
A Combinatorial Distinction

between Unit Circles and Straight Lines:

How Many Coincidences can they Have?

György Elekes,∗ Miklós Simonovits† and Endre Szabó‡
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Abstract

We give a very general sufficient condition for a one–parameter family
of curves not to have n members with “too many” (i.e. a near–quadratic
number of) triple points of intersections. As a special case, a combinatorial
distinction between straight lines and unit circles will be shown. (Actually,
this is more than just a simple application; originally this motivated our
results.)

1. Introduction

The (very) general problem

Let Γ be a family of continuous curves in R
d. We pick a set of n curves G =

{γ1, . . . , γn} ⊂ Γ and a set of m points P = {P1, . . . , Pm} ∈ R
d and define a

graph on G ∪ P by connecting γi to Pj if γi passes through Pj . We shall call
this (bipartite) graph the incidence graph of G and P.

Certain properties of such graphs, especially the maximum possible number
of edges as a function of n and m (i.e. bounds on the number of incidences) play
central role in Computational Geometry as well as in Discrete or Combinatorial
Geometry.

In this paper we study a “reverse” question:

if we know only the incidence graph (or some of its properties), can
we infer something about the properties of the family Γ?

Apart from trivial observations like “if two curves share two common points
then Γ cannot be the family of straight lines”, very little is known. (Actually,
[5] contains a result that points to this direction, see Theorem 2 below.)
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Many triple points

In terms of incidence graphs, a point Pj is a triple point if it is connected to at
least three of the n curves in G. Since three general curves do not pass through
a common point, triple points can be considered as interesting coincidences.

Given a family Γ and a positive integer n ∈ N
+, we select n curves γ1, . . . , γn ∈

Γ so that the number of triple points is maximized, and denote this maximum
by TΓ(n). More generally, for three (not necessarily distinct) families Γ1,Γ2,Γ3,
we select n curves from each Γi (i = 1, 2, 3) and call a point P a triple point if,
for i = 1, 2, 3, there exist distinct γi ∈ Γi that pass through P . (Usual bipartite
graphs cannot represent such structures; certain “four–partite” graphs can, but
we do not need them.) We denote the maximum number of such triple points
by TΓ1,Γ2,Γ3

(n), taken over all possible selections of the n + n + n curves. We
must emphasize that, even in this general case, we require that a triple point
be the intersection of three distinct curves.

If any two curves intersect in at most B points (where B is a constant while
n is large) then the maxima defined above really exist; in particular

TΓ(n) ≤ B

(

n

2

)

and TΓ1,Γ2,Γ3
(n) ≤ Bn2,

since already the number of pairwise intersections in Γ (or between, say, Γ1 and
Γ2) cannot exceed the claimed bound.

If no such B exists then no bound can be found for the T (e.g., if, for
i = 1 . . . 3, Γi consists of the graphs of y = i · sin x + t, for t ∈ R).1 That is why,
in what follows, we shall always assume the existence of such a B, i.e. that

no two curves intersect in more than B points. (1)

On the other hand, the number of “double” points can really attain this quadratic
order of magnitude if the curves we select are in “sufficiently general position”,
e.g., if any two share a common point and these points are all distinct. This
observation indicates that the “magic multiplicity” 3 is the smallest interesting
value. In some cases even the number of triple points can be of order cn2, e.g.,
for straight lines like those in Figure 4(c). However, as we shall see, in many
cases the number of triple points is only O(n2−η) for some constant η ∈ (0, 1).

Problem 1. Characterize those families Γ, or triples of families Γ1,Γ2,Γ3, for
which TΓ(n) or TΓ1,Γ2,Γ3

(n), respectively, attains a quadratic order of magnitude
(i.e. at least cn2, for a fixed c > 0 and infinitely many n).

If the function TΓ1,Γ2,Γ3
(n) for certain families Γ1,Γ2,Γ3 attain a quadratic

order of magnitude, a simple way to prove this is to exhibit n (or n + n + n)
curves — for all n ∈ N — that have this many triple points.

The converse is harder: if a quadratic order of magnitude is impossible,
how to demonstrate this? That is why our main result Theorem 14 concerns a
sufficient condition for not having many triple points.

