The Turán Density of the Hypergraph $\{a b c, a d e, b d e, c d e\}$
Zoltán Füredi*
Department of Mathematics, University of Illinois
Urbana, Illinois 61801
z-furedi@math.uiuc.edu

Rényi Institute of Mathematics, Hungarian Academy of Sciences furedi@renyi.hu

Oleg Pikhurko ${ }^{\dagger}$
Centre for Mathematical Sciences, Cambridge University
Cambridge CB3 0WB, England
o.pikhurko@dpmms.cam.ac.uk

Miklós Simonovits
Rényi Institute of Mathematics, Hungarian Academy of Sciences PO Box 127, H-1364, Budapest, Hungary
miki@renyi.hu
Submitted: Jan 5, 2003; Accepted: Apr 24, 2003; Published: May 3, 2003
2000 Mathematics Subject Classification: 05C35, 05D05

Abstract

Let $\mathbf{F}_{3,2}$ denote the 3-graph $\{a b c, a d e, b d e, c d e\}$. We show that the maximum size of an $\mathbf{F}_{3,2}$-free 3 -graph on n vertices is $\left(\frac{4}{9}+o(1)\right)\binom{n}{3}$, proving a conjecture of Mubayi and Rödl [J. Comb. Th. A, 100 (2002), 135-152].

[^0]
1 Introduction

Let $[n]:=\{1, \ldots, n\}$ and let $\binom{[n]}{k}$ denote the family of k-element subsets of $[n]$. The Turán function ex (n, F) of a k-graph F is the maximum size of $H \subset\binom{[n]}{k}$ not containing a subgraph isomorphic to F. It is well known [5], that the ratio ex $(n, F) /\binom{n}{k}$ is nonincreasing with n. In particular, the limit

$$
\pi(F):=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{k}}
$$

exists. See [4] for a survey on the Turán problem for hypergraphs. The value of $\pi(F)$, for $k \geq 3$, is known for very few F and any addition to this list is of interest.

In this note we consider the 3 -graph

$$
\mathbf{F}_{3,2}=\{\{1,2,3\},\{1,4,5\},\{2,4,5\},\{3,4,5\}\}
$$

The notation $\mathbf{F}_{3,2}$ comes from [7] where, more generally, the 3-graph $\mathbf{F}_{p, q}$ consists of those edges in $\binom{[p+q]}{3}$ which intersect $[p]$ in either 1 or 3 vertices. Note that we shall use both $\mathbf{F}_{3,2}$ and $\mathbf{F}_{2,3}$ and they are different.

The extremal graph problem of $\mathbf{F}_{3,2}$ originates from a Ramsey-Turán hypergraph paper of Erdős and T. Sós [2]. They investigated examples where the Turán function and the Ramsey-Turán number essentially differ from each other. They observed that ex $\left(n, \mathbf{F}_{3,2}\right)>$ $c n^{3}$, while, if \mathcal{H}_{n} is a 3 -uniform hypergraph without $\mathbf{F}_{3,2}$ and the independence number of \mathcal{H}_{n} is $o(n)$ then $e\left(\mathcal{H}_{n}\right)=o\left(n^{3}\right)$. A more general theorem is proved in [3].

Mubayi and Rödl [7, Theorem 1.5] showed that

$$
\frac{4}{9} \leq \pi\left(\mathbf{F}_{3,2}\right) \leq \frac{1}{2}
$$

and conjectured [7, Conjecture 1.6] that the lower bound is sharp. An $\mathbf{F}_{3,2}$-free hypergraph of density $\frac{4}{9}+o(1)$ can be obtained by taking those 3 -subsets of $[n]$ which intersect $[a]$ in precisely two vertices, $a=\left(\frac{2}{3}+o(1)\right) n$.

Here we verify this conjecture.
Theorem 1. $\pi\left(\mathbf{F}_{3,2}\right)=4 / 9$.
In a forthcoming paper we will present a different argument showing that the above construction with $a=\lceil 2 n / 3\rceil$ gives the exact value of $\operatorname{ex}(n, F)$ for all sufficiently large n.

