp, (6), and (8) yield that

nkp-i=Pkp+2

	

2 - "2
0 +t2+- . . .+tp-1+(P-1)kp-1

(Y-

	

)
=

2

=pkp+
kp_1 (P- 1)2 +~ qv-P(P-1)kp+(t2+ . . +tp-1)
P 2

to, u=p • to =pkp , tl , u=2t 1 ,
u U



whence

(9)

(10)

Thus

where

(9*)

In particular,

we have, by (11),

p(p-2)kp -
kp?

1(p-1)2 - n
kp-2

Thus Theorem 1 is proved .

Los
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P -

kp _ 1

	

kp 1
(p- 1)2- n +R

kp-1 p(p - 2) kp - 2

R

	

1
=	 {E q +(t2+

	

+tp_ 1)} .
p(p - 2)kp-1

k' >	1

	

kp- 1 (p- 1)2
kp-1 = p(p-2) kp-2

This formula was remarked by MooN and MOSER [6] .

-1 Proof of Theorem 1

First we give a lower bound on k;/kj - 1 . We shall prove . that

t-j+l n
{1 .1)

	

k3/k3-1
j

	

t
For j = 2

k2/k 1 = E/n = 1- 1
t

By induction on j we obtain that

1

	

t-j+1 n 2

	

t-j+2 n
kj+1/k3 (i +l)(i-l)

	

j

	

t~ -n

	

j+1 t .'

(we have used (10) for p=j here). This proves (11). Since

kp=k1(k2/k1) (k3/k2) . . . (k)kp-1), (k1 =n),

+ L.rgv+ (t2+ . +tp-1) .

n P-1(t-p+1)(t-p+2) . . .(t-1)

	

n P t
	 n=

t

	

p(p- 1) (p - 2) . . . 2.1

	

t
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By (9), (9*), (11) (applied with j = p -1) and (13) we obtain that

(14) kP i

	

1
P(P 2)

1kP-

>	
1

	

t

	

n p-1 t-(p-1)+1 n

-

	

-n
AP-2)-1 t , p-1 t (p-1)2

t n °

	

1
+Yq,+(t2+ . . .+tp_I^) _

	

- +

	

{~J+(t2+ . . +tP-1)I .
t

	

P(P-2)

This proves (12).
The method we shall use is the following. By an averaging process we show that

there must be a complete d-graph Kd in G such that .
(i) almost all the vertices of G - Kd are joined to exactly d -1 vertices of Kd ;
(ii) dividing the vertices of G - Kd into the classes CO, . . . , Cd , where C; contains the

vertices joined to each vertex of Kd except the ith one (i =1, . . ., d) and Co contains the
remaining ones almost all the pairs (x, y) (x e C ;, y e C;, i :#j) belong to G.

It is convenient to reduce the proof first to the case p = 3 . If p'< p and we know that
(2) holds for p, then by (11)

In particular,

t n 3

(15)

	

k3(G)< 3 3 + C"kn .

L. LovAsz and M. SIMONOVII

4. Proof of Theorem 2

The basic inequality we shall use to prove Theorem 2 is (under the conditions of the
theorem and with the notation of the previous proof

(12)

	

E qV +(t2 + . . . + tP _ 1) = 0(knP-2)

To establish (12) we shall carry out the proof of Theorem 1 a little more carefully .
By Theorem I we know that

(13)

	

kP_, >_

((kp-IlkP-2)(P - 1)2 -n)+F q,.+(t2+ . . . +tP_ I

kplkP.=(kplkp-I)(kp-I/kP_2) . . .(kP .

)(t-p+l)(t-p+2) . . .(t-p') n P-P~

=

	

p(P-1) . . .(p'+1)

	

t

and hence (by (2))

k- .

	

t, +C"knP'-z .
.P

l /k p,)

- "t

t >
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On the other hand, by (14),

t
~)3

1
( 16)

	

k3 24 3

	

+3{y_gv+t2},

where (14) is applied with p=3, V is a vertex of G, ry (of (7)) reduces to the degree
of V, and t2 is the number of (3,1)-graphs : of subgraphs of 3 vertices with I edges .

Finally, q ,= (p-1) k2
-

r v
= 2E -

a( V) measures how near is the valence of the
k,

	

n
vertex V is to the average valence . By (15) . and (16)

qv= 0(kn) , t2 = O(kn) .

Let W be a complete d-graph of G and let Awdenote. the number of vertices joined to
at most d - 2 vertices of W. If z is a vertex joined to at most d - 2 vertices of A w, then
there is an edge (x, y) in W forming a (3,1)-graph with z . A given (3,1)-graph is counted
only 0(nd-2) times inDw, hence

(17)

	

Y, Aw=O(kn) . 0(nd -2) = 0(knd - 1)
W

LetBw be the number of pairs (x, y) OE(G) such that either both x and y are joined to
exactly d -1 vertices of W but these d -1 vertices are different for x and y, or x is joined
to. all vertices of W and y is joined to exactly d- 1 ones. We can find a z e W joined to x
but not joined toy and this triple (x, y, z) is a (3,1)-graph . For a given (3,1) graph we can
find only 0(nd-1) W from which it can be obtained in the way given above . Hencet .

(18)

	

Bw= O(kn)O(nd-1) SO(knd)
w

Let Qw

	

q.. (Here V is a vertex!) Trivially,
VE W

(19)

	

E . Qw=O(kn) - O(nd - 1 )=0(kn') .,
w

By (17), (18) .and (19)

F, (nA w+ BW+ Q w) = 0(knd) .
W

By Theorem 1 applied with p=d=LtJ we know that the number of summands on
the left, kd(G) >=c l nd for some positive constant c l . Therefore the average of (nA w+Bw
+Qw) is 0(k). Thus there exists a W in G for which

(20)

	

Aw= O(k/n) , Bw=O(k), and qv= 0(.,i) if V e W .
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Thus, for j =1, 2, . . ., d,
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Let C, (i =1,	d) be the set of vertices of G joined to all the vertices of W but to the
ith one denoted by Y,• . Let Co be the set of verticesjoined to W completely and Cd+ I be
the set of vertices joined to at most d - 2 vertices of W. By (20), . ICd + 11= A w =

=0(
k
= 0(,/k) , and for every -V E W a(V) = r ~~ 2E - qV = 1 - 1 n + 0(-,A).

n

	

t

IC1I = I l st(V)1
n +0(

V1k)
#r

	

d

and therefore (by EIC,I < n)

O(,Ik-), and 1C01 = 0(,/k) .

