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1. INTRODUCTION AND NOTATION

We consider undirected graphsGwithout loops and multiple edges. The set of ver-
tices, the set of edges, and the chromatic number are denoted by V (G), E(G), and
χ(G), respectively. We denote the number of vertices (resp., edges) by v(G) (resp.,
e(G)). The first subscript in the case of graphs indicates the number of vertices,
e.g., Ck, Pk are the cycle and path graphs on k vertices. For X ⊆ V (G), G[X]
denotes the subgraph induced by X and e(X) denotes the number of edges in it.
Let dG(v) denote the degree of vertex v in G, and put

δ(G) = min
v∈V

dG(v) and ∆(G) = max
v∈V

dG(v).

For vertex-disjoint graphsG1, . . . , Gk, their product, Πi≤kGi, is the graph obtained
by taking their vertex-disjoint copies and joining x, y when they belong to differ-
ent Gi’s. The product of two graphs G1, G2 is also denoted by G1 ⊗ G2. The
complement of G is denoted by Ḡ.

Given a family L of forbidden graphs, what is the maximum number of edges a
graph Gn, i.e., a graph on n vertices, can have without containing subgraphs from
L? Here ‘‘containing’’ means there is a copy of a member of L, not necessarily
induced. The maximum is denoted by ex(n,L) and theL-free graphs attaining this
maximum are called extremal graphs. The family of extremal graphs is denoted
by EX(n,L).

The case L = {Kk} was solved in 1941 by Turán [34], who showed that the
unique optimum is the graph Tn,k−1 described as follows: The Turán graph Tn,p on
n vertices and p classes is obtained by grouping the vertices as evenly as possible
into p parts and joining two vertices by an edge if and only if they belong to
different parts. The case ex(n, {K3}) = bn2/4c had been proved in 1907 by
Mantel [25].

In the 1960s a whole new area, called Extremal Graph Theory, emerged around
Turán’s Theorem. One aim of this article is to exhibit the strength and usefulness
of the general theory through a special interesting class L.

The main question we investigate in this is is the following.

Dirac-type Extremal Problem. Given the parameters k and µ, and the number
of vertices n, determine the maximum number Ex(n, k, µ) of edges a graphGn can
have if no k-vertex subgraph of Gn has more than µ edges.

Many people investigated this question, starting with Dirac [5] and Erdős, and
continuing with Simonovits [29], B. Stechkin [33], and Abloncy (unpublished).
Analogous problems for hypergraphs were investigated by Brown, Erdős, and T.
Sós [3, 4], where the problems become much more involved, and sometimes ex-
tremely deep. One result illustrating this is due to Ruzsa and Szemerédi [26]. For
more about Turán-type hypergraph results consult the surveys by Füredi [16] and
Sidorenko [27].

Let Lk,µ be the family of all graphs of k vertices having more than µ edges,



BOUNDED DENSITIES OF SMALL GRAPHS 187

so that

Ex(n, k, µ) = ex(n,Lk,µ).

For µ := (k2) − λ, let Lk,−λ denote the family of graphs on k vertices with more
than (k2) − λ edges. EX(n, k, µ) is the family of extremal graphs for Lk,µ. Let
I(k, λ) denote the set of graphs in which every subgraph of k vertices has at least
λ edges missing. The graphs Gn having maximum number of edges in I(k, λ) for
a fixed n are just the graphs in EX(n, k, µ) for µ = (k2)− λ.

It is convenient1 to denote the number of edges in the Turán graph Tn,p by the
function tp(n). Then t2(n) = bn2/4c, and, in general,

tp(n) =
(

1− 1
p

)(
n
2

)
+O(n).

Dirac’s Theorem is a direct strengthening of Turán’s Theorem.

Dirac’s Theorem. [5, Thm. 3] For p ≥ 1, if e(Gn) > e(Tn,p), thenGn contains
a subgraph consisting of Kp+r+1 with at most r edges missing, for every r such
that 0 ≤ r ≤ p− 1 and n ≥ p+ r + 1.

2. OVERVIEW OF KNOWN AND NEW RESULTS

2.1. Asymptotic Description of Ex(n, k, µn, k, µn, k, µ)

(a) The Kővári–T. Sós–Turán Theorem [23] asserts that ex(n,Ka,b) =
O(n2−1/a). For µ < bk2/4c we can apply this result with a = bk/2c, b = dk/2e
to get that

if µ <

⌊
k2

4

⌋
, then Ex(n, k, µ) = O(n2−1/[k/2]) = O(n2−(1/

√
µ)).

In most cases there are better exponents. We mention here only one result of
Goldberg and Gurvich [18], when Ex(n, k, µ) is linear in n. Consider the smallest
case not covered by Dirac’s Theorem, Ex(n, 3, 1): G contains no two intersecting
edges, hence it is uniquely optimal to let Gn consist of bn2 c disjoint edges. In
general, it is not hard to find the extremum for 0 ≤ µ ≤ k − 2 (see [18]). A proof
of the corresponding result can be found also in [19], where the structure of the
extremal graphs is also determined.

(b) The case µ = k−1 is related to the well-known, difficult, unsolved problem
of finding the maximum number of edges in graphs of girth exceeding k. The best

1 However, we shall also continue to write e(Tn,p) when we wish to emphasize, not just this number,
but its connection to the Turán graph. For we believe extremal graph theory should be made in terms
of extremal graphs and extremal structures, and not so much in terms of formulas, whenever this is
possible.
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upper and lower bounds are due to Bondy and Simonovits [2] and to Lazebnik,
Ustimenko, and Woldar [24], resp.,

for k = 2s+ 1, ckn
1+2/(3s−3+a)< ex(n, {C3, C4, . . . , Ck})

≤ Ex(n, k, k − 1) ≤ c∗kn1+1/bk/2c, (1)

where a = 0 or 1 according as s is odd or even.2

(c) From now on, we assume that µ ≥ bk2/4c. Then Tn,2 contains no forbidden
subgraphs, showing that Ex(n, k, µ) ≥ t2(n) = bn2/4c. In this case, we always
know the asymptotic behavior as n→∞.

Erdős and Simonovits (3) showed that, as a consequence of a 1946 result of
Erdős and Stone [12], that the order of magnitude of ex(n,L) depends only on the
minimum chromatic number of the excluded subgraphs:

lim
n→∞

ex(n,L)
(n2 )

= 1− 1
p
, (2)

where p = p(L) is defined by

p(L) = min
L∈L

χ(L)− 1. (3)

Note that t2(k) < t3(k) < · · · < tk−1(k) < tk(k) = (k2). For fixed k and µ, define
p ≥ 2 by tp(k) ≤ µ < tp+1(k). Then we have

Ex(n, k, µ) ≥ e(Tn,p) = tp(n).

For all graphs L ∈ Lk,µ, we have e(L) > e(Tk,p). Since Tk,p has the most edges of
any p-colorable graph on k vertices, it follows that χ(L) > p. Since Tp+1,k ∈ Lk,µ,
we have in (3) that p(Lk,µ) = p. Hence, by Erdős–Stone (2),

Ex(n, k, µ) ∼
(

1− 1
p

)(
n
2

)
∼ e(Tn,p), (4)

as n→∞.