2 Preliminary Observations

We frequently identify a hypergraph with its edge set but write $V(H)$ for its vertex set. For a 3-graph H the link graph of a vertex $x \in V(H)$ is

$$
H_{x}:=\{\{y, z\} \mid\{x, y, z\} \in H\} .
$$

Suppose, to the contrary to Theorem 1 , that $\delta:=\pi\left(\mathbf{F}_{3,2}\right)>4 / 9+\varepsilon$ for some $\varepsilon>0$. Let n be sufficiently large and let $\mathcal{H} \subset\binom{[n]}{3}$ be a maximum $\mathbf{F}_{3,2}$-free hypergraph.

The degrees of any two vertices of \mathcal{H} differ by at most $n-2$. Indeed, otherwise we can delete the vertex with the smaller degree and duplicate the other, strictly increasing the size of \mathcal{H}. (This is a variant of Zykov's symmetrization.) Hence, $e\left(\mathcal{H}_{v}\right)=(\delta+o(1))\binom{n}{2}$ for every $v \in[n]$.

For distinct $x, y \in V(\mathcal{H})$ let

$$
\mathcal{H}_{x, y}:=\{z \in V(\mathcal{H}) \mid\{x, y, z\} \in \mathcal{H}\} .
$$

Let $\left|\mathcal{H}_{x, y}\right|$ attain its maximum for $\left(x_{0}, y_{0}\right)$. Put $A:=\mathcal{H}_{x_{0}, y_{0}}, \alpha:=|A| / n$, and $\bar{A}:=[n] \backslash A$. Equivalently, αn is the maximum of $\Delta\left(\mathcal{H}_{x}\right)$ over $x \in V(\mathcal{H})$, where Δ stands for the maximum degree. As \mathcal{H} is $\mathbf{F}_{3,2}$-free, no edge of \mathcal{H} lies inside A.

For $v \in V(\mathcal{H})$ let $e_{v}:=e\left(G_{v}[A, \bar{A}]\right)$ be the number of edges in \mathcal{H}_{v} connecting A to \bar{A}.

$$
\begin{equation*}
e_{v}=2 e\left(\mathcal{H}_{v}\right)-\sum_{x \in \bar{A}}\left|\mathcal{H}_{x, v}\right| \geq(\delta-\alpha(1-\alpha)+o(1)) n^{2}, \quad v \in A \tag{1}
\end{equation*}
$$

The assumption $v \in A$ is essential in (1) as we use the fact that A is an independent vertex-set in G_{v}.

By (1), the average degree of $G_{v}[A, \bar{A}]$ over $x \in A$ is

$$
\begin{equation*}
\frac{e_{v}}{|A|} \geq\left(\frac{\delta}{\alpha}-1+\alpha+o(1)\right) n=: \gamma n \tag{2}
\end{equation*}
$$

Thus we can find a set $C \subset \bar{A}$ of size $|C|=\gamma n$ covered in G_{v} by some $x \in A$, i.e., $C \subseteq \mathcal{H}_{v, x}$. Let $B:=\bar{A} \backslash C$ and

$$
\begin{equation*}
\beta:=\frac{|B|}{n}=1-\alpha-\gamma=2-2 \alpha-\frac{\delta}{\alpha}+o(1) . \tag{3}
\end{equation*}
$$

Let $c_{v}:=e\left(G_{v}[A, C]\right)$ and $b_{v}:=e\left(G_{v}[A, B]\right)$. Obviously, $e_{v}=b_{v}+c_{v}$ for every $v \in[n]$. The nonnegativity of β and γ together with (2) and (3) imply

$$
\frac{4}{9}+\varepsilon<\delta \leq \alpha+o(1) \leq \frac{2}{3}, \quad \frac{1}{3} \leq \gamma, \quad 0 \leq \beta<0.12
$$

Concerning the edge densities we obtain by (1) for $v \in A$ that

$$
\begin{align*}
\frac{c_{v}}{|A||C|} & =\frac{e_{v}-b_{v}}{\alpha \gamma n^{2}} \geq \frac{e_{v}-\alpha \beta n^{2}}{\alpha \gamma n^{2}} \tag{4}\\
& \geq \frac{\delta-\alpha(1-\alpha)-\alpha \beta}{\delta-\alpha(1-\alpha)}+o(1)=\frac{2 \delta-3 \alpha(1-\alpha)}{\delta-\alpha(1-\alpha)}+o(1)>\frac{5}{7}
\end{align*}
$$

Here the last step is implied by $9 \delta>4 \geq 16 \alpha(1-\alpha)$.