A short* computation gives that if n; = n/d + 0(.,/k), then e(K1(n 1, . . ., nd))
m(n, d + 1) + 0(k) . Let us consider the following classification of the vertices of G : C, is

the ith class for i = 2, 3, . . d and COuC IuCd+I is the first one, n, is the number of
vertices in the ith class, i =1, 2, . . ., d.

By (20), more precisely, by Bw = O(k) and ICd + 1 I = 0(k/n), the number of pairs
(x, y) not belonging to . G where x and y belong to, different classes is only
+ 0(k/n)O(n) = 0(k) . Since

e(K1n 1 , . . ., nd))=m(n, d+ l)+0(k),

(i.e . it is not too small!), by (3) the number of edges of G the end vertices of which belong
to the same class is at most

E-(e(Kd(nl, . . .,nd))-BW-nICd+iD=O(k) .

This completes the proof.
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5. Proof of Theorem 3

The proof is rather long and subdivided into steps (A)-(U). Occasionally we shall
insert some remarks telling our plans for the next few steps . In steps (A) and (B) we
approximate the extremal graphs with complete -d-partite graphs and introduce some
notation. In (C) we show that if Kd(nl, . . .,nd) is the graph approximating our
extremal graph S, then nj -n3 is small .

All the inequalities below are stated only for the sufficiently large values of n.

(A) Let S be an extremal graph for Problem 1 for some n, E, and let

d=max {t:m(n, t+ 1) :!5 E} ,

while k=E-m(n,d+1).
It is clear that we may assume that k=o(n2) . Indeed, if the theorem is true for all

possible functions k = k(n) such that k= o(n) then there exists an E > 0 such that the
theorem is true for k < sn 2 (p and d are fixed throughout) .

(B) We can apply Theorem 2 to S. Let Z be a graph obtained from Turan's graph
r .d by adding k edges to it. Then e(Z) = E and so by the extremality of S we have

P

ks(S) <- kP(Z) =

	

(,n +0(knp-2)

Thus Theorem 2 applies and we conclude that there is a constant c l such that. S can be
obtained from a Kin1 , . . ., nd) by deleting and adding. at most cok edges. The
construction of S this way is not unique. Let us choose the graph Kin1 , . . ., nd) in such
a way that the number of edges to add is minimal. Let A1, . . ., Ad denote the classes of
Kin,, . . ., nd), IAiI=n; . Call the edges to be added to Kin,, . . ., nd) horizontal edges ;
the edges to be deleted from Kin 1 , . . ., nd) missing edges ; the edges which occur in both
S and Kin1 , . . . , nd) vertical edges.

Let h and m denote the number of horizontal and missing edges, respectively . Clearly,
h :5_ cok and m< h 5 cok . Moreover, m :!g h - k

471

Set

If x e Ai then let

and

k=E-m(n,d+1)={e(KIn l, . . .,nd))+h-m}-m(n,d+1)5h-

Qt (x) = IA,nst xl

ar (x)=lA,-stxl

Q
+(x)=U

; (X)

or- (x)= E a (X) .
i#1
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O, (x)

C	0" \ It' ~

627)\\,

006 001"I"Mi
1~

(

013"(4

Fig. 3

Q- = maxQ -(x) .
x

Note that the choice of the partition {A 1, . . Ad) implies that

dg (x)

Thus a +(x) and Q- (x) denote the numbers of horizontal and missing edges adjacent to
x, respectively .

Finally, set

(21)

Hence

at(x)>a+(x)

n
is +(

x) ,e

d
for all x, so

(22)

	

Q + < n .
d

Introduce the numbers

d-1 n P-2

	

d-2 n P-1

R ' p-2
-

	

R`

	

p-i d

These will occur frequently in various approximations .
Let

Sd(n t , . . ., nd) = E

	

fl
i,5_ . . .Sio i=1

i

If n 1 ,	nd are integers, clearly,

Sd(n 1i . , ., nd)=kP(Kd(nl, . . ., nd))



=min (n 1 , nd). Then

e(S) <_e(KJn1, . . ., nd))+clk = Sd(n 1, . . ., nd)+c l k

2 n1 +n2 n1 +n2

	

1
= Sd

	

2 ,
2

, n3 , . . ., nd +cl k- 4(nl -

2 n

	

n

	

1
SSd d , . . ., d +clk-

On the other hand,
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(C) We show that n,= d +0(-,,,k-). For let e.g. n1 max (n 1 , . . .,

e(S)
=Sd

d,
. . .,d +k+O(l),

which yields that n 1 -n2 =0( ).

(D) Let u, v e V(G) . We denote by asu, v) = a(u, v) the number of KP's in S + (u, v)
containing the edge (u, v). We can obtain quite accurate estimations on these numbers .

. . . The first part of the proof consists of steps : (A)-(M). In steps (D)-(M) we obtain
step by step more and more information, sharper and sharper inequalities for
quantities like

(i) a(x, y), when (x, y) is an edge, in particular, a horizontal one
(ii) a(u, v), where (u, v) is a missing~edge

(iii) a + =max a+(x)
(iv) t=t(x)= : min (Q + (x), a-(x))
(v) a+(x)+a+(y) for the edges (x, y) and for the missing edges (x, y) . . .
Let first (u, v) be a horizontal edge. Then

(23)

	

a(u, v) -> R1-[Q-(u)+Q-(v)]R3+0(_,1k_
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Indeed, let us count the K P's containing (u, v), as follows. Let e.g. u, v e A 1 and S denote
the graph obtained from S by filling in all the missing edges . The number ofKP's in S
containing (u, v) but no other horizontal edge is

Sa-i(n2, . . .,nd)=WI d, : . .,d +0(f nPj3)=R 1 +0(~nP
-3 ) .

Let us delete now the missing edges which we have filled in . A missing edge disjoint
from (u, v) destroys at most O(nP-4) KPs and since there are only 0(k) missing edges,

this way we destroy only 0(k) • 0(nP -4) <0(f nP -3) KPs. If we delete now a missing
edge incident with u or v, say one connecting u to a point w E .A2, then we destroy at
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most
.Sd-2(n3, . . .,nd)=R3+O(

	

n" -4)

KP's counted above. So deleting all such missing edges we destroy at most

+ar (v)) • R3+(~-(u)+Q-(v))O(

	

nP-4))W(U)

		

.