2.2. Extremal Graphs for Dirac’s Theorem

Let us compare estimates on Ex(n, k, µ) with the number of edges in the Turán
graph Tn,p. We call Ex(n, k, µ)− e(Tn,p) the remainder term. There are 3 cases:

—Tn,p is extremal (i.e., the remainder term is 0);
—the remainder term is positive but has an O(n) upper bound;
—the remainder term is at least n1+c and at most n2−c, for some constant c ∈

(0, 1).
Dirac’s Theorem belongs to the first case. We prove it in the following form.

2 This is the best asymptotic lower bound for all s ≥ 2, 6= 5. For s = 5, the regular generalized
hexagon gives a better bound, Ω(n1+1/5).
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Theorem 2.1. Suppose n ≥ k ≥ 2λ > 0. If Gn ∈ I(k, λ), then

e(Gn) ≤ tk−λ(n).

Equality is attained, e.g., when Gn is the Turán graph Tn,k−λ. Our proof, pre-
sented in Section 3, is simpler and shorter than Dirac’s. It involves an edge-density
argument that is equivalent to the method used by Katona, Nemetz, and Simonovits
[22] to prove Turán’s Theorem. Katona [21] used this method again to investi-
gate 3-graphs. The method was also described by Gessel [17], who explored the
solutions to the recurrence, (8) below, generated by this argument.

Following the proof, we discuss more general bounds due to Dirac.
In Section 4 we shall investigate the structure of the extremal graphs in Dirac’s

Theorem. We will see that the Turán graph is the unique extremal graph for Theorem
2.1 except in the following two cases:

—when k ≥ 2λ ≥ 4, and n = k.
—when k = 2λ ≥ 2 and k + 1 ≤ n ≤ 2k − 2.

In the first of these two cases, there are always at least two extremal graphs for
Theorem 2.1, since any graph on k vertices with λ edges missing will do. The
second case is included in Theorem 2.3 below.

Theorem 2.2. Let k > 2λ > 0 and n ≥ k + 1. If Sn ∈ I(k, λ) and e(Sn) =
tk−λ(n), then Sn = Tn,k−λ.
Theorem 2.3. Suppose that k = 2λ > 0 and n ≥ k + 1. If Sn ∈ I(k, λ) and
e(Sn) = tk−λ(n), then Sn is one of the following graphs, depending on n:

(1) For n = 2λ+ r with 1 ≤ r ≤ λ, λ− r components of S̄n are paths on one
or more vertices and the rest, if any, are cycles.

(2) For n = 3λ+ r with 1 ≤ r ≤ λ, r components of S̄n are K4’s and the rest,
if any, are cycles.

(3) For n ≥ 4λ+ 1, Sn is the Turán graph Tn,k−λ.

Theorem 2.2 is due to Dirac. Theorem 2.3 is new, except that Dirac described
it for λ = 2. For n > n0(k, µ), one can derive all of the theorems above from
the general Erdős–Simonovits structural theorem, Theorem 2.8 below, or from
Theorem A.1 of the Appendix. Theorem A.1 is a general result, describing a large
family of cases when the remainder term is linear, including all the cases of Lk,µ
with linear error terms. Those cases where the extremal graphs are the Turán graphs
follow also from Theorem 2.9 below. For n ≥ 2(k − λ), the part of Theorem 2.2
for which Tn,k−λ is extremal follows from Theorem 2.11.

For some related results of the second author, see also [32].

2.3. Further Exact Values

The next two theorems extend the inductive arguments of Section 3. We describe
all cases (k, µ, p), µ ≥ e(Tk,p), such that Ex(n, k, µ) = e(Tn,p)+O(n) as n→∞.
To be meaningful, we need k > p here. Writing µ = e(Tk,p) + a, we distinguish
these three cases depending on a for given k, p.
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(a) For 0 ≤ a < b1
2dk/pec, adding a+ 1 independent edges to a largest part of

Tn,p results in a forbidden graph.
(b) For b1

2dk/pec ≤ a < k/p, adding a + 1 independent edges to Tn,p creates
no L ∈ Lk,µ, but adding a path Pa+2 does.

(c) For a ≥ k/p, adding Pa+2 to the first class of Tn,p still creates no forbidden
subgraphs.

We remark that the formula above has another form that is more natural:⌊
1
2

⌈
k

p

⌉⌋
=
⌊
k + p− 1

2p

⌋
.

Theorems 2.4 and 2.5 below describe Cases (a) and (b), respectively. Case (c) is
a prototype of the situation that Ex(n, k, µ) − e(Tn,p) is nonlinear in n. We shall
describe it here only superficially, in the paragraph preceding Theorem 2.6, and
present a typical case in Theorem 2.7.

We begin with Case (a). We prove this result at the end of Section 3 from our
main inductive lemma, Theorem 2.11.

Theorem 2.4. Suppose 0 ≤ a < b1
2dkpec.Then there exists a thresholdn0(k, p, a)

such that

Ex(n, k, tp(k) + a) = e(Tn,p) + a for n ≥ n0(k, p, a).

We denote byTn,p,a the graph obtained fromTn,p by putting a independent edges
into the largest class of Tn,p. This is an extremal graph for Theorem 2.4, but there
are others. One can distribute the a edges arbitrarily among the classes, and they
do not have to be independent. For another example, letting a1, a2 ≥ 1 such that
a1 + a2 = a + 1, we can put a star of a1 edges into one class of Tn,p, put a star
of a2 edges into another class, and then delete the edge between the centers of the
two stars.

Moving to Case (b), our next theorem asserts that if a < k/p, then there exists
an extremal graph obtained from Tn,p by adding as many edges to it as possible
without getting forbidden subgraphs. Recall that for graphs G1, . . . , Gp, with
pairwise disjoint vertex-sets, their product

∏
Gi is obtained by joining each vertex

of Gi to each vertex of Gj .

Theorem 2.5. Suppose b1
2dkpec ≤ a ≤ dkpe−2. Let µ = e(Tk,p)+a. Then there

exists a threshold n0(k, p, a) such that for n ≥ n0(k, p, a), there exists an extremal
graph Sn for Ex(n, k, µ) having product form, Sn =

∏
Gi, where |v(Gi)− n

p | ≤ 1
for all i;G1 is the vertex-disjoint union of trees, all but one of which have the same
size; and

∑
j>1 e(G

j) < a.
Using this theorem one can easily get the precise value of Ex(n, k, µ) for this

range. Applying the Structure Theorem 2.8 (or Theorem 2.9), all extremal graphs
Sn can be determined, and this is done implicitly in our proof, which is presented
in Section 5.