1It is perhaps unfortunate but we use the word “graph” in two completely different ways:
until this point it was used to represent/emphasize the incidences of geometric curves. From
now on graph theory is forgotten and the graph means the graph of a function.
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The main result at a “philosophical” level

Roughly speaking, we show the following (all notions will be defined rigorously,
including “envelopes”).

using suitable (slightly different from usual) definitions of “param-
eterized families” and “envelopes”, if one of three algebraically pa-
rameterized families has an envelope which is not an envelope for
any of the other two families, then

TΓ1,Γ2,Γ3
(n) = O

(

n2−η
)

,

for a positive η > 0 that depends only on the degree of the families.

Since we do not want to spoil the Introduction with a lot of technical details,
we must, for the time being, postpone the exact formulation of our main result;
see Theorem 14 for a precise statement.

On our results and proof methods

While writing this paper, the authors had to make two important decisions.
On the one hand, we had to choose between an analytic and an algebraic

(or, rather, an algebro–geometric) approach. To make our results accessible for
a wider audience, we chose the analytic point of view.

On the other hand, we decided to present a slightly restricted result (i.e.
one with slightly more technical assumptions than necessary). This allows for
a not-too-long proof but, at the same time, it is still sufficiently general for
applications to other problems of Combinatorial Geometry. We are planning to
publish another paper where we state our Main Theorem 14 in a more general
form — with a more involved proof, of course.

Earlier results for straight lines

Studying the incidence structures of points and straight lines (more generally,
of points and certain curves) has been one of the fundamental tasks of Combi-
natorial Geometry for a long time.

About 140 years ago Sylvester [12] posed his famous “Orchard Problem”
which, in an equivalent (dual) form, asks for an arrangement of n straight lines in
the Euclidean plane so that the number of triple points be maximized. Sylvester
showed that if L denotes the family of all straight lines, then TL(n) = n2/6 +
O(n) (cf. [7]).

The study of general “k–orchards” for k ≥ 4 was initiated by Erdős. 2

One of his conjectures resulted in a beautiful and widely applicable upper
bound proven by Szemerédi and Trotter [14]. The most interesting special case
of this bound asserts that

the number of incidences between n points and n straight lines in the
Euclidean plane is at most Cn4/3, for some absolute constant C.

2The “k–orchard” problem asks: Given n points in the plane, how many straight lines can
contain k points of them if no r of them are on a straight line (r > k). See [1], p315.
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Since then, various proof techniques have been found, some of them even ex-
tending the Szemerédi–Trotter bound to “pseudo–lines” (i.e. curves with the
property that any two intersect in at most one point) and “families with two
degrees of freedom” (i.e. through any two given points there pass at most a
bounded number of curves), see [11], [10], [13], and also the excellent mono-
graphs [8], [9].

Earlier results on unit circles

Another “orchard–like” problem was posed by Erdős in [6]: arrange n unit
circles in the Euclidean plane so that the number of triple points be maximized.
Denoting the family of all unit circles by U , an upper bound of TU (n) ≤ n(n−1)
is obvious (since, as before, already the number of pairwise intersections obeys
this bound). A lower bound of TU (n) ≥ cn3/2 was proved in [2]. The gap
between these two estimates is still wide open.

Also from another point of view, unit circles play a special role in Combi-
natorial Geometry. One of the most challenging unproved conjectures of Erdős
concerns the maximum possible number of unit distances between n points in
R

2, and this can be bounded from above by half the number of incidences be-
tween the n points and n unit circles around them.

Since such circles obviously form a family with two degrees of freedom, they
obey the aforementioned Szemerédi–Trotter bound — and it readily implies the
best currently known upper bound on the number of unit distances [11].

The Szemerédi–Trotter bound is known to give the best order of magnitude
for point-and-straight-line configurations, which is not the case for points and
unit circles (let alone more general families with two degrees of freedom). Ac-
tually, it is widely believed that for unit circles and points much better upper
bounds hold on the number of incidences. Thus, according to the famous Erdős
conjecture on unit distances, n points and n unit circles cannot have more than
n1+ε incidences, for any ε > 0 and n > n0(ε).