(Q-(u)+Q-(v)), R3+O(%n
P-3)

Kr's counted above. This proves (23) .
Similar computation yields that if (u, v) is a missing edge then

(24)

	

a(u, v) :-5R2 +[Q+(u)+a+(v)]R3+a+(u)a+(v)R4+G(-.Ik- nP-3)

(E) The extremality of S implies that if (x, y) e E(S) but (u, v) 0 E(S) then

(25)

	

a(x, y) ;5 a(u, v)

Indeed filling in (u, v) creates a(u, v) Kps, and then deleting (x, y) destroys at least a(x, y)
of them : filling in (u, v) may create KP's containing (x, y), this is . why the deletion of (x, y)
may destroy . more than a(x, y) Kps. By the extremality of S

kr(S) < k P(S + (u, v) - (x, y)) <__ ks(S) + a(u, v) - a(x, y).,

proving (25).
Now (25) will be applied in the following way: knowing more and more about the

structure of the graph we shall be able to obtain always better and better bounds on
a(x, y) and a(u, v); then (25) in turn gives more information on the graph. Another
inequality, similar to (24) and (25) is that

(26)

	

a(x, y) -,S R 1

if (x, y) e E(S) . For using induction on k, we know. that

kP(S) kP(S--(x, Y))+a(x, y) ?k,(G) + a(x, y)

for some G E U1(n, E - 1). Let G a U 1(n, E) be obtained from the same Kin1, . , nd
as G. Let n 1 >_ n; . Then .

k,,(G')=k,(G)+SA=1(n2, . . ., nd)5kP(G)+R1

and hence

k,(S) >-- k,,(G) +a(x, y) ~; kAG') + a(x, y)- R1



(28)

x
-(x) = 2m S 2h. Thus
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(F) Let (x, y) be a horizontal edge and (u, v) a missing edge. Then (23), (24) and (25)
imply that

R, -R2 ;9 [Q-(x)+a-(y)+a+(u)+Q+(v)] •R3+

+Q+(u)a+(v) • R4+O(J np-3)

or, dividing by R3 ,

n

d
<-Q -(x)+

(27)

(G) The previous important inequality is used first to bound the number a+ from
below. Using that

Q+(u), Q + (v)S a + < -,

we obtain for each horizontal edge (x, y) that

d :9a-(x)+a-(y)+2Q++
p-3 a+ +0(~)

Summing for all horizontal edges (x, y), we get

a-P-rc

;5Q+a -(x)+ha d-
	 p+1

+0(~h)<
x

	

p+

SQ+ At (2+
2d-P+1 +O(,Ik h),)
d-p+2

Q+>- d p+2
n +0(_,~Ik-)>=

Ant +0(~) .

4d-3p+5 d

(H) Our next aim is to show that for every x, one of a +(x), a I (x) must be small .
More precisely, let

t=tx=min (a+(x), Q-(x))
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We want to show that

(29)

Set a; (x)=a; . By the choice of the partition, more precisely, by (21),

~,>_a+(x)>_t

The number of K p's containing x is

t = o(n) .

(j =1, . . . , d)

kp-1(Kd(a1, . . ., ad))+O(knp -3)=Sd-1(a 1 ,	ad)+O(knp -3)

where the second term accounts for the K p's containing a horizontal edge not adjacent
to x and also for those p-tuples consisting of x and p-1 neighbors of it which span a
missing edge (since h,,m S c1 k, see (B)) .

Suppose that e.g . x e A1 . One of the numbers az (x), . ., a- (x), say a2(x), is at
least t/d.

Replace s=Lt/dJ edges connecting x to A1' by Lt/dJ edges connecting x to A 2. Then
the Kp's not containing x remain the same while the number of Kp's containing x
becomes

kp-1(Kd(a1-S, a2 +S, a3, . . ., ad) +O(k np -3)=

Sd-1 (a1 -S, a2 +S, a 3 , . . ., ad)+O(k np -3)

The number of Kp's cannot decrease by this operation, hence

Sa -1 (al ,

	

ad)- Sa -1 (al -S, a.2 +S, a3 , . . ., ad)<_ O(k np -3) .

But the left hand side is

(30)

	

s(a2-C1+S)Sa-i(a3,

	

ad)>S2tp-3> 12 tp-1
2d2

whence

(I) Let x0 E A, be a point with

Then by (28) and (29),

Clearly x0 has a neighbor yo e A, with

a ,(Xo

a-(xn) = o(n)

1

	

p-3
t=O(kp - ' •n p-1)=o(n)-

a (yo) <_ m/a + = O(k/n) = o(n) .



Hence, by (23),

a(xo, yo) >Ri +o(np -2 ) .

So, by (25), for every pair (u, v) 0 E(G) we have

(31)

	

a(u, .v) >_ R 1 ±o(np -2 ) .

Applying (27) to the horizontal edge (x o, yo) and any missing edge (u, v) . we obtain that

(32)

	

o+ (u) + a+ (v) +
d

d

p

-+ 2 Q+(u) - a +(v) z d + o(n)
P

(J) Now we can easily show that a - = O(, 1k). First we prove the weaker

(33)

Indeed, let v be a point with

( 34)
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_ = o(n)

For c=	either a +(v) >_ cn, and therefore (33) follows from (29), or Q +(v) 5 cn .
4d(p- 3)

In the second case for every missing edge (u, v) by a+(u)<_
d

d p-3
or '(U) a + (v)z n .

n d-p+2

	

4d,
By (32) .

Q+(u)>_
d

+o(1,)- -cn>_ .

Therefore the number of such points u (i.e . a-(v)) is at most

(k)
-v( )

n

Now we improve (33). It implies that in (30) (in (H)) or; = o (x)
= d

+ o(n), hence
n p - 3

82tp - 3 can be replaced by S2 .

	

. Hence in (H) we can improve t = o(n) to

0(f), in (29); thus or '(xo) = O(,/k-), which, in tum, yields that

~- =o(,lk)

477
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An important consequence of (34) is that for any vertex x e V(S)

a(x) = 1- n + a' (x) + 0(,/k) .(35)

L. LovAsz and M . SIMONOVITS

Here we use n; =
d
+0(,-),too . Another consequence is . that if u E A; v E A; and

i # j, then

(36)

	

a(u,v)=R2+[a+(u)+a+(v)]R3+a+(u)'a+(v)`R4+O(-,,,/k np -3) .

Indeed, if we fill in all the missing edges adjacent to u or v, by (34), we create only
0(,Irk nP -3) Kr's containing (u, v). In the resulting graph an argument, similar to the
proof of (23) works.

(K) Let (x, y) E E(S) (where (x, y) may be a horizontal or a vertical edge) . We
claim that

(37)

(37*)

a+(x)+a+(y)<
d
+O( ) .