Note that no edge $E \in \mathcal{H}$ can lie inside C, otherwise $E \cup\{v, x\}$ would span a forbidden subhypergraph. The independence properties of A and C will play a crucial role in our proof.

Following [7] we make the following definitions. Let $\mathcal{F}_{2}=\left\{\mathbf{F}_{2,3}\right\}$ consist of the single 3-graph $\mathbf{F}_{2,3}$. Recall that

$$
\mathbf{F}_{2,3}=\{\{1,3,4\},\{1,3,5\},\{1,4,5\},\{2,3,4\},\{2,3,5\},\{2,4,5\}\}
$$

For $t \geq 3$ let \mathcal{F}_{t} be the family of all 3 -graphs obtained by adding to each $F \in \mathcal{F}_{t-1}$ two new vertices x, y and any set of t edges of the form $\{x, y, z\}$ with $z \in V(F)$. It is easy to show (see [7, Proposition 4.2]) that each $F \in \mathcal{F}_{t}$ has $2 t+1$ vertices and any $t+2$ vertices of F span at least one edge.

Why is this family useful in our study of $\pi\left(\mathbf{F}_{3,2}\right)$? A straightforward attempt to find $\mathbf{F}_{3,2} \subset \mathcal{H}$ is to pick an arbitrary edge $E=\{x, y, z\} \in \mathcal{H}$ and to prove that $\mathcal{H}_{x} \cap \mathcal{H}_{y} \cap \mathcal{H}_{z} \neq \emptyset$. To guarantee the last property, it is enough to require that each $\mathcal{H}_{x}, x \in V(\mathcal{H})$, has more than $\frac{2}{3}\binom{n}{2}$ edges. This leads to $\pi\left(\mathbf{F}_{3,2}\right) \leq 2 / 3$. But suppose that we have $F \subset \mathcal{H}$ with $F \in \mathcal{F}_{t}$. To find a copy of $\mathbf{F}_{3,2}$ in \mathcal{H}, it is enough to find a $(t+2)$-set $X \subset V(F)$ with $\cap_{x \in X} \mathcal{H}_{x} \neq \emptyset$. The condition that for every $x \in X, e\left(\mathcal{H}_{x}\right)>\frac{t+1}{2 t+1}\binom{n}{2}$ is sufficient for this. So, if we can find \mathcal{F}_{t}-subgraphs for sufficiently large t, then we can show $\pi\left(\mathbf{F}_{3,2}\right) \leq 1 / 2$.

This idea is due to Mubayi and Rödl [7]. Here, we take it one step further by trying to find an \mathcal{F}_{t}-subgraph which lies "nicely" with respect to A and C. Then we exploit the fact that each link graph has a large independent set, so its edge density is relatively large between A and C. Here is the crucial definition.

Definition 2. An \mathcal{F}_{t}-subgraph $F \subset \mathcal{H}$ is well-positioned if $V(F) \subset A \cup C$ and

$$
\begin{equation*}
|V(F) \cap A|=t+1 \text { and }|V(F) \cap C|=t \tag{5}
\end{equation*}
$$

3 Proof of Theorem 1

The proof consists of three steps. First, in a lemma, we show that there are well-positioned \mathcal{F}_{t}-subhypergraphs in \mathcal{H}, namely we can take $t=2$. In this step we do not use our assumption that $\delta>\frac{4}{9}+\varepsilon$, only that $n>n_{0}$. Next we show that there is no wellpositioned \mathcal{F}_{t}-subhypergraph with $t=\lceil 1 / \varepsilon\rceil$. In the last step we consider a well-positioned \mathcal{F}_{t} subgraph F, which is not contained in any well-positioned \mathcal{F}_{t+1}-subhypergraph, and $t<1 / \varepsilon$.