However, to the best of our knowledge, no such bound has been found so
far, since all existing methods consider the set of unit circles just as a family
with two degrees of freedom. That is why the known tools cannot distinguish
them from straight lines — for which the bound cannot be improved.

As an application of our Main Theorem 14, we show a combinatorial distinc-
tion between families of straight lines and families of unit circles in Section 5.

An outline of what is coming

Assume we have an algebraically parameterized family Γ = {γ(t) : t ∈ T}
of curves, i.e. there is a polynomial p ∈ R[x, y, t] or p ∈ C[x, y, t] such that
γ(t) = {(x, y) : p(x, y, t) = 0}, for all t in the parameter domain T . Here
we do not care whether the points of the individual curves are parameterized
somehow; rather, curves are assigned to each parameter t ∈ T .

If three such curves, say γ(t1), γ(t2), γ(t3) pass through a common point
(x, y), then three equations p(x, y, ti) = 0 are satisfied. Eliminating x and y we
get another polynomial equation

F (t1, t2, t3) = 0. (2)
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It was shown in [5] that, if some n elements of Γ determine > cn2 triple points,
then the surface SF := {F = 0} must be very special: there exist three in-
dependent univariate coordinate transforms on the three axes which, together,
transform SF into a plane — unless SF is a cylinder. The details are given in
the forthcoming Surface Theorem 2.

Unfortunately, that theorem does not provide a “good characterization” in
the sense that it only states the equivalence of existence assumptions. (A “really
good” and efficient tool would be one that says: “structure A exists if and only
if structure B does not”; this would allow for an easy proof of “A does not exist”
by simply exhibiting a B.)

Fortunately, a good characterization was also found in [5]: if we express,
say, parameter t3 from equation (2) then the implicit function t3(t1, t2) must
satisfy a partial differential equation of order three. Theoretically this allows for
proving subquadratic upper bounds on TΓ1,Γ2,Γ3

(n) via elementary calculations,
by showing that the differential equation is not satisfied.

In practice, however, even in simple, natural cases, these calculations may
be impossible to carry out, even for powerful computers (see Section 5).

Our Main Theorem 14 becomes useful under such circumstances: it allows
for similar bounds, based upon simple geometric considerations.

In Section 2 we present one of the most important tools for the proof of our
Main Theorem: the Theorem 2, also called “Surface Theorem”, proven in [5].

In order to prepare for the proof of our main result, we define partial en-
velopes and present some of their properties in Section 3. The main proof itself
comes in Section 4.

In Sections 5–6 we state and prove our motivating Theorem 18: a combina-
torial distinction between unit circles and straight lines.

Finally, we make some concluding remarks and formulate some conjectures.

2. Special surfaces

The first main ingredient of our proof is Theorem 2 below, proven in [5].
Assume we consider a plane αx+βy+γz = δ, intersecting the cube [0, n]3. If

the coefficients α, β, γ, δ are rationals with small numerators and denominators
then this plane will contain ∼ n2 lattice points. If we apply independent univari-
ate transformations in the three coordinates, x, y, z, then we can easily produce
2-dimensional surfaces — described by some equation f(x)+ g(y)+h(z) = δ —
containing a quadratic number of points from a product set X × Y × Z, where
|X| = |Y | = |Z| = n. The main result of [5] asserts that if some appropriate
algebraicity conditions hold, then (apart from being a cylinder) this is the only
way for a surface F (x, y, z) = 0 to contain a near–quadratic number of points
from such a product set X × Y × Z.

As usual, we call a (real or complex) function in one or two variable(s)
analytic at a point if it can be expressed as a convergent power series in a
neighborhood. Also, it is analytic on an open set if it is analytic at each point
of the open set.

A cylinder over a curve f(x, y) = 0 is the surface

S :=
{

(x, y, z) ∈ C
3 : f(x, y) = 0, z ∈ C

}

.
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The definitions of cylinders over g(x, z) = 0 or h(y, z) = 0 are similar. It is
worth noting that such cylinders always contain n2 points of suitable (≤ n)×(≤
n) × (≤ n) Cartesian products. To see this, just pick n arbitrary points on the
curve f(x, y) = 0 and n arbitrary values z1, z2, . . . , zn ∈ C. Denote the x and y
coordinates of the points by X and Y , respectively, and let Z := {z1, z2, . . . , zn}.
Then |X|, |Y | ≤ |Z| = n and X × Y × Z contains at least n2 points of S.