By (35), an equivalent form of (37), independent of the partition is

a(x) + a(y) <=
( d)
2 - • n + 0(-,Ik)

For let us assume first that x, y are in different classes . Then, by (26) and (36)

R1 _ a(x,y)?R2+[a+(x)+a+(y))R3+O(

	

nP-3),

37). (Here we use that R R R nproving (

	

~ - 2 = 3 •
d

.) If x, y e A 1 , (say) then they have at

least a+(x)+a+(y)-IA1I neighbors in A 1 in common and this yields

R1 >=a(x, y)? R1 +O(f - nP-3)+(a+(x)+Q+(y)-IA1I) -

d-1 n p-3
.

p-3

	

+O( jf nP-4)

This proves (37k for horizontal edges, too .

(L) An important consequence of (35), (36) and (37) is that there exists a c l >0 such

that if a(x) >_ 1 1 n + c l lk, then the neighbors of x span no missing edge . For
2d
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suppose that (u, v) is a missing edge whose endpoints are adjacent to x . Let

a(x)= 1- 1 n+r, r>0 .
2d

Let x e A, and u 0 Aj. By (25) and (36)

05 a(u, v) - a(u, x) = [a+(v)_ Q+ (x)JR3+

+Q+(u)[Q+(v)-Q+(x)]R4+ p(-,,/k - nv-3)=

Since (u, v) a E(S), by (37), applied with y = v,

(M) Let us fix a c2 > cl . Set

=~x e V(G) : Q+(x)> n
2d
+c2

Bi=A,-V,

b,=IBJ .

Let, further, hi denote the number of horizontal edges spanned by Bi and mij the number
of missing edges between B, and Bp

Note that if (u, v) is a missing edge, u E B1, v e Bi then, by u 0 V,

n

	

r
Q+(u) S + c2 V k

and hence (32) implies that there is a constant c3 > 0 such that

or '(V) > can
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Hence there are at most h;/can = 0(h,/n) vertices in B; incident with missing edges of,
S - V This in particular implies that

m,;=0h
;h3

n2
(38)

Condition (*) .
If v e B, and t, > 1, then we delete at most

edges (v, w), w e B3 .
The resulting graph is S I". (See Fig. 5 .)

L LovAsz and M. SmoxovITs

(N) We shall carry out now a number of transformations which finally lead to a graph Q .
with v(Q) = v(S), e(Q) = e(S) and k,,(Q) < kr(S) unless S is of a very simple structure . (By the
extremality of S the second one must be the case.)

(i) First` construct S-V= S' .
(ii) Second, fill in the missing edges in S', to get S".
(iii) Third, rearrange the horizontal edges in S" as follows . Let B; span h; horizontal

h
.edges. Find the least number t; such that t,(lB,f - ti) >_ h ;. Clearly, t; = 0 i + 1 = o(n).

n
Further, hi s- tin . Let F, Q B„ IF11= t, and D; = B, - F,. Connect t; -1 points of F, to all .
points of D,, and the remaining point u1 of F, to h, -(t, -1) (IB,1 - t,) points of D,. This
yields the graph S"'. (See Fig. 5.)

(iv) Delete m,; edges spanned by B,uB;. The precise way of selecting these edges
depends on the values of m,;, t,, t1, h, and h; and will be given below, when these cases will
be distinguished. To be able to start the general discussion, first we assume only the
following .



• 0 .0 . .

(39)

•

	

• •	
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i
I

i
I
1
I
I
I

I
1
I
I
I
I
I

	 s	
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I
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I
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Fig. 5

h, -(b, - r) (b, - t,)

edges of S", since B i X represents at most (B, - X I

2d
n +

R

d
+ o(n) the minimum is smaller for S'" .

F

(v) Connect each x e V to a+ (x) points of Bi which span the fewest edges in .Sly. The
resulting graph is Q. Clearly v(Q) = v(S) and e(Q) = e(S).

(O) .We .first analyse the effect of (iii) .'Call a K,, regular, if it contains at most two
points of each B,. Clearly, every Kv in S"' is regular. On the other hand, it is easily seen
that S" and S"' . have the same number of.regular K.'s . Thus kp(S")>=kp(S")

Another property of S"' we need is that for every r (0 ;5 r :5 b,) the minimum number of
edges spanned by a set X of r points of B, is for S"' less than or equal to that of S" . This is
dear for r 5 bi - t,, since then X s B, yielding the minimum is an independent set in S"'.
If r Z b, - t i + 1, then X spans

edges of S"' : we take all points of B, but b, - r ones from F, - u . If IXI = r, X Q B,, thenX
spans at least

h, -(b i -r)
L

+c2

-,Ik-) edges . By b, - t, =
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(P) We use the previous considerations to show that

(40)

	

kp(Q) - kp(SIV)< kp(S) - k0').

The left-hand side is the number of KP s in . Q containing any point in V. The right-
hand side is the number of such Kp's in S. (Thus the meaning of (40) is that the
transformations do not increase the number of Kp's meeting V) It suffices to prove that
each x c- V is contained . in no more Kp's of Q than of S. Let x E V and set X=stsx.
Without loss of generality we may assume that stQx = X (this only means relabelling of
the points). Let Sx and Qx be the subgraphs of Q and S respectively, induced by X. :
What we want to show is that

(41)

	

kp_I(Sx)kkp_1(Qx)

Set C 1 = Bin X, and let y, and S1 denote the numbers ofhorizontal edges induced by C i in

S and Q, respectively . Let us compare the numbers of Kp _ I's in S and Q,. containing one
horizontal edge from, say, each of C I , . . ., C, and no other horizontal edge .

By (L) and the definition of V X spans no missing edges in S. Thus, in S, the number
of .these Kp_ I 's is exactly

(42)

	

yI, . . ., yy S5-2v- ' (ICY+ II, . . ., ICA •

The corrresponding number in Q is at most

(43)

	

SI . . .6V Sj -2 v- ' (IC,,+Ih

	

ICa)

Since ai 5 y, by (0) and the construction, and furthermore, every Kp . I in Qx, being
regular, is taken into consideration in the terms (43), the inequality (41) follows . (S may
contain Kp _ I's not counted in the terms (42), namely those containing three or more
points of a Ci.)

(44)

(Q) The previous section and the extremality of S imply that

kp(SIv)> kp(S') .

Since every Kp in SI" is regular, the number of regular K p's in S" is at least as large as
the number of regular Kp's in S'. Since step (iii) did not change the number of regular
K,'s, it follows that the number of regular Kp's created in step (ii) is at least as large as
the number of regular K p's destroyed in step (iv).