Remark. A more precise description of the product extremal graphs of Theorem
2.5 is the following. Take a Turán graph Tn,p. Let its classes beA1, . . . , Ap. To get
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a good lower bound in Theorem 2.5, let us try to put as many edges in its first class
A1 as possible. If we put a tree Tγ intoA1 for some γ > a+1, then we certainly get
some Tk,p with≥ a+ 1 additional edges: we get a forbidden L ∈ Lk,µ. Therefore,
if we add edges to A1 so that the resulting graph contains no forbidden subgraphs,
then each component has at most a+ 1 vertices. Let γ = γ(k, µ) be the maximum
for which we can put vertex-independent trees T1, . . . , Tj of equal order γ ≤ µ
into A1 so that (i) the number of vertices not covered is smaller than γ and (ii) the
resulting graph S0

n contains no L ∈ Lk,µ. Clearly,

e(S0
n)− e(Tn,p) =

(
1− 1

γ

)
n

p
−O(1).

By definition, a k-vertex subgraph L ⊆ S0
n will have at most µ edges. Let µ′ be the

maximum number of edges in a k-vertex subgraph ofS0
n. Put ρ(k, µ) = µ−µ′ ≥ 0.

Here µ′ and ρ(k, µ) depend only on k and µ, and can be calculated easily. Add
ρ(k, µ) edges to S0

n arbitrarily: adding to A1 is also allowed. The obtained graphs
contain no L ∈ Lk,µ. One can prove that for n large enough, all these graphs
are extremal. (There may also be further extremal graphs. To get other extremal
graphs, one can slightly adjust the sizes of the trees Tj by diminishing some and
increasing others, or we can add slightly more edges elsewhere.)

As for Case (c), if a ≥ k/p, then Ex(n, k, µ) > e(Tn,p) + c1n
1+γ for some

γ > 0: One can put a graph of girth exceeding k—described in (1)—into one class
of Tn,p. We shall not give a detailed discussion of this case. Rather, we describe
one very typical example: the case k = 6, λ = 4, i.e., when at least 4 edges are
missing from each G6 ⊆ Gn. This is the problem Ex(n, 6, 11). First, we recall
the Octahedron Theorem, which concerns the exclusion of the octahedron graph
O6 = K3(2, 2, 2).

Theorem 2.6. (Erdős and Simonovits [10]) For n > n0, every graph Sn ∈
EX(n,O6) can be obtained as Sn = Um⊗Zn−m, for some Um ∈ EX(m,C4) and
some Zn−m ∈ EX(n−m,P3), where m = n/2 + o(n).

Here Zn−m is the graph of bn−m2 c independent edges. The maximum size of a
C4-free graph onm vertices and the extremal graphs are determined by Füredi [14,
15] for infinitely many values of m. However, this is not enough to determine the
exact value of m in Theorem 2.6. It seems to be hopeless, since e(Um) is strongly
connected with the existence of some finite geometries.

In Section 6 we shall prove the following result for the Ex(n, 6, 11)-problem.
This theorem and its proof are very similar to the Octahedron Theorem. Here,
Zn−m has no edges.

Theorem 2.7. For n > n0, every graph Sn ∈ EX(n, 6, 11) (i.e., Sn is extremal
forL6,−4) can be obtained asSn = Um⊗Zn−m, for someUm ∈ EX(m, {C3, C4})
and Zn−m ∈ EX(n−m,P2), where m = n/2 + o(n).
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2.4. General Theory of Turán Problems

In the proofs of Theorems 2.5 and 2.7, we shall use the structural variant of the
Erdős–Stone–Simonovits theorem, formulated below. This Structure Theorem as-
serts that in all cases the structure of extremal graphs is asymptotically the same as
the structure of the Turán graph. Recall that p(L) = minL∈L χ(L)− 1.
Theorem 2.8. (Erdős, Simonovits, [7, 8, 28]) Let Sn be extremal for a family L.
Let p = p(L). Then for any x ∈ V (Sn), d(x) ≥ n − n

p + o(n). Further, V (Sn)
can be partitioned into p classes A1, . . . , Ap with the following properties:

(a) |Ai| = n
p + o(n)(i = 1, . . . , p) and for all p-partitions

∑
e(G[Ai]) is the

minimum possible.
(b) For every ε > 0, the number of vertices of G[Ai] of degree ≥ εn (the degree

counted in G[Ai]) is at most Ωε for some constant Ωε.
(c) Fix a graphM, and let ε < 1

2v(M) .Denote byA∗i the subclass ofAi consisting
of the vertices joined toAi by fewer than εn edges. IfM⊗Kp−1(k, . . . , k) contains
a forbidden subgraph L ∈ L, then M 6⊆ G[A∗i ].

The vertices in (b) will be called exceptional. There areL’s where the exceptional
vertices play an important role, but in some other cases the main point of the analysis
is just to show their nonexistence. In all cases considered in this article, the existence
of such vertices can be ruled out. (Exceptional vertices can always be ruled out
when Kp+1(1, k, . . . , k) contains some forbidden L. In Dirac-type problems with
linear remainder terms, this always holds. The exceptional vertices can also be
ruled out in Theorems 2.6 and 2.7, but for completely different reasons.)

In our cases, to determine exactly or estimate the value of Ex(n, k, µ), we

(i) first characterize the family Lk,µ,
(ii) next find out which members ofLk,µ really influence the order of magnitude

of ex(n,Lk,µ), and
(iii) finally apply a known exact theorem or known estimates to some forbidden

subfamily L∗ ⊆ Lk,µ (such as Theorem 2.8).

It is surprising that most phenomena occurring in Turán-type extremal problems
do occur already in Dirac-type problems.

There are various general theorems implying Dirac’s Theorem relatively easily,
assuming that we care only for the large values of n: we want to prove the results
only for n > n0(k, µ). Among others, it is not too difficult to derive it from
Theorem 2.8. Later we will see two inductive proofs. Here we quote a general
theorem that easily implies Dirac’s Theorem.
Theorem 2.9. (Simonovits [28], cf. Erdős [6] for p = 2) Given a family L of
simple graphs, the following statements are equivalent:

(i) For n > n0(L), Tn,p is an extremal graph.
(ii) For n > n1(L), Tn,p is the only extremal graph.
(iii) Every graph L ∈ L has chromatic number> p and there is an L0 ∈ L with

an edge e for which χ(L0 − e) = p.
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Proof of Dirac’s Theorem 2.1 for n > n0(k, λ)n > n0(k, λ)n > n0(k, λ). Given n ≥ k ≥ 2λ > 0, take
L = Lk,−λ. Removing an edge decreases the chromatic number by at most one, so
for each L ∈ L, χ(L) ≥ χ(Kk)− (λ−1) > k−λ. Taking L0− e to beKk with λ
disjoint edges removed gives χ(L0− e) = k−λ. Thus, (iii) of Theorem 2.9 holds
with p = k − λ, and it follows by (i) that e(Gn) ≤ tk−λ(n), if Gn ∈ I(k, λ) and
n > n0(k, λ).

Theorem 2.9 has an interesting consequence: If, forn > n0(L), Tn,p is extremal,
then, for n > n1(L), it is the only extremal graph. Here we give a strengthening
of this statement by specifying an n1(L). It will be proved in Section 4.

Theorem 2.10. If for all n > n0(L), Tn,p is extremal, then for all n > n0(L) +
2p+ 1, Tn,p is the only extremal graph.