Theorem 2 (“Surface Theorem”, see [5], Theorem 3.). For any positive
integer d there exist positive constants η = η(d) ∈ (0, 1) and n0 = n0(d) with
the following property.
If V ⊂ C

3 is an algebraic surface (i.e. each component is two dimensional) of
degree ≤ d then the following are equivalent:

(a) For at least one n > n0(d) there exist X,Y, Z ⊂ C such that |X| = |Y | =
|Z| = n and

|V ∩ (X × Y × Z)| ≥ n2−η;

(b) Let D ⊂ C denote the open unit disc. Then either V contains a cylinder over
a curve F (x, y) = 0 or F (x, z) = 0 or F (y, z) = 0 or, otherwise, there are
one-to-one analytic functions g1, g2, g3 : D → C with analytic inverses such
that V contains the g1 × g2 × g3-image of a part of the plane x + y + z = 0
near the origin:

V ⊇
{(

g1(x), g2(y), g3(z)
)

∈ C
3 : x, y, z ∈ D, x + y + z = 0

}

.

(c) For all positive integers n there exist X,Y, Z ⊂ C such that |X| = |Y | =
|Z| = n and |V ∩ (X × Y × Z)| ≥ (n − 2)2/8.

(d) Both (b) and (c) can be localized in the following sense. There is a finite
subset H ⊂ C and an irreducible component V0 ⊆ V such that whenever
P ∈ V0 is a point whose coordinates are not in H and U ⊆ C

3 is any

neighborhood of P , then one may require that
(

g1(0), g2(0), g3(0)
)

= P

in (b), and the Cartesian product X × Y × Z in (c) lies entirely inside U .
Furthermore, P has a neighborhood U ′ such that each irreducible component
W of the analytic set V0∩U ′, with appropriate g1, g2 and g3, can be written
in the form

W =
{(

g1(x), g2(y), g3(z)
)

∈ C
3 : x, y, z ∈ D, x + y + z = 0

}

.

If V ⊂ R
3 then the equivalence of (a), (b), (c) and (d) still holds true with real

analytic functions g1, g2, g3 defined on the interval (−1, 1).

Remark 3. This version of (d) is in fact stronger than the original one in [5],
but the proof given there applies without change to the stronger statement.

This result indicates a significant “jump”: either V has the special form
described in (b), in which case a quadratic order of magnitude is possible, by
(b)⇒(c); or else we cannot even exceed n2−η, by (a)⇒(b).
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3. Implicitly vs explicitly parameterized fami-
lies and their envelopes

Definition 4. Let G be an open domain in R
2 or C

2. A curve in the closure
cl(G) is a level set of a continuous function cl(G) → C which is analytic inside
G.

Remark 5. We note, that these kind of curves are not necessarily connected,
and they may have isolated points. However, this will not cause any trouble.

We consider families Γ of curves in R
2 or C

2, parameterized by the elements
of a “parameter space” T ⊂ R or T ⊂ C, like

Γ = {γ(t) : t ∈ T}. (3)

The parameterization is an “implicit analytic parameterization” if there exists
a trivariate function f , analytic on an open domain G ⊂ R

3 or G ⊂ C
3 and

continuous on its closure cl(G), such that

γ(t) = {(u, v) : f(u, v, t) = 0}, for all t ∈ T.

As opposed to implicit ones, we prefer explicit parameterizations.

Definition 6. Γ in (3) is “explicitly analytically parameterized” if there exists
a bivariate function f , analytic on an open domain G ⊂ R

2 or G ⊂ C
2 and

continuous on its closure cl(G), such that

γ(t) = {(u, v) ∈ cl(G) : f(u, v) = t} for all t ∈ T.

Remark 7. Curves of an implicitly analytically parameterized family can usu-
ally be cut into sub–arcs that can be parameterized explicitly — though we do
not need this fact.

Figure 1: Implicitly analytically parameterized families: (a) y − (x − t)2 = 0
and (b) y − (x − t)3 = 0.