Let Oi3 denote the number of regular Kp s created when the missing edges betweenBi
and BB are filled in; let T i denote the number of regular Kp's destroyed when the my
edges corresponding to the missing edges between Bi and BB are deleted in step (iv).
Note that VJ and !I iJ depend on the order in which the edges are filled in and deleted, so
such an order must be fixed . However, this order will have no importance.



Therefore, by (45) and (46),

mij=
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The following (unfortunately, rather tedious) analysis will show that there is a c* > 0
such that

(45)

	

!ij > 0ij _ e*
. -,,Ik n° - 3

and the stronger inequality

(46)

	

Wui_4 ij+d2 •-c* V k nP -3 .

holds, unless either my =0 or ti=tj=my=1 .
The assertion above that "the number of regular K.'s created in step (ii) is at least as

large as "the number of K .'s destroyed in step (iv)" means that

or t i =tj=mij =1

for every i and j.
So let i j be given such that m.j * 0 (if my = 0 we have nothing to do). Let us call a

regular KP to be of type (p = 0, 1, 2) if it meets both Bi and Bj and contains U horizontal
edges in BiuBj . Let 0µ denote the type p K.'s created in step (ii) and let Y',, denote the
type p KP's destroyed in - step (iv).

Below we shall first establish some upper bounds on 0µ and (lower) bounds on lP'µ .
Then, using some case distinction, we, shall specify, how to delete the mij edges in step
(iv) of (N) and show that in each case

FIj-Vj =(Fo + F j + F2) - (0o + 0i + 02)

is "too large", proving (46) or (45). What is an annoying but natural feature ofour case
distinction that we shall have the most trouble with the cases, when t i and tj are very small
(1 or 2!).

When an edge between Bi and Bj is filled in, the number of type 0 KP's created is at
most

R2 +O(

	

-nP- 3) .

The corresponding numbers of type 1 and type 2 K.'s are

CQS(u)+QS(v)7R3+O( • nP-3)5
n
dR3+0(f • nP -3)

2
a (u)a (v)R4 + O(,/k • nP - 3)5

~Z R4
+ 0(J • nP- 3) ,

483
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(we have used the definition of V). So

(47)

	

00 ;5 mijR2 + O(

	

• np- 3mij)

On the other hand, the numbers of Kr's of types 0, 1 and 2 destroyed by deleting an
edge (u, v) in step (iv) are

(50)

(51)

L LovAsz and M. SimoNovns

respectively. This would be trivial if we counted the, Kp's in S"' containing (u, v).
However, we fixed an order of deleting the edges between the classes Bi and Bp. More
precisely, we fixed an order on the pairs (Q), and if (i*, j*)preceeds (Q), then we should
not count here the KPs containing (u, v) but at the same time containing a (u*, v*),
u* a B,., U* e By., already deleted . The number of such KPs is 0(m n" _ 4)=0(k np-4),
for the edges (u*, v*) disjoint from (u, v). Let us estimate the number of those destroyed
by the removal of an edge (u, w) . If t, =1, i .e . F,= {u} then hi < b, and so, by

.

(38),

m„=0
h,h,

	

n • k

	

k

-

n2
=,Q

	

=0 -
n2

	

n

for every 1. Thus only 0(
;k

edges adjacent to u are removed at most and so the number

of Kr's containing (u, v) and an edge adjacent to u and removed previously is at most
k

3 =.0(k • nP-4) If t, ~ 2 .then by Condition (*) of (N)/(iv) the number of edges
n

adjacent to u and removed previously (by (38) and h1 :5_ t, • n) is at most

2: 0

	

S 'hih1 = 0
hi = 0 k

	

ttint`

	

n

	

n '

and we conclude as before. Thus (50), (51) and (52) are proved .
Now we. need some case distinction . In the cases below we can always satisfy

Condition (*) of step (iv) in (N).
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Case (Q1). mij 5 (t, -1) (tj - 1). Then we can remove m,j edges connecting F,- u, to

Fj - uj . For such an edge (u, v)

r (u),

	

n
a . (v) = d + 0(f)

and

whence , by (50), (51) and (52~

To kmj jR2 + O(mgj
J

m,j
2n
.d R3+O(mij./k

n2
> m,j

d2
R4 + O(m,jJ

Comparing with (47), (48) and (49) it follows that

Vrij

	

Con" -s

proving (46) and therefore (45), too.

Case (Q2) . (t, -1) (t; -1) < mjj <= 4(t, -1) (tj -1). Then we can remove all edges
between F, - u, and Fj- uj and m,j - (t, -1) (tj -1) edges between F, - u, and Bj Fj.

For the first (t, - 1) (tj - 1) edges

Q+(u), Q+(v) .! + O(~),

for the rest still

aiu) d + of )

Hence, as before,

WO-0o>af • n" -3m,j),

(t,-1)(tj-1)dR3+O(lk- •n"-3m,j),

4(t,-1)(tj-1)-m n2

72 -
~2

>_	
4

	

i~•

d2
R4+0(-,/k - n" - 3m,j) ~ O(~ j
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By mij5 4(ti -1) (tj -1) we have

Wij- 4sij Z (ti -1)
(tj

-1)d R3

(t, 1) (ti -

By (38),

L LovAsz and X SnloNovnn

O( - nP-3mij)=

[,n
R3+O(~ •nP-3) ;2: csnP -2 ,

proving (46) (and also (45)).

Case (Q3). mi j k titj, ti k 2, tj >_ 3 . In this case remove the m ij edges so that all edges
between Fi and Fj are removed. Then no type 2 KP's remain and hence

!1'2 - 4s2 2-vt 0 .

We have, similarly as before,

70-00 Z 0(J • nP- 3mij) ,

and since (ti -1) (tj -1) of the removed edges satisfy QS:.(u), as.,(v) ~ n/d + 0(,Ik-), and all

but at most one of the rest has at least one endpoint u with 4(u)2;
n

d
+ O(,Ik-),

we have
I '1 ~~Z((t1-1)(tj-1)-1)dR3+O(

	

•

hihj
mij=0 2 = O(titj)=0((t i -1)(tj-1

n

We conclude as before.

Case (Q4). ti = tj= 2, m ij-2-:4. By (38), mij = 0(1). First we try the same construction as
in case (Q3). As before we have

I'2-02Z0,

-3mi j) .

1

and looking also at the edges connecting u i toFj - uj and uj to Fi-u i we get, similarly as
above,

7 1 - 01 1 [a 4ui) + Qs"(uj)] • R3+ 0(, . nP- 3)

Now we are home, unless
1

QS'(ui)+
6;4q ;S 4

IV

S
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(Here and below we shall use 4 kn2 as a quantity which is o(n) and for which
= o( 4(W').) In the latter case we modify the rule used to delete the edges in step (iv).