As a matter of fact, if n1 > n0 + p+ 1 is a multiple of p, then n ≥ n1 is enough.

2.5. Main Induction Lemma

Let p be given and (Sn) be a sequence of graphs obtained from Tn,p by adding
a < n

2p independent edges to one of its larger classes. Then Sn is almost regular
in the sense that the minimum degree and the maximum degree differ by at most 1.
If one deletes an appropriate vertex x ∈ Sn, then one gets an Sn−1. This motivates
the following theorem.

Theorem 2.11. Let L be a given family of graphs. Let (Sn)n≥m be a sequence
of graphs with the following properties:

(A) Sn contains no L ∈ L.
(B) Sm is extremal for L.
(C) There exists a vertex x ∈ V (Sn) of minimum degree such that Sn − x =

Sn−1, for n > m.
(D) ∆(Sn) ≤ δ(Sn) + 1, for n > m.
(E) Each Sn has at least 3 vertices of minimum degree for n > m.

Then
(i) For every n ≥ m,Sn is extremal for L.
(ii) for every Gn not containing subgraphs in L, δ(Gn) ≤ δ(Sn).
(iii) For every extremal graph Qn for L, δ(Qn) = δ(Sn). If x is a vertex of

minimum degree in Qn, then Qn − x is also extremal.

The Inductive Lemma, Theorem 2.11, will be proved directly in the next sec-
tion, without using the deeper theorems. Theorem 2.10 will also have an ‘‘elemen-
tary’’ proof.

3. MINIMUM DEGREE PROOF OF DIRAC’S THEOREM

Here we prove Theorem 2.1. The proof described below could also be called the
average-degree-proof. The basic idea of the proof is that, deleting a vertex of
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minimum degree from a G ∈ I(k, λ), we get a similar graph on n − 1 vertices.
Since the Turán graphs are almost regular, the number of edges goes down roughly
by the same amount as in the Turán graph. So we can use induction on n. The
average degree is not necessarily integer, and, if it is not, we should delete any
vertex of degree smaller than the average. We need a lemma from [22].

Lemma 3.1.

e(Gn)
(n2 )

=
1
n

∑
v∈V

e(Gn − v)
(n−1

2 )
. (5)

More generally, if m < n, then

e(Gn)
(n2 )

=
1

( nm)

∑
G∗⊆Gn
v(G∗)=m

e(G∗)
(m2 )

, (6)

where the summation is taken on the induced m-vertex subgraphs.

Proof. Display (6) follows by observing that every e ∈ E(Gn) appears in (n−2
m−2)

of the graphs G∗.
One can rewrite (5):

e(Gn) ≤ 1
n− 2

∑
v∈V

e(Gn − v). (7)

Proof of Theorem 2.1. It is easy to see that Tn,k−λ ∈ I(k, λ). To start the
proof of the upper bound, one sees that Tk,k−λ has precisely λ edges missing,
so the theorem holds when n = k. We use this as the basis for induction on n
with fixed (k, λ), k ≥ 2λ > 0. Let n > k and assume the theorem holds for
n − 1. If we assume that Gn ∈ I(k, λ), then for all v,Gn − v ∈ I(k, λ), so
e(Gn − v) ≤ tk−λ(n− 1), by induction. By (7),

e(Gn) ≤ n

n− 2
tk−λ(n− 1).

So

e(Gn) ≤
⌊

n

n− 2
tk−λ(n− 1)

⌋
.

The desired bound on e(Gn) follows, provided that

tk−λ(n) =
⌊

n

n− 2
tk−λ(n− 1)

⌋
. (8)

Consider Tn,p for arbitrary p, where we express n in terms of p by n = qp+ r with
1 ≤ r ≤ p. Deleting a vertex v from one of the r parts of size q+ 1 leaves a graph
isomorphic to Tn−1,p, while deleting a vertex from one of the p− r parts of size q
leaves a p-partite graph with tp(n− 1)− 1 edges. The second case occurs q(p− r)
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times. Applying (7) to Tn,p and simplifying gives

e(Tn,p) =
n

n− 2
tp(n− 1)− q(p− r)

n− 2
.

Thus, for n > p+ 1, we have q(p− r) = n− (q + 1)r < n− 2, implying

e(Tn,p) =
⌊

n

n− 2
tp(n− 1)

⌋
.

(Notice that this fails for n = p+1.) The desired conclusion (8) now follows, since
n ≥ k + 1 > (k − λ) + 1.

In fact, Dirac [5] proved the following more general bound. If every k-vertex
subgraph ofGn has at most e(Tk,p)−β edges, then e(Gn) ≤ e(Tn,p)−β. Indeed,
if we add β edges to Gn in an arbitrary way, then the graph obtained satisfies the
conditions of Theorem 2.1. When β = 0, the bound is sharp and is attained by
Gn = Tn,p. However, for β > 0 and n large, this upper bound is too weak: it is
weaker by≈ n2

2p(p−1) than e(Tn,p). As mentioned in (4), the Erdős–Stone Theorem
implies that

Ex(n, k, tp(k))− β =
(

1− 1
p− 1

)(
n
2

)
+ o(n2).

The Inductive Proof for the Extremum

Proof of Theorem 2.11. We use induction onn. By (B),Sm is extremal. Assume
that n > m and we know that Sn−1 is extremal. We assumed that Sn contains
no forbidden subgraphs. To prove that it is extremal, it is enough to show that
if e(Gn) > e(Sn), then Gn contains some forbidden L. One can assume that
e(Gn) = e(Sn) + 1.

(a) If δ(Gn) ≤ δ(Sn), then we select a vertex x ∈ Gn of minimum degree. For
Gn−1 = Gn − x we have, by (C),

e(Gn−1) = e(Gn)− d(x) > e(Sn)− δ(Sn) = e(Sn−1).

Thus, for some L ∈ L, we have L ⊆ Gn−1 ⊂ Gn.
(b) The other case is when δ(Gn) > δ(Sn). Now, by (E),∑

dG(xi) ≥ (
∑

dS(xi)) + 3,

and, therefore, e(Gn) ≥ e(Sn) + 2. This contradiction completes the proof of (i).
Now that we know that (Sn) is a sequence of extremal graphs, (ii) is trivial (from
e(Gn) ≤ e(Sn)) and (iii) immediately follows from the argument of (a) applied to
a Gn satisfying e(Gn) = e(Sn).

Corollary 3.1. Under the conditions of Theorem 2.11, if Qn ∈ EX(n,L) is an
arbitrary extremal graph, n > m, then

(i) δ(Qn) = δ(Sn) and
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(ii) for every vertex x of minimum degree, Qn − x is an extremal graph.

Proof of Theorem 2.4. With µ := e(Tk,p) + a, apply Theorem 2.11 to Lk,µ and
to the sequence (Sn) = (Tn,p,a). Clearly, Sk is extremal for Ex(n, k, µ) (though
not the only one), and the other conditions of Theorem 2.11 are automatically
satisfied.

4. EXTREMAL GRAPHS FOR THEOREM 2.1

Lemma 4.1. For n > p, if e(Gn) = e(Tn,p) and if x, y ∈ V (Gn) are two
independent vertices such that Gn − x ' Gn − y ' Tn−1,p, then Gn ' Tn,p.