Lemma 3. $\mathbf{F}_{2,3} \subset \mathcal{H}$.
Proof. Denote the number of hyperedges of \mathcal{H} of type $A A C$, i.e., those having two vertices in A and one in C, by $\Delta_{A A C}$. Let $a_{w}:=e\left(G_{w}[A]\right)$ and recall that $c_{v}=e\left(G_{v}[A, C]\right)$. Then

$$
\sum_{w \in C} a_{w}=\Delta_{A A C}=\frac{1}{2} \sum_{v \in A} c_{v} .
$$

By (4) we have

$$
\sum_{w \in C} a_{w}>\frac{5}{14}|A|^{2}|C| .
$$

Count the 4-vertex 3-edge subhypergraphs $\mathbf{F}_{1,3}$ of the form $\{w x y, w x z, w y z\}, w \in C$, $x, y, z \in A$. For a given w they are obtained from the triangles in $G_{w}[A]$. So we may apply the Moon-Moser's extension of Turán's theorem [6], that the number of triangles $k_{3}(G)$ of an n-vertex e-edge graph G is at least $e\left(4 e-n^{2}\right) /(3 n)$. The convexity of this function implies for $n>n_{0}$,

$$
\begin{aligned}
\# \mathbf{F}_{1,3} & =\sum_{w \in C} k_{3}\left(G_{w}[A]\right) \geq \sum_{w \in C} \frac{|A|^{3}}{3} \frac{a_{w}}{|A|^{2}}\left(\frac{4 a_{w}}{|A|^{2}}-1\right) \\
& \geq|C| \times \frac{|A|^{3}}{3} \frac{5}{14}\left(\frac{20}{14}-1\right)>\binom{|A|}{3} .
\end{aligned}
$$

So at least two of these triangles coincide, giving a well-positioned \mathcal{F}_{2}-subgraph.
Lemma 4. Let $t=\lceil 1 / \varepsilon\rceil$. Then \mathcal{H} contains no well-positioned \mathcal{F}_{t}-subgraph.
Proof. Suppose, to the contrary, that such an $F \subset \mathcal{H}$ exists and consider the link graphs $G_{v}, v \in V(F)$. As \mathcal{H} is $\mathbf{F}_{3,2}$-free, any pair of vertices belongs to at most $t+1$ links. For the edges between A and B we have

$$
\begin{equation*}
(t+1) \alpha \beta n^{2} \geq \sum_{v \in V(F)} b_{v} \tag{6}
\end{equation*}
$$

Recall that $b_{v}=e\left(G_{v}[A, B]\right)$.

We need the following analogue of (1) for $w \in C$:

$$
\begin{align*}
e_{w} & =2 e\left(G_{w}\right)-\sum_{v \in A}\left|\mathcal{H}_{v, w}\right|-2 e\left(G_{w}[\bar{A}]\right) \\
& \geq\left(\delta-\alpha^{2}-2 \beta \gamma-\beta^{2}+o(1)\right) n^{2}, \quad w \in C \tag{7}
\end{align*}
$$

For the edges connecting A to C, we obtain by (5), (1), (7), and (6) that

$$
\begin{aligned}
&(t+1) \alpha \gamma \geq \frac{1}{n^{2}} \sum_{v \in V(F)} c_{v}=\frac{1}{n^{2}}\left(\sum_{v \in V(F) \cap A} e_{v}+\sum_{v \in V(F) \cap C} e_{v}-\sum_{v \in V(F)} b_{v}\right) \\
& \geq(t+1)(\delta-\alpha(1-\alpha))+t\left(\delta-\alpha^{2}-2 \beta \gamma-\beta^{2}\right) \\
& \quad-(t+1) \alpha \beta+o(t) .
\end{aligned}
$$

Rearranging, we get

$$
\begin{align*}
& \alpha \gamma-(\delta-\alpha(1-\alpha))+\alpha \beta \tag{8}\\
& \quad \geq t\left(-\alpha \gamma+(\delta-\alpha(1-\alpha))+\left(\delta-\alpha^{2}-2 \beta \gamma-\beta^{2}\right)-\alpha \beta+o(1)\right)
\end{align*}
$$

Here the left hand side equals to $2 \alpha(1-\alpha)-\delta$. We have $\alpha(1-\alpha) \leq 1 / 4, \delta>4 / 9$, therefore

$$
\text { the left hand side of }(8)<\frac{1}{2}-\frac{4}{9}=\frac{1}{18}
$$

Substituting the values of γ and β given by (2) and (3) into the right hand side of (8) we obtain after routine transformations that the coefficient of t equals $\alpha^{2}-2 \alpha+4 \delta-\frac{2 \delta}{\alpha}+$ $\frac{\delta^{2}}{\alpha^{2}}+o(1)$, which equals

$$
\frac{1}{\alpha^{2}}\left(\alpha-\frac{2}{3}\right)^{2}\left(\left(\alpha-\frac{1}{3}\right)^{2}+\frac{1}{3}\right)+\frac{1}{\alpha^{2}}\left(\delta-\frac{4}{9}\right)\left(\delta+\frac{4}{9}+4 \alpha^{2}-2 \alpha\right)+o(1) .
$$