We do not delete (u,, uj), but delete an edge between Figui and B j -Fj, instead. Putting
(u i , uj) back creates at most

[a'.(u,) + a' uj)]R3 + ss•(ui)aS(uj)R4 + O(~ • nP- 3) = o(nP -2 )

KP's, while deleting the edge between Fi - ui and Bj Fj destroys at least

n
dR3+O( k nP -3)

!1''j > r ij + c6n
Kr's. Thus

Hence

(53)

-2

proving (46) . So we are finished again. The cases treated so far cover all cases with ti > 1
and tj>1 .

Case (Q5). ti =1, tjk 2, m i jS tj -1 . . The argument is basically the same as in case

(Q 1). However, we have to improve (48) and (49). Now a j(u) S min
2d + c

2~ , h i
for any u e Bi . Thus for any missing edge (u, v) (u e Bi, v e Bj)

QAu) + air v) S +, min
n

hi + O(-v/k)
2d

	

2d
.

n

	

n
01 5m ij

	

+ min

	

, hi

	

3+o(J •nP-3mij),

n

	

n
02 5 mij .

2d

	

2d
'min

	

, hi 4+0(-.,/k- •0 3 rni j) ,

On the other hand, deleting m i j edges connecting u i to Fj -uj we obtain that

n
9`i Zmi

d
+ hi . 3+O( 7 • nP -3)

W2

	

'mij • n .• h,R4 + O(,/ - nP - 3) .

By (47), (50), (53) and (54), '

We are home.
"z dVj+c7nP- z
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Case (Q6). ti =1, mij >_ tj k 2 . By (38)mi j = 0(1), again. Then we delete all lines between ui

and Fj and mij- tj other lines between Fj -?uj and Bt- ui . Then, as above, we have

71 Z (tj-1) (,n + hi +(as,(uj)+hi)+(mij-tj)d 3+O(~ .np-3)

and by the same argument as in case (Q3), !F2 >_ 02 . Hence we get in the case

hi z , using (53),

n
and in case hi 5 ,

Hence (46) is proved, unless tj = 2, 4.(uj)S 4 kn2, hi 5n + 4 kn2 . Even in
this latter case

gWij-Oij2.0(.,Fk . np -3)

Put the edge (u i, uj) back, and delete a line between Fj - uj and Bi- u i instead. This way
we destroy at least

more Kp s than before.. This settles this case.

Case (Q7). t, = tj =1, mij z 2, and e.g . hi ~; hj. Again, mi j = 0(1). Now we delete (u,, uj)
and mij -1 horizontal lines . As before,

n
tjhi+4(Uj) -r a 3

R3+a(np -2)

Note that in this case we deleted only one vertical edge . Thus

To = R2 + 0(v/k , np -3) .



On complete subgraphs of a graph II

	

489

For 00 we of course still have (47). Moreover,

71>_(hi+h;)R3+(m, -1)R 1 +0(J -nP -3)_

hi+h;+(mi;-1)n
d
R3 +(mt;-1)R2+ O(,/k •np- 3) .

We have to estimate 01 a little more carefully than before . Consider two missing
lines (u, v) and (w, t) in S', U,W E Bi, vita B;, where, say, u * w (we allow v = t). Then

(aSIu)+ a9v)] +[as(W)+ ajt)] <_

5(hi +1)+a v)+a;(t)Shi+h, + n + O(fk) .
Hence

4 1 5 hi +h; +
n

+ (m;;-2) d.' R3 +O(

	

• nP -3) .

Thus

rij-oij z fR3 +O(Ji . nP 3)-- -,

proving (46) again .

Observe that the cases (Q1)-(Q7) prove (46) unless either mi; = 0 or mij = t i = t; 1 .
Thus we have proved that for every (i, J•) mij = 0 or mij =.t, == t;=1 . Let us consider the
latter case.

Case (Q8). mij = ti = t; =1 .Of course, we remove (ii i , u). Denoting the missing edge of
S' between Bi and B; by (vi , v;) we have, by the same type calculations as above,

,pij
- 41' > [(h i - ask))+ (hj -a 4v;))]R3+ 0(-.Ik • nP- 3)

Hence indeed !I' - 0 -(

	

nP -3) and it also follows that

as(vi) khi - a kn2

	

aavj) >_= h; 4 kn2

As we have seen at the end of (M), a + (vi) 2 can. Thus hi x a (vi), which implies that vi is
the unique point in B i with the largest horizontal degree . Hence we may assume that
vi = ui and v; = u; . Hence S' and S 1" have the same missing edges. Therefore step (ii) and
(iv) can be ignored : Q is obtained from S by steps (i), (iii) and (v).

Let us consider step (iii) again . If step (iii) is applied to S' (instead otS"), then the
number of regular K; s remains the same, if B, meets no missing edge (v i, v;), then the
number of regular KP's decreases when a horizontal edge in B i.non-adjacent to vi is
replaced by a horizontal edge adjacent to v i . (40) is not influenced by omitting steps-(ii)
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and (iv) . Thus we get that kp(Q) ~!: kp(S) . By the extremality of S kp(Q) = k p(S) and if (vi , vi)
is a missing edge (vi aBi, vj e Bj), then all the horizontal edges of B i are adjacent to vi . It
also follows that no Bi contains a triangle in S. Hence, if x e V, we must have equality in
(41), which implies that then either x is joined to all points ofBi or the neighbors of x in B,
are independent in ; S.

(R) We study now Q. Since Q is another extremal graph, it follows that there is at
most one i such that ti z 2 . Indeed, if t,, tj >= 2 (i *j) then, by (Q), mi j= 0. Considering an
edge connecting F,- u i to Fj- uu we would get a contradiction with (37). So suppose
that t2 , . ., td51 and thus Fi = {ui} or Fi = (b for i > 2:

Consider now a pair of points x e Bi, y e Bj. By x, y 0 V

(55)

	

ai (x) < b i - t i

and

(56)

	

at(y) < bj - tj .

If a+(4 v+(Y)>O, we define the shifting of edges from x to y as follows . Replace t
horizontal edges of form (x, u) by t horizontal edges of form (y, v) . Clearly, the number of
K; s of the resulting graph Q(t) is a quadratic function of t :Ate + Bt + C, where A5-0.
Therefore either Q(1) or Q(- 1) has less Kps than Q, unless A =0, which means that

(57)

	

either p = 3 or (x, y) is a missing edge .