Proof. Tn,p can be characterized by saying that it is the unique p-chromatic n-
vertex graph with maximum number of edges. So we may assume that χ(Gn) > p,
otherwise Gn = Tn,p, by the uniqueness. Gn − x = Tn−1,p, hence x is joined to
each class of Tn−1,p (by χ(Gn) > p), which implies that there is a Kp+1 ⊆ Gn
containing x. This Kp+1 does not contain y, so Kp+1 ⊆ Gn − y = Tn−1,p, a
contradiction.

Remarks. (a) There are many other ways to prove this simple but important
lemma.

(b) If we drop the condition e(Gn) = e(Tn,p), then the assertion of Lemma 4.1
will not necessarily be true anymore. For example, take a Tn,p and let x, y be two
vertices from two distinct larger classes, then delete the edge x, y.

Proof of Theorem 2.10. (a) First we show that for n = p` > n0(L)+p+1, Tn,p
is the only extremal graph. Apply Theorem 2.11 with Sn = Tn,p. Let Qn be an
arbitrary other extremal graph. By Theorem 2.11(iii), δ(Qn) = δ(Tn,p). Clearly,
since Tn,p is regular, and e(Tn,p) = e(Qn) and the minimum degrees are the
same, therefore Qn is also regular, of degree (p − 1)`. Delete any p + 1 vertices
x1, . . . , xp+1 from Qn. If eX = e({x1, . . . , xp+1}), then

e(Qn−p−1) = e(Qn)−
p+1∑
i=1

d(xi) + eX . (9)

Deleting a set Y of p+1 appropriate vertices of Tn,p, we get aTn−p−1,p. Therefore,

e(Tn−p−1,p) = e(Tn,p)−
p+1∑
i=1

dT (yi) + eY . (10)

Here e(Y ) = (p+1
2 )− 1. Since all degrees are the same and

e(Qn−p−1) ≤ tp(n− p− 1) and e(Qn) = e(Tn,p),

from (9) and (10) we get that eX ≤ eY : Kp+1 6⊆ Qn. So we may apply the
uniqueness part of Turán’s Theorem: Qn = Tn,p.
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(b) Let n∗ be the smallest n described in (a), so it is the smallest multiple of p
greater than n0(L) + p + 1. Now we show that if n > n∗, then Tn,p is the only
extremal graph. We use induction on n. Assume that for n−1 we know that Tn−1,p
is the only extremal graph. Let Qn be an arbitrary extremal graph. By Theorem
2.11(iii), δ(Qn) = δ(Tn,p). Deleting a vertex x of minimum degree of Qn, we get
again an extremal graph Qn−1 = Tn−1,p. If there are 2 independent vertices of
minimum degree in Qn, then we are home, by Lemma 4.1.

Now let x be any vertex of Qn of minimum degree. By induction, Qn − x =
Tn−1,p. Let the classes of this Tn−1,p beA1, . . . , Ap, whereA1, . . . , Aj have q+ 1
vertices, Aj+1, . . . , Ap have q, 0 ≤ j < p. The trivial case j = 0 will be left to the
reader; assume that j > 0. The minimum degrees are equal to δn := (n− q−1) in
Tn,p and Qn. The minimum degree of Tn−1,p is δn−1 = δn − 1. By the properties
of the Turán graph, in a larger class of Tn−1,p every vertex is of minimum degree
δn − 1 and stays of minimum degree δn even in Tn,p. Any vertex y ∈ Ai for
i = 1, . . . , j will be of minimum degree in Qn if it is joined to x. If, on the other
hand, y is not joined to x, then it will have degree δn−1 < δ(Tn,p), a contradiction.
So, all the vertices of A1, . . . , Aj are joined to x.

Since x is not joined to all the vertices, we may assume that there is a y, say,
in Aj+1 not joined to x. The degree of y in Qn is the same as its degree in
Qn − x = Tn−1,p, i.e., (n − q − 1) = δn. So y and x are 2 independent vertices
of minimum degree, and consequently, Qn − y = Tn−1,p as well. By Lemma 4.1,
Qn = Tn,p.

Proof of Theorem 2.2. We know by the previous results that the uniqueness
holds for n > n1(k, λ) and the only thing missing is that this n1 is so small.

The proof goes by induction on n with (k, λ) fixed. The real new point is that
here we have the ‘‘induction basis’’ for a smaller n0. For the induction basis,
suppose that n = k + 1. Clearly, no vertex of Sn is on two missing edges. This
forces Sn to be a Turán graph: Sn = Tn,k−λ.

Now suppose that n ≥ k+2. Then part (b) of the proof of Theorem 2.10 works:
it uses only Theorem 2.11 and that, for n − 1, we already know the uniqueness.
Thus, Sn = Tn,k−λ.

Proof of Theorem 2.3. It can be checked that every graph described in Theorem
2.3 belongs to I(2λ, λ) and has e(Sn) = tk−λ(n). It remains to show that these
are the only graphs.

In case (1), wheren = 2λ+r, the complement T̄n,k−λ of the Turán graph consists
of rK3’s and λ− rK2’s. By Theorem 2.11, ∆(S̄n) = ∆(T̄n,k−λ) = 2, so S̄n is a
disjoint union of paths and cycles. Since e(S̄n) = e(T̄n,k−λ) = λ + 2r = n− (λ
− r), it must be that λ− r of the components are paths.

For n > 3λ, we proceed by induction on n, having already dealt with n = 3λ
in case (1). For case (2), with n = 3λ+ r, the graph T̄n,k−λ consists of rK4’s and
λ−rK3’s. By Theorem 2.11, ∆(S̄n) = ∆(T̄n,k−λ) = 3. Let v be a vertex in Sn of
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degree δ(Sn) = n− 4. Since e(Sn − v) = e(Tn,k−λ − v) = tk−λ(n− 1), then by
induction, S̄n−v consists of r−1K4’s and 3(λ−r+1) vertices in a disjoint union
of cycles. Thus, in S̄n, vertex v has degree 3 and can be adjacent only to vertices
of degree 2 in S̄n − v, i.e., to vertices on cycles. Suppose that w is adjacent to v,
and let x and y be its neighbors in the cycle for w in S̄n− v. Similarly considering
S̄n − w, we find x and y have degree 2, so they have degree 3 in S̄n, so they must
be adjacent to v. Next considering S̄n − x, we conclude that x and y are adjacent
in S̄n. So we have aK4 on v, w, x, y, and S̄n consists of rK4’s and a disjoint union
of cycles. This completes case (2). Notice that Sn must be the Turán graph Tn,k−λ
for n = 4λ and 4λ− 1.

It remains to consider case (3) with n ≥ 4λ + 1. Define q and r by n =
qλ + r, 1 ≤ r ≤ λ. By the Lemma 4.1, Sn has a vertex v of degree δ(Sn) =
δ(Tn,k−λ) = n − 1 − q. By induction, Sn − v = Tn−1,k−λ. If Sn 6= Tn,k−λ,
then v is adjacent to all λ parts of Tn−1,k−λ and (at least) twice adjacent to at least
λ − 1 parts. Then we can find 2λ vertices in Gn with just λ − 1 missing edges,
contradicting Sn ∈ I(2λ, λ). Hence, Sn = Tn,k−λ, as claimed.