Here the first term is non-negative, and in the second term $\delta+\frac{4}{9}+4 \alpha^{2}-2 \alpha>2 \alpha^{2}$ since $\delta>\frac{4}{9}$. Thus (8) implies that $1 / 18 \geq 2 \varepsilon t$ which is impossible.

Let t be the largest integer such that well-positioned $\mathcal{F}_{2}, \mathcal{F}_{3}, \ldots, \mathcal{F}_{t}$-subhypergraphs exist. By our above arguments we have $2 \leq t<1 / \varepsilon$. We are going to use the maximality of t, which tells us that any pair connecting $A \backslash V(F)$ to $C \backslash V(F)$ belongs to at most t graphs $\mathcal{H}_{v}, v \in V(F)$. We obtain

$$
t(|A|-t-1)(|C|-t)+|V(F)|^{2} n \geq \sum_{v \in V(F)} c_{v}
$$

Note that we cannot make the same claim about the edges between A and B because a well-positioned subgraph must lie inside $A \cup C$ by definition. However, we can use the
weaker inequality (6). We obtain

$$
\begin{aligned}
t \alpha \gamma+O\left(t^{2} / n\right) \geq & \frac{1}{n^{2}} \sum_{v \in V(F)} c_{v}=\frac{1}{n^{2}}\left(\sum_{v \in V(F)} e_{v}-\sum_{v \in V(F)} b_{v}\right) \\
\geq & (t+1)(\delta-\alpha(1-\alpha)) \\
& +t\left(\delta-\alpha^{2}-2 \gamma \beta-\beta^{2}\right)-(t+1) \alpha \beta+o(1)
\end{aligned}
$$

leading to

$$
\begin{align*}
& -(\delta-\alpha(1-\alpha))+\alpha \beta \tag{9}\\
& \quad \geq t\left(-\alpha \gamma+(\delta-\alpha(1-\alpha))+\left(\delta-\alpha^{2}-2 \beta \gamma-\beta^{2}\right)-\alpha \beta\right)+o(1)
\end{align*}
$$

Here the left hand side is negative

$$
-(\delta-\alpha(1-\alpha))+\alpha \beta=3 \alpha(1-\alpha)-2 \delta+o(1) \leq 3 \times \frac{1}{4}-2 \times \frac{4}{9}+o(1)<0
$$

and the right hand side of (9) is the same as in inequality (8), so it is at least $2 \varepsilon t$. This contradiction proves Theorem 1.

References

[1] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181-192.
[2] P. Erdős and V. T. Sós: Problems and results on Ramsey-Turán type theorems (preliminary report), Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer. XXVI, 17-23, Utilitas Math., Winnipeg, Manitoba, 1980.
[3] P. Erdős and V. T. Sós: On Ramsey-Turán type theorems for hypergraphs, Combinatorica 2 (1982), 289-295.
[4] Z. Füredi, Turán type problems, Surveys in Combinatorics, London Math. Soc. Lecture Notes Ser., vol. 166, Cambridge Univ. Press, 1991, pp. 253-300.
[5] G. O. H. Katona, T. Nemetz, and M. Simonovits, On a graph problem of Turán (In Hungarian), Mat. Fiz. Lapok 15 (1964), 228-238.
[6] J. W. Moon and L. Moser, On a problem of Turán, Matem. Kutató Intézet Közl., later Studia Sci. Acad. Math. Hungar. 7 (1962), 283-286.
[7] D. Mubayi and V. Rödl, On the Turán number of triple systems, J. Combin. Theory (A) 100 (2002), 135-152.

[^0]: *Research supported in part by the Hungarian National Science Foundation under grant OTKA T 032452, and by the National Science Foundation under grant DMS 0140692.
 ${ }^{\dagger}$ Supported by a Research Fellowship, St. John’s College, Cambridge.