In both cases no Kp is containing horizontal edges of type (x, u) and (y, v) at the same
time. Now kp(Q(t)) is linear :

kp(Q(t)) = k,(Q) - (a(x, u)-a(y, v))t ,

(where a(x, u) and a(y, v) are independent of the choices of u and v).
Since kp(Q)5min(kp(Q(-1)),kp(Q(1))), thus

(58)

	

a(x, u) = a(y, v)

and taking °t as large as possible we obtain a

	

Q(t) for which either

(59)

	

stQ(x)r Bi=

or .

(60)

	

stQ,(y)r)Bj-Fj .

This operation'is called shifting of edges from x to y. We shall use it to prove that there is

at most one missing edge in Q - V (i .e . in S- V).



First we prove that

(61)

(62)

and
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aQ(x)= 0(,/k-) ,
n

QQ(Y)= +
d

(63)

	

Q x)=Q x) _ + O( k)

Finally,

(64)

	

x, y are not adjacent to any point in V.

Indeed, if (x, y) is a missing edge, then (Q8) describes the situation : x = u i , y = uj and
all the horizontal edges of B i are adjacent to x in Q, and in S . Hence

(65) (Q (x) = U145 n + 0(.,/k) and
QQY)=,,Y) 5 + O(J) .

2d

	

U

Thus (60) implies

(66)

	

Q(x) =Qax) + aay)- (4(Y) 5
d -

Q(y) + .O(,/k) s 0(,/k)

This proves (61) in the second case and it is trivial, when (59) holds. (62) is trivial,
when. (60) holds. If we know only (59), then we apply (32) more precisely (to have

O(,Ik-)), (34). and (27), yielding a+(x)+Q+(y)+ d . p-3 c+(4 Q+ (y) < n +O( ),n d-p+2

	

d
obtaining (62) again. (63) follows from (65) and (66), where we have equality .

Finally, if w e V, then, by (62), (4(w)+QQ(y) >
= 3n

2d +
O(.,, -), therefore, applying

(37) to (w, y) in Q' we obtain that w and y are not adjacent in Q, proving (64) .

Let now (x, y) and (x', y') be two missing edges and assume that y and y' are in B j
and B1, wherej #j'. By shifting the edges into y and y' we can achieve that . a + (y) +

WO
2n

+o(n) in the obtained Q" .
d

By (35) and (37*), (y, y') $ E(Q"), hence (y, y') is a missing edge in Q and S as well .
(Since the optimal partition may change during shifting the edges, we used (37*).) Now

we shift the edges from y to x in Q but leaving c8,,/k edges at y, where c8 is a'sutliciently
large constant. This will ensure that the arguments used to establish'(32) in S work .in

Q as well. However, the missing edge (y, y') contradicts (32): a+(y)=O(.,1k-) and
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Q+(y') =
n

2d +
O(. 1~). Thus we have proved that Q - V and S- V contain at most one

missing edge .

(S) . . . Below, in (S), (T) and (U) we complete the proof. In (S) we investigate the case,
when Q -. V has no missing edges and at least two B, -'s contain (horizontal) edges . In (U)
we observe, that the remaining case, when Q - V has (exactly) one missing edge, can be
reduced to the cases (S), (T). Case (S) will -be subdivided into (S1)-(S4) according to the
distribution of the horizontal edges in B i's. The basic method is to shift the edges so that
the resulting graph contains an edge contradicting (37) of (K). Most of the difficulties
occur when p = 3 .

First we prove the
Saturation principle . Every xe .V. is joined to all vertices of all but one sets Bi-Fi,

where for hi = 0 F;
Indeed, if there are a B, - F, and aB; - Fj not all the vertices of which are joined to x,

then delete an edge (x, u), u e Bj -Fj and add an edge (x, v), v e Bi -Fi . One can easily. .
check that the number of K P's of the resulting graph Q' decreased if a (x) < Qj (x) :

All Bi -Fi and Bj-Fj are independent sets, and therefore the number of Ks's either
not containing x or containing x and only one vertex from BiuBj remains the same,
whilethe -number ofX.p containing x, a u eBi- Fi and a v e Bj-Fj is proportional
to Q+(x) aj(x), that is, decreases . This contradiction proves the saturation principle.

Now we describe the structure of S in the case when Q - V (or S - V) has no missing
edges and at least two sets B i contain horizontal lines. Assume that the indices are
chosen so that h 1 >_ h2 Z . . . ~_*hf>0, hf+1 = . . . = hd =0. So we deal with the case
when f z 2 .

Case (S1). :Suppose that (F1(='2 and a u 1)<b1 -t1 . It follows by (Q) that
(F21= . . . = (FfI =1. Also note that p = 3 by (57). Shift as many horizontal edges .of Q
incident with u1 , . . ., uf _ 1 to uf as possible. Since uf is adjacent to F 1 -u1 whose points

have degree b1 -t1 =
n
d +

O(N Jk), by (37) its horizontal degree cannot grow too big

during this shift, i.e.
Qgul)+ . . . +aLuf)=O(J ) .

We shall prove that each x e V is joined to each v e B2v . uB, . Here we need the
Strong saturation principle. If f >_ 2, then each x e V is joined to all the vertices of all

but one sets B1 B1 -F1 +ul , B2 , . . ., BB. Indeed, fix a ui a Bi -st(x) when hi =O. If e .g .
x e V is not joined to a v e Bi and a w e Bj, then it is neither joined to ui e Bi and uj eBj .
Assume that a+(x)(x) ~ aj (x) . First shift all the hi edges incident with ui to some ui (where
l= j is also allowed if hj > 0). This does not change the number of K3's. Then replace an
edge (x, z) E E(Q) by (x, u i) : now the number of K3's decreases. This is a contradiction
proving that x is joined completely to each but one of B 1, B2, . . Bd. A similar argument
works if B2 is replaced by B1 -F+u1 .
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We show that x e V cannot be joined to all points of B 1 - F 1 + u 1 . As we have seen
at the end of (Q8), any x e V is joined either to all the vertices of B i or the neigh-
bors of x are independent in S . If x is joined to all the vertices of B 1 -F1 +u1, then
st(x)r B1 contains edges in Q, thus in S as ; well. Therefore st(x) contains a u E F1-u 1 ,

too. But aau) + o x) > 3n
2d +

o(n), contradicting (35) and . (37*). Hence x must be

adjacent to all points ofB2u . . . uBd in Q and in S as well . So considering the partition
D 1 = .B 1 u V, D2 = B2 , . . . , Dd =Bd, every edge between different classes will be in S.
Thus S e Uo(n, E) .