5. CASE OF LINEAR REMAINDER TERMS

We will deduce Theorem 2.5 from the Structure Theorem 2.8. One can relatively
easily prove Theorem 2.5 using the results of [30], (Theorem A.1 of the Appendix).
However, the proofs in [30] are much more involved, and here we will use only the
‘‘cheaper parts’’ of those proofs.

Claim. Using the notations γ(k, µ) and ρ(k, µ) defined in the second paragraph
following Theorem 2.5, and ν = dk/pe, we have, under the conditions of Theorem
2.5, for µ = e(Tk,p) + a, ρ(k, µ) < bν2c.

Proof. The condition on a means that γ(k, µ) > 1. We must show that, if the
first class of Tn,p is filled up with independent edges (or larger blocks), then in
the next class we cannot put bν/2c independent edges. Indeed, putting as many
independent edges as possible into a large class of Tk,p, and into a small class, we
get at least as many edges as by putting a path Pν into a large class: we get an
L ∈ Lk,µ. So ρ(k, µ) < bν2c.
Remark. As a matter of fact, for large k,

ρ(k, µ) <
ν

γ(k, µ)
− ν

γ(k, µ) + 1
≤ ν

2
− ν

3
=
ν

6
.

Proof of Theorem 2.5. For simpler formulation of some facts, we introduce
L∗k,µ, which consists of all graphs containing some L ∈ Lk,µ. Obviously, the
extremal problems for L∗k,µ and Lk,µ are the same.

All such proofs include a construction, i.e., a sequence (Un) of graphs not con-
taining any L ∈ L and, therefore, providing the lower bound. Now the graphs
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described in the second paragraph following Theorem 2.5 yield the lower bound:
show that if Sn is an arbitrary extremal graph, then

e(Sn) > e(Tn,p) +
(

1− 1
γ(k, µ)

)
n

p
− kp. (11)

We shall use (as in the proof of the claim) that γ(k, µ) ≥ 2. In other words, now
arbitrarily many independent edges can be put into the first class of Tn,p without
getting forbidden subgraphs. Therefore,

e(Sn) > e(Tn,p) + cn (12)

for c = 1
3p > 0 and n large.

(A) First we show that Theorem 2.8 is applicable. One can easily check that if
Ta+1 is any tree of order a+ 1, then Ta+1×Kp−1(ν, . . . , ν) ∈ L∗k,µ. In particular,
Kp+1(1, k, k, . . . , k) contains some L ∈ Lk,µ. Hence, we can apply Theorem 2.8
with p(Lk,µ) = p: we can partition V (Sn) into classes Ai so that (a), (b), and (c)
of Theorem 2.8 hold.

Notation. Let N(x) denote the neighborhood of a vertex x and, if x ∈ Ai, then
let α(x) := |Ai ∩ N(x)|, β(x) := |V (Sn) − Ai − N(x)|. In words, β(x) is the
number of ‘‘missing edges’’ and α(x) is the number of ‘‘extra edges’’ (compared
to the corresponding complete p-partite graph). Put Gi = G[Ai].

(B) We can now easily improve (b) by showing that there are no exceptional
vertices in Ai. As a matter of fact, there are no vertices joined to Ai by at least k
edges. Indeed, letBi ⊆ Ai be the set of vertices joined to at least εn vertices ofAi.
By Theorem 2.8, |Bi| = O(1). Eachx ∈ Bi is joined to some y1, . . . , yk ∈ Ai−Bi.
All but o(n) vertices of ∪j 6=iAj are joined to each y`(` = 1, . . . , k). By the choice
of the partition (by the minimality of the number of missing edges), |N(x)∩Aj | >
n
2p −o(n) if j 6= i and |N(y)∩Aj | > n

p − εn−o(n) if y ∈ Ai−Bi, j 6= i. Hence,
if Bi 6= ∅, then we can find a Kp(k, . . . , k) in the neighborhood of an x ∈ Bi, and,
therefore, a Kp+1(1, k, k, . . . , k) ∈ L∗k,µ in Sn, a contradiction. So Bi = ∅. By
(c) of Theorem 2.8, applied to M = K(1, k),∆(Gi) < k. Thus, α(x) < k and
β(x) = o(n) for every vertex x. As a matter of fact, we obtained that ∆(Gi) ≤ a.

Since for every tree Ta+1 of a + 1 vertices, Ta+1 × Kp−2(ν, . . . , ν) ∈ L∗k,µ,
hence Gi := G[Ai] contains no trees of order > a. Thus, Gi has no connected
components of more than a vertices. Furthermore (by a similar argument), Gi has
no connected components of a or more edges.

(C) We show that for all but at most one i ≤ p, e(Gi) ≤ a.
(C1) If we add a+1 edges to Tm,p arbitrarily, (m ≥ k), then the resulting graph

will contain some L ∈ Lk,µ.
(C2) Clearly,

e(Sn) ≤ e(Tn,p) +
∑
j

e(Gj)−M, (13)
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if M denotes the number of missing edges. If e(A1) > a, then denote by A∗j
the subset of Aj joined to all the endvertices of these edges (j > 1). By (C1)
e(G[A∗j ]) ≤ a. Since |Aj −A∗j | = o(n) and ∆(Gj) < k, therefore e(Gj) = o(n).
If there were two classes containing a + 1 edges, or M > cn holds, then for all
j, e(Gj) = o(n), and, therefore,

e(Sn) = e(Tn,p) + o(n)

would follow from (13), contradicting (12). So we may assume that e(Gi) ≤ a for
i > 1 and M = o(n). This implies that

e(G1) = e(Sn)− e(Tn,p)− pa > γ(k, µ)
n

p
− o(n).

Therefore, all but o(n) vertices of G1 are covered by trees in G1, of size γ(k, µ).
(D) We show that e(Gi) ≤ ρ(k, µ) for each i > 1. Indeed, assuming the

contrary, we may fix ρ(k, µ) + 1 edges in Gi and delete (at most) o(n) vertices
of each Gj(j 6= i) joined to at least one of these edges by a missing edge. We
can easily find k components of the remaining part of G1, completely joined to
these edges and each having at most γ(k, µ) vertices and at least γ(k, µ)−1 edges.
These will provide an Lk ⊆ Sn with e(Lk) > µ edges, by the definition of ρ(k, µ),
a contradiction.

(E) ‘‘Filling in a missing edge (u, v) by an extra edge (a, b)’’ means below that
(a, b) is an edge of some Gi and we delete it, u, v are not joined in Sn, belong to
different classes, and we join them. If we fill in the missing edges by extra edges
from ∪i>1E(G[Ai]), then the resulting graph is extremal again and is a product.
To show this we distinguish two cases.