The parabolas in Figure 1(a) cannot be parameterized explicitly since more
than one curve passes through any point above the x–axis. As for the cubics
in Figure 1(b), t = x − 3

√
y is a continuous parameterization but it is not

differentiable at any point of the x–axis (and so not analytic either). However,
it is an explicit analytic parameterization for suitable closed sub–arcs, say those
in Figure 2(b).

7



Figure 2: Explicitly analytically parameterized families:
(a) t = x −√

y and (b) t = x − 3
√

y.

Envelopes of explicitly parameterized families

Usually in Differential Geometry an envelope of a family Γ of curves is a smooth
curve that is tangent to each γ ∈ Γ. For explicitly parameterized families the
situation is not that simple. E.g., in Figure 2(a)-(b), the x–axis is not a proper
tangent line of the curves; rather, it only is a “half–tangent”. Since this is
typical in the case of sub–arcs of explicitly parameterized families, we shall use
this general definition.

Definition 8. Let G be an open domain in the real or complex plane and let
γ ⊂ cl(G) be a curve. A line L is the half–tangent of γ at a point P of the
boundary bd(G) if P ∈ γ ∩L, P is not an isolated point of γ, and the following
estimate holds:

dist(Q,L) = o (dist(Q,P )) for Q ∈ γ .

Definition 9. Two plane curves touch each other at a point P if there exists a
straight line through P that is a tangent or half–tangent of both of the curves
at P .

Definition 10. A smooth (open or closed) curve E is a partial envelope for an
explicitly analytically parameterized family Γ, if

(i) E is the graph of an analytic real or complex function, say y = h(x) or
x = h(y), defined on an open or closed interval or disk, respectively (i.e.
E = {(x, y) : y = h(x)} or E = {(x, y) : x = h(y)});

(ii) no (non–empty open) sub–arc of E is contained in any γ(t) ∈ Γ;

(iii) for each point P ∈ E , there exists a t for which the curve γ(t) ∈ Γ touches
E at P .

The adjective “partial” refers to the fact that we do not require that each
γ(t) ∈ Γ touches E .

Remark 11. (a) As we shall see in Lemma 13(ii), for explicitly analytically
parameterized families, E must be a subset of bd(G). (Here E ⊂ cl(G) is
obvious since γ(t) ⊂ cl(G) for all γ(t) ∈ Γ.)
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(b) Any non-trivial sub–arc of a partial envelope is a partial envelope;

(c) It is also worth noting that if a real E is a partial envelope for a family of
analytically parameterized real curves then h can be extended to a complex
analytic function whose graph defines a partial envelope for the family of
the naturally extended, analytically parameterized complex curves.

The technical problems caused by explicit parameterization may be tedious
but, in general, they are not too difficult to manage.

Example 12. The unit circles through a given point, say the origin, form a
family of implicitly analytically parameterized curves. Indeed, if (t, u) is the
center of such a circle, then we can eliminate, say, u from the equations

(x − t)2 + (y − u)2 = 1 = t2 + u2, (4)

and get a polynomial equation

4(x2 + y2)t2 − 4x(x2 + y2)t + (x2 + y2)2 − 4y2 = 0.

Moreover, the circle x2 + y2 = 4 is obviously an envelope for them, in the usual
Differential Geometric sense.
In order to get explicitly parameterized families, we express, say,

t =
x

2
± y

2

√

4 − x2 − y2

x2 + y2
. (5)

(Equivalently, we could express u in a symmetric manner.) Since the right hand
side of (5) has no limit at the origin, we exclude a neighborhood of it, of a
small radius δ, and consider the open set given by x2 + y2 < 4, x2 + y2 > δ2,
y <

√

1 − (x − 1)2 and x >
√

1 − (y + 1)2 as G (see the left hand side of
Figure 5, where this domain is labelled as G1

i , and the excluded neighbourhood
is labelled as Bδ(ai, bi)). Then the appropriate arcs of the unit circles are
explicitly analytically parameterized on G by (5) with + on the right hand side.
We need four rotated copies of the domain G (labelled by G1

i , . . . G
4
i on Figure 5)

to cover all “right-banding” semi-circles, and we need four more mirrored and
rotated copies (labelled by G5

i , . . . G
8
i on Figure 5) to cover the “right-banding”

semi-circles. Thus the whole family can be decomposed into eight explicitly
parameterized (sub)families this way, four of them parameterized by t and four
by u.
Moreover, each family has a quarter of the large circle as a partial envelope.
(No portion of the small “inner circle” is an envelope since the unit circles do
not touch it.)