Case (S2) . cr u1 ) i~_
3n
3n. (We may have IF, I =1 or > 1 .) By the saturation principle

each x e V is connected to all points of all but one sets B1-F1, 02 , BB. Suppose
that x misses a point in B2' . Consider S. Since x is joined to all the vertices of B1- F 1 and
by (37*) to none of F1, it is joined to exactly b 1 -t 1 vertices of B 1 and these vertices are
independent by the results of (Q8) . Hence every horizontal edge of S .in B 1 contains one
of the t1 points ofB 1 non-adjacent to x in S. Thus for at least one of these vertices, say,

3n
for u, Q(u) >

4d
+ 0(,.1k_), contradicting the definition of V . This proves that every

x e V is connected to every y in B2u . . uBd .. We conclude as above .

Case (S3) . IF, I =1 and h 1 + . . . + hd <- 3n We know by the saturation principle that
4d

.every x e V is adjacent to all points of all but at most one sets Bi . If x is not adjacent to
all points of Bi , then it is not adjacent to -ui either. Also we have p = 3 again.

First let us assume that,there exists an x E V not joined to ul . Shift all but one
horizontal edges of B 1 to B2 (We know that B1 , B2 contain horizontal edges!) This
shifting results in another extremal graph Q' . Replace this last ,horizontal edge in B 1
(incident with u 1 ) by (u1 , x). This does not increase the number oftriangles, moreover, it .
decreases, whenever at least one y e V is joined to u 1 . This proves that no vertex of Vis
joined to u l . Thus each x e V is joined to each w e Btu . . . uBd . We conclude as in (Si) .

So we may suppose that every x e V is adjacent to all points of B1, and similarly to
all points of B2, . . ., Bf. If every x e V is adjacent to all points in Btu . . uBd then
we can again conclude as before. So suppose some x e V is non-adjacent to some point
in Bf+ 1(say). Then V .= {x) ; in fact, if there exists another vertex y e V, then we can shift

edges connecting x to Br + 1 to B 1 until the degree of u 1 becomes greater than n -
n

.
3d

But then, being connected to y, it contradicts (37*) . The case V = {x} can be handled
again in the same way as case (Si) .

3n
Case (S4) . IF1 I =1 and h 1 + . . . + hd > i, but o ui) < bi -1(i =1,	f). Again,

we have p = 3. It follows then (as before) that every x e V is joined to all points of all but
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at most one of B1 u l , . : . , Bf - 11f, BI + i , . . . , Bd . Furthermore, since by shift we can

increase the, degree of any u ; (i=1, . . ., f) to more than 3n, no one of u 1 ,' . . ., of is
4d

adjacent to any point in V .
Since the. horizontal edges incident with u l ., . . ., uf -must be contained in the same

number of riangles (by (58) in the definition of shift), it follows that

IB11= . . . =lBfl

Shift. now as many ,horizontal edges to Bt's with the smaller indices . as possible .
Even after this shifting each Bt (2 <_ i 5 f) must contain horizontal edges, otherwise
replacing an edge (x, u), u e B 1 by (x, u t) we could diminish a' (x) • a '(x), hence
decreasing the number ofK3's of the resulting graph Q' . This is a contradiction, since Q'
is extremal. Thus

Hence

and

h1 + . . . + hf>=(f -1) (IBII 1) + 1 ? IB1I

tr;(u1)=.IB11 -1

Qq(us) ~ 1 .

Since u 1 and u2 are adjacent, by (37)0;(U2)= o(n). Thus we can replace (u 1 , u2 ) by an
edge connecting u2 to B2 -u2 . This decreases the number of K3's, a contradiction .

(T) Suppose still that Q - V has no missing edges but let now h2= . . . =h,,=0.

The argument in (S2) works unless 1F11= 2 and h1 :5
d
+ O(J) or ,IF,1=1 and

h l 5
n

+ 0(-../k).'Thus o u1) < b1 - t l . Assume first h 1 >0.

As above, each x e V is joined to all points of all but at most one sets B1-F1 ,
B2 . . .,Bd. Our aim is to show that no x e V isjoined to ul . This implies (by (Q8)) that no
xe V is joined to F 1 at all. Thus`each x e V isjoined to each v c- B2v . . uBd. Hence S
satisfies Definition 2 with W = VuF 1 : S E U2(n, E) .

Let us assume (indirectly) that an x e V is joined to u l . By (Q8) x must be connected
to all points of B l . Hence, by (37*), F 1 -u 1 ,= 0, that is, F1= {u1 } .

We show that each y E V. - x is joined to each v E Q - V -u 1 . Suppose y E V- x is not
connected to some v E Bi (i ?= 2), or some v e B 1 - u 1 . Then we can shift edges from y to

n
u1 and achieve o'(0 1 ) Z

Zd
+',4 kn2 . This contradicts (37*) since u l is adjacent to x.

There are two cases : x is joined to all vertices of Btu . . . uBd or not. In the first case
the vertices of Q can be .partitioned into the classes Vu81, B2 , . . ., Bd so that vertices
belonging to different classes are always adjacent . Unless h l = 0, the first class contains
a K3 , therefore we can rearrange the edges in VuB1 ruining all the K 3's and
(consequently) diminishing the number of K 3's. This is a contradiction .
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In the other case there is a v e Bi (i >_ 2) not joined to x. We can shift edges from x

to ul until a+(u 1 ) ?

	

+ 4 kn2 is achieved. This proves (by (37*)) that no y e V-x

is adjacent to u1 .

g
Also we can shift edges from u l to x. If this fills up x, i.e ., in the resulting extremal

raph Q' x is adjacent to all points of Q- V and there is still a horizontal edge in Q'
incident with u 1 , then replacing (u 1 , x) by a horizontal edge (u 1., w) we decrease the
number of Ks's . This is a contradiction. Thus Q'- V contains no horizontal edges.
Carry out the same shifting of edges from u1 to x but stop, when only one horizontal
edge -(u1 ,w) is left. If V -x * 0, we can replace (u 1 , w) by (u1 , y), decreasing the number
of Kr s, a contradiction. If V {x}, then put x into the class B1 containing'the v . Since x
is joined to all the vertices of all the other classes, we are home : Q e Uo(n,'E), which
implies for p ? 4 that Q e U1(n, E). The same holds for S, too.

The case h 1 = 0 is fairly simple, and left to the reader . .

(U) We arc left with -the case when Q - V has a missing edge (u1 , u2) with, say, ui e Bt .
Then we know that u1, u2 are not adjacent to- any point in V. Then replacing V by
V+u1 and B, by B1-u1 , the arguments in (S4) and (T) can be applied . .

The proof of Theorem 3 is complete.
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