(E1) If the number of missing edges was larger than the number of extra edges,
then—in a second run—we fill in all the remaining missing edges as well. In
the resulting graph S∗n, e(S∗n) > e(Sn). So there is a subgraph Mk ⊆ S∗n with
e(Mk) > µ. In S∗n, A2, . . . , Ap contain no extra edges. Now we apply the so-
called symmetrization: for j = 2, . . . , p we replace the vertices of Mk in Aj by
the same number of ‘‘typical vertices wh ∈ Aj ,’’ which are joined in Sn to all the
vertices of V (Mk) ∩ A1, and to the replaced vertices of the other Ai’s: we get an
M ′ ⊆ Sn with e(M ′) > µ, a contradiction.

(E2) In the other case, we have filled in all the missing edges: we obtained a
product S∗n. By the Claim, there exists anMk ⊆ Sn with ||V (Mk)∩Ai| − k

p | < 1,
containing all the extra edges of Sn. In other words, a Turán graph Tk,p can be put
onto V (Sn), so that it covers all the extra edges. Clearly, the number of edges in
such anMk does not increase while filling in the missing edges. So, if the resulting
S∗n contained a forbidden subgraph, then the original Sn would also contain one.
This contradiction completes the proof.
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6. CASE OF SUPERLINEAR REMAINDER TERMS

Here we prove Theorem 2.7. The proof is similar to that of the Octahedron Theorem.

Lemma 6.1. IfUh contains neitherC3 norC4 and e(Wm) = 0, thenUh⊗Wm ∈
I(6, 4) : it contains no subgraphs on 6 vertices and 12 edges.

We shall need a slightly modified version of Lemma 2 of [10] stated below
without proof. It applies to K2(a, b) if a = 1, 2, 3 but we formulate it only for C4.

Lemma 6.2. (a) For every η > 0, there exists a ϑ > 0 such that, ifGm contains
neither C3, nor C4, and has a vertex x of degree ≥ ηm, then

e(Gm) ≤ (1− ϑ)ex(m, {C3, C4}).
(b) If, in addition, Gm has a subgraphG∗ of≥ (1− ε)m vertices with e(G∗) ≤

Cm, then

e(Gm) ≤ √εm3/2 + Cm.

(For related results see also [13].)

Proof of Theorem 2.7. (Sketched) SinceO6, the octahedron graph, is a 6-vertex
graph with only 3 missing edges,O6 is one of the excluded graphs. Sinceχ(O6) = 3
and all the other graphs with 6 vertices and 12 edges contain a K4, Theorem 2.8
can be applied and the proof of the Octahedron Theorem 2.6 can almost be copied.
For the sake of completeness we sketch this proof, pointing out those parts where
the proofs of Octahedron Theorem and Theorem 2.7 differ.

In the Octahedron Theorem 2.6, we exclude only one graph, the octahedron, and
we concentrate on two types of occurrences of it:

O6 = C4 ⊗K2 and O6 ⊆ P3 ⊗ P3,

implying that ifQ⊗R contains noO6, then neitherQ norR can containC4 (unless
Q or R is a single vertex); further, if one of them contains a P3, then the other
does not.

In our case, i.e., in the case of L6,11, the above assertions must be satisfied, of
course, and in addition, we know that neither one ofQ andR can containK3 either,
and (finally), if, say, Q contains a P4, then R cannot contain edges at all.

We shall fix a sufficiently small ε > 0, say ε = 1
10000 . Let Sn be an extremal

graph for L6,−4. By Theorem 2.8, we can partition V (Sn) into two classes A1 and
A2 of size ≈ n

2 so that e(A1) + e(A2) is the minimum possible. This means that
each x ∈ Ai sends more edges to the other class than to its own one.

(i) Lemma 6.1 provides a lower bound on e(Sn):

e(Sn) ≥ max
m
{m(n−m) + ex(m, {C3, C4})}. (14)
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It is known that ex(m, {C3, C4}) ≥ m3/2

2
√

2
+ o(m3/2).3 By symmetry, we may

assume that e(A1) ≥ e(A2). So we know that

e(A1) ≥ 1
2

ex(|A1|, {C3, C4}) ≥ 1
20
n3/2. (15)

(ii) We call the vertices of Ai joined to at least εn vertices of their own class
exceptional and denote their set by Bi. By Theorem 2.8(b), |Bi| = O(1). In this
part, we can ignore the O(n) edges represented by Bi in G[Ai], (i = 1, 2). Let
A∗i = Ai −Bi. Then G[A∗1] contains neither C4 nor C3, otherwise we would have
a subgraph on 6 vertices and 12 edges.

Further, e(A∗2) = 0. To prove this we use that e(P2⊗P4) = 12. Thus, if G[A∗2]
contained an edge xy, then P4 6⊆ G[N(x) ∩ N(y) ∩ A1] would follow, implying
that e(G[N(x) ∩ N(y) ∩ A1]) = O(n). By |A1 − N(x) − N(y)| < εn and by
Lemma 6.2(b),

e(G[A1]) <
√
εn3/2 +O(n),

contradicting (15). (In the octahedron problem here we allow a 1-factor: exclude
only vertices of degree 2 in G[A2].)

(iii) Now we show thatBi = ∅. If, indirectly, e.g., x ∈ B1, then anyC4 orC3 of
G[A1] containing this x and 2 or 3 further vertices from A∗1 can easily be extended
into an L = K(2, 2, 2) ∈ L6,−4 or into a C3 ⊗ C3 ∈ L6,−4. Thus, the subgraph
G∗∗1 spanned by x andA∗1 contains neitherC4 norC3. Applying Lemma 6.2(a) and
e(A2) = O(n), we get that, for m = |A1|,

e(Sn) < m(n−m) +O(n) + e(G∗∗) < e(Sn)− c2(εn)3/2,

a contradiction. A similar argument shows that B2 = ∅, too.
(iv) Now we know that G[A1] contains neither C3 nor C4, and G[A2] = 0.

Hence, by (14), each vertex of A1 is joined to each one of A2.

7. HOW MANY SUBGRAPHS SHOULD BE EXCLUDED?

In this section we investigate whether or not one excluded subgraph can replace
a whole large family of excluded subgraphs. In many cases, one finds that for a
given L there is one appropriately chosen L∗ ∈ L for which

ex(n,L∗)
ex(n,L)

→ 1 as n→∞. (16)

In some other cases, we have the even stronger

ex(n,L∗) = ex(n,L). (17)

3 Erdős conjectures that here equality holds, see below.
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The answer to the question if (16) or (17) always holds is not so simple: e.g., for
(16) NO if p(L) = 1 and YES if p(L) > 1. We illustrate the situation through
some simple examples, which mostly follow from known results.

The case when there is a bipartite L∗ ∈ L was investigated by Erdős and Si-
monovits, e.g., in [11]. Let us consider the case of L4,−2: the family of graphs on
4 vertices with≥ 4 edges. SinceC4 ∈ L4,−2, and a triangle with one hanging edge
is also in L4,−2, one can easily see that

ex(n, {C3, C4}) = ex(n,L4,−2) +O(n).