A lemma on envelopes.

In the proof of the Main Theorem 14, the following statement will play an
important role.

Lemma 13. Let Γ be a family of curves, explicitly analytically parameterized
by f : cl(G) → C or → R, as in Definition 6, and let E be a partial envelope.
Then the following hold.

9



Figure 3: An envelope E (dashed) and its “lifting” by g on the cylinder over E .

(i) There are no points of E to which f can be extended analytically;

(ii) Consequently, we have E ⊂ bd(G).

Proof. To prove (i), we assume that f can be extended analytically to an
open set G̃ which contains G and intersects E . This means, that there is an
analytic function f̃ : G̃ → C which agrees with f on G. We replace E with
G̃∩ E , so from now on f̃ is defined and analytic at each point of E . Also, let us
define the extended curves γ̃(t) = {(u, v) : t = f̃(u, v)} for all t.
The function f(x, y), if restricted to E , gives, by definition, the parameter t of
the curve γ(t) ∈ Γ that touches E at (x, y). Also by definition, E is the graph of
an analytic function, say y = h(x), on an interval or disk I (the case of x = h(y)
is similar). We consider the composition

g(x) := f(x, h(x)) : I → C.

This g is clearly continuous on I; moreover, since we assumed that f can be
extended analytically to every (x, h(x)) ∈ E , it is also differentiable, as an
univariate function, in the interior int(I), by the Chain Rule for the derivative
of compositions of type R → R

2 → R or C → C
2 → C.

Also, g cannot be a constant on E since E is not a subset of any γ ∈ Γ; thus
there must exist a point P0(x0, h(x0)) ∈ int(E) where g′(x0) 6= 0. We are going
to get the required contradiction by showing that the tangent plane of the graph
of f̃ above P0, i.e. at point P+

0 :=
(

x0, h(x0), f(x0, h(x0))
)

, is vertical — which
is impossible.

To this end, we define two spatial curves on the graph of f̃ that pass through
P+

0 such that, at that point, the tangent lines of the two curves will both exist
but will not coincide — hence they must span the tangent plane in question.
Specifically, we consider the curves

{
(

x, h(x), g(x)
)

: x ∈ I}; and

{
(

x, y, g(x0)
)

: (x, y) ∈ G̃, f̃(x, y) = g(x0)};

the former one is the “lifting of E by function g” while the latter the lifting
of the γ̃t that touches E at P0 (i.e. it is γ̃g(x0)) to the fixed height g(x0). By
assumption, there is a line L which is tangent to E and half–tangent to γt at
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P0, hence must be tangent to the extended curve γ̃t at P0. Hence both lifted
curves have, indeed, tangent lines at P +

0 ; that of the latter curve is obviously
horizontal while that of the former one is not, by g′(x0) 6= 0. Since both lines
project to L in the base plane, we conclude that the tangent plane at P +

0 must be
vertical — the required contradiction to the assumption that f can be extended
analytically to G̃.

Now (ii) follows from (i) since it implies that E can contain no (interior)
point of the open set G.

This completes the proof of Lemma 13.

4. The Main Theorem

The following is our main result. Though it concerns families of analytically
parameterized curves, we need the technical assumption that there is an alge-
braic, i.e. polynomial relation between the families (the reason being that the
Surface Theorem 2 works only for this case).