However, to decide if ex(n, {C3, C4}) ≈ 1
2n

3/2 or ex(n, {C3, C4}) ≈ (n2 )3/2 or is
somewhere in between seems to be one of the difficult problems in extremal graph
theory. According to a famous conjecture of Erdős (see, e.g., [11]),

ex(n, {C3, C4}) ≈
(
n

2

)3/2
,

i.e., probably neither (16) nor (17) holds.
The Erdős–Stone–Simonovits theorem [9] immediately implies that in the so-

called nondegenerate cases, i.e., if L contains no bipartite graphs, then (16) must
always hold. We have seen (Theorem 2.9) that if Tn,p is an extremal graph for L,
then there is always a graph L∗ ∈ L such that

ex(n,L∗) = ex(n,L)

for n > n0, i.e., (17) holds.
Now we give an example where there is no such L∗: as a matter of fact, we shall

provide two examples. The first, deeper case is that of Ex(n, 6, 11). We show that

ex(n,L) > Ex(n, 6, 11) +
n

4
− o(n), (18)

if v(L) = 6 and e(L) = 12. Indeed, by Theorems 2.6 and 2.7 describing the
extremal problems of O6 and of L6,11, we know that

ex(n,O6) > Ex(n, 6, 11) +
n

4
− o(n). (19)

(To be more precise, we know for the case of O6, that if Sn is extremal for L6,11,
then Sn = Um⊗Wn−m for some Um not containingC4, (neitherC3) and for some
Wn−m with e(Wn−m) = 0. Now, an easy Lemma of [10] corresponding to Lemma
6.1 asserts that if Q is a graph containing no C4 and R is another graph containing
no P3, thenO6 6⊆ Q⊗R. So, adding [n−m2 ] edges toWn−m will not create anyO6
in the product. This proves (19).) Further, ifL ∈ L6,−4 andL 6= O6, thenK4 ⊆ L.
(As a matter of fact, this is Turán’s Theorem for n = 6 and K4.) Therefore,

ex(n,L) ≥ ex(n,K4) ≈ n2

3
,

completing the proof of (18). (If the Erdős conjecture holds, then n
4 can be replaced

by (1
2 − 1

2
√

2
)n
√
n.)



204 JOURNAL OF GRAPH THEORY

Now we provide another, simpler example where the family Lk,−λ cannot be
replaced by just one excluded subgraph. Fix an r ≥ 2 and a 2 ≤ a ≤ r/2. Put
k = 2r and µ = r2 + a. If n > 2r, then ex(n,Lk,µ) = bn2/4c + a by Theorem
2.11. (For some related results see [28] or [30].) On the other hand, we have the
following.

Theorem 7.1. If k = 2r, a > 1 and µ = r2 + a, then for any L∗ ∈ Lk,µ one has

ex(n,L∗) > n2

4 + n
4 +O(1).

Proof. Pick an arbitrary L∗ ∈ Lk,µ. If there is no v ∈ V (L∗) for which χ(L∗−
v) = 2, then Zn = K3(1, dn−1

2 e, bn−1
2 c) (i.e., the graph obtained from Tn−1,2 by

joining a new vertexw to all its vertices) contains noL∗ and e(Zn) = bn2

4 c+bn−1
2 c,

proving the assertion.
The other case is when, for some v ∈ V (L∗), χ(L∗ − v) = 2. Now let Zn be

the graph obtained from Tn,2 by adding a 1-factor to the first class of Tn,2. Now
e(Zn) ≥ bn2

4 c+ bn4 c and Zn contains no L∗. This is easy for large values of k and
takes a little work for small values of k. So we are done.

APPENDIX: A GENERAL THEOREM IN THE CASE OF LINEAR ERROR

TERMS

A fairly general theorem of Simonovits [30] tells us that if, for some sufficiently
large t, L ∈ L and L ⊆ Pt ⊗Kp−1(t, . . . , t), then there exist extremal graphs of
fairly simple structure. This theorem of [30] also provides a necessary and sufficient
condition for having only these symmetrical extremal graphs. This theorem is
applicable in all the cases when Ex(n, k, µ) has a linear remainder (though this is
not trivial).

We include these results here, since we feel that the theorem below best describes
the situation investigated in this article (though we could easily prove our results
from Theorem 2.8). To explain this theorem, first we have to define the notion of
a family of fairly symmetrical graphs.

Definition A.1. Let Tj for j = 1, . . . , q be distinct connected subgraphs of G.
They are called symmetrical if

(i) V (Ti) ∩ V (Tj) = ∅ for 1 ≤ i < j ≤ q, and
(ii) there are no edges joining Ti to Tj for 1 ≤ i < j ≤ q, and
(iii) there exists an isomorphism ωj : T1 → Tj such that, for every x ∈ T1, u ∈

G \ ∩`V (T`), x is joined to u if and only if ωj(x) is joined to u.

Definition A.2. A property A of graphs will be called a chromatic condition if

(i) G ∈ A and H ⊃ G implies H ∈ A.
(ii) If ρ = ρ(A) is a sufficiently large integer, then the following holds: if

T1, . . . Tρ are symmetric subgraphs of an A-graph G, then G − Tρ is also an
A-graph.
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To rule out the uninteresting cases, we also assume that there are graphs of
property A and of arbitrarily high girth.

Example. The property Āk,p, that one cannot delete k vertices ofG to get a graph
of chromatic number at most p, is one of the typical chromatic conditions.

Definition A.3. (Family of symmetrical graphs) G(n, r, p) is the class of graphs
Gn satisfying the following symmetry condition:

(i) It is possible to omit ≤ r vertices of Gn so that the remaining graph G∗ is a
product:

G∗ =
∏
d≤p

Gmd , where
∣∣∣∣md − n

p

∣∣∣∣ ≤ r.
(ii) For each fixed 1 ≤ d ≤ p, there exist connected graphs Hd,j ⊆ Gmd (and

isomorphisms ωd,j : Hd,1 → Hd,j) such that Hd,j(j = 1, 2, · · ·) are symmetric
subgraphs of Gn and Gmd is the union of the graphs Hd,j .

The vertices described in (i) have degree > n − n/p + cn in the typical cases,
for some constant c > 0.

Given a family L of graphs and a chromatic property A, we say Gn is (L,A)-
extremal if it has the propertyA, contains no L ∈ L, and has maximum number of
edges under these conditions.

Theorem A.1. (Existence of sequences of symmetrical extremal graphs) Let
χ(L) ≥ p+ 1 for every L ∈ L and χ(L∗) = p+ 1. Let v(L∗) = τ. If

L∗ ⊆ P τ ×Kp−1(τ, . . . , τ), (20)

then there exists a constant r = r(L) such that for every n,G(n, r, p) contains
an extremal graph for L. Furthermore, if there exists an n0 such that for n >
n0,G(n, r, p) contains only one extremal graph, then for sufficiently large values
of n this is the only extremal graph.

We have mentioned that in all the cases when the ‘‘remainder’’ term is linear,
Theorem A.1 describes the situation completely. The reason for this is that, in those
cases, (20) is applicable: the basic forbidden graphs are obtained by putting trees
into the classes of some Turán graphs, and putting a path into the first class of a
Tk,p also yields a forbidden graph.
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