Theorem 14 (Main Theorem). Let Γ1,Γ2,Γ3 be families explicitly param-
eterized by the functions f1, f2, f3, analytic on open domains G1, G2, G3 and
continuous on cl(G1), cl(G2), cl(G3), respectively, and with the property that
G = G1 ∩ G2 ∩ G3 is connected. Assume that any two curves intersect in
at most B points, and the concurrency of three curves γ(ti) ∈ Γi (i = 1, 2, 3) is
described by a polynomial relation in the sense that, denoting a triple point where
they intersect by (u, v), the three parameters ti = fi(u, v) satisfy a polynomial
relation F (t1, t2, t3) = 0, or, more explicitly

F
(

f1(u, v), f2(u, v), f3(u, v)
)

= 0 (6)

identically on cl(G), for a polynomial F ∈ C[t1, t2, t3]. Assume, moreover, that

(i) Γ3 has a partial envelope E;

(ii) E ⊆ G1 ∩ G2;

(iii) No fi (i = 1, 2, 3) is a constant on any non–empty open sub–arc of E.
(Intuitively: no non–empty open sub–arc of E is contained in any γ ∈
Γ1 ∪ Γ2 ∪ Γ3.)

Then
TΓ1,Γ2,Γ3

(n) < B · n2−η,

for a suitable η = η(deg(F )) — provided that n > n0 = n0(deg(F )).

Remark 15. The existence of an envelope E is sufficient but not necessary
to make TΓ1,Γ2,Γ3

(n) subquadratic. Actually, if no such envelope exists, then
anything can happen. To see this, consider the three families of concentric
circles about three points P1, P2, P3 ∈ R

2, respectively. (Obviously, none of
these families possesses an envelope.) On the one hand, the method shown in
[3] gives that, if the Pi are collinear, then TΓ1,Γ2,Γ3

(n) ≥ cn2. On the other hand,
if they are non–collinear, then TΓ1,Γ2,Γ3

(n) is subquadratic (see [5], Theorem 33).

Remark 16. The applicability of Theorem 14 is limited to one–parameter fam-
ilies Γi (the reason, again, being that the Surface Theorem 2 works only for such
families).
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Remark 17. It is worth noting that requirement (iii) in Theorem 14 is not just
a technical assumption. E.g., the n + n straight lines and n parabolas

Γ1 := {y = t21 : t1 = 0, 1, . . . , n − 1};
Γ2 := {x = t2 : t2 = 0, 1, . . . , n − 1};
Γ3 := {y = (x − t3)

2 : t3 = 0, 1, . . . , n − 1};

have n2 triple points — three curves of parameter t1, t2, t3, respectively, pass
through a common point if and only if t1 = |t2 − t3| — while the x–axis as E
and the polynomial F (t1, t2, t3) := t21 − (t2 − t3)

2 satisfy all requirements but
(iii).

Proof of the Main Theorem

(I) Without loss of generality we may assume that both the polynomial F
and the surface SF = {F = 0} are irreducible. Indeed, the open domain
G is connected, hence irreducible (as an analytic set). Therefore its image
under the mapping

f = f1 × f2 × f3 : cl(G) → SF ⊂ R
3,

defined by

(u, v) 7→
(

f1(u, v), f2(u, v), f3(u, v)
)

is, again, irreducible. Then f(G) must be contained in a single irreducible
component of the surface SF , and one can simply throw away all other
components. Moreover, the analytic functions fi are nonconstant, hence
the polynomial F must depend on all three variables, and the surface SF

does not contain a cylinder over a curve (see Theorem 2(b)). Let η =
η(deg(F )) ∈ (0, 1) and n0 = n0(deg(F )) be the constants the existence
of which is stated in Theorem 2. We want to show that TΓ1,Γ2,Γ3

(n) <
B · n2−η, for n > n0.

(II) Assume for a contradiction that n + n + n curves with parameter sets
T1, T2, T3, respectively, determine ≥ B · n2−η triple points for an n > n0.
Any three curves, say of parameter t1, t2, t3, respectively, share at most B
common points. Therefore, the surface SF passes through ≥ n2−η points
of the n×n×n Cartesian product T1 ×T2 ×T3. In other words, V = SF

and the Ti as X, Y , Z satisfy Theorem 2(a).

(III) Consequently, we can use Theorem 2(d) and localize Theorem 2(b). This
gives us a finite subset H ⊂ R of “exceptional” or “forbidden” values, and
after picking a point P and a surface W in (IV) below, we shall also obtain
three analytic functions g1, g2, g3 : D → C. Without loss of generality, we
may assume that the partial envelope E of Γ3 whose existence we assumed
in the Main Theorem 14, has the property that

∀P ∈ E and i = 1, 2, 3, gi(P ) /∈ H. (7)

Indeed, this only excludes finitely many points from any closed sub–arc
of E — since the gi are nowhere constant by assumption (iii) — thus, if
necessary, E can be restricted to a suitable open sub–arc.

12



(IV) Now we pick an arbitrary point Q ∈ E . Clearly, f(Q) ∈ SF , since E ⊂
cl(G) by assumption (ii) and SF is closed. Recall that V0 = V = SF by
the irreducibility assumption in (I), and fi(Q) /∈ H for i = 1, 2, 3, by the
assumption we made in (III), equation (7), so we can apply Theorem 2(d)
and (b) to the point P = f(Q). Then we get a neighbourhood U ′ of f(Q),
and the promised one-to-one analytic functions (with analytic inverses),
g1, g2, g3 : (−1, 1) → R or D → C with the following property: The
function g = g1 × g2 × g3 maps the origin (0, 0, 0) to f(Q), and maps an
open subset of the plane x + y + z = 0 onto the irreducible component of
W ⊂ SF ∩ U ′ containing f(G) ∩ U ′. This latter set is nonempty, since P
lies inside U ′ and in the closure of f(G).

(V) Denote the inverses of the gi by ϕ1, ϕ2, ϕ3, respectively. Then the
“coordinate-wise inverse” g−1 = ϕ1 × ϕ2 × ϕ3 maps W into the plane
x + y + z = 0. In other words, for (t1, t2, t3) ∈ W we have

ϕ1(t1) + ϕ2(t2) + ϕ3(t3) = 0,

since the three quantities on the left hand side are coordinates of a point
in the plane x + y + z = 0. But f(G) ∩ U ′ ⊆ W , hence

ϕ1

(

f1(u, v)
)

+ ϕ2

(

f2(u, v)
)

+ ϕ3

(

f3(u, v)
)

= 0 (8)

identically, in a neighborhood U ⊂ cl(G) of Q. (This U is open inside
cl(G) but not open in the plane, as Q is a boundary point.)

(VI) According to Lemma 13(i), f3 cannot be extended analytically to any
neighborhood of Q. On the other hand, re–writing (8) as

ϕ3

(

f3(x, y)
)

= −ϕ1

(

f1(x, y)
)

− ϕ2

(

f2(x, y)
)

,

we get an explicit formula for f3 in U :

f3(x, y) = g3

(

− ϕ1

(

f1(x, y)
)

− ϕ2

(

f2(x, y)
)

)

.

By assumption (ii) the right hand side is defined beyond Q, hence provides
an analytic extension of f3. This is the required contradiction.

5. A Combinatorial Distinction between Unit
Circles and Straight Lines

In this chapter we restrict our attention to the real plane R
2. Recognizing unit

circles (and, especially, distinguishing them from straight lines) does not seem
to be difficult. E.g., anyone can tell that in Figure 4(a)–(b), there can only be
found circles and no straight lines. Similarly, few people would doubt that there
is no unit circle in Figure 4(c), just straight lines. However, one should be more
careful. How do we know that the lines are really straight? Perhaps they may
be (arcs of) unit circles, provided that our “unit” is very large — so huge that
their tiny little arcs do not even seem to be “bent”. This is the moment when
the points of the 5 × 5 lattice become important:
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Figure 4: (a)–(b) unit circles; (c) straight lines?

is it possible that 25 points and 15 unit circles are incident upon each
other just like in Figure 4(c)?

Unfortunately, we do not know the answer to this simple question. However,
we are going to show that, for any n > n0, the n2 points of an n × n lattice
and 3n lines in a similar grid–like configuration (n horizontal, n vertical and
n “diagonal” ones) can only have this prescribed incidence pattern if the lines
are really straight and cannot if they are (arcs of) unit circles — and this holds
even if we only require a near–quadratic number of incidences.

Theorem 18. There exist an absolute constant η ∈ (0, 1) and a threshold n0

with the following property.
Let (a1, b1), (a2, b2), (a3, b3) be three distinct points in the Euclidean plane and
Γ1, Γ2, Γ3 be three families of unit circles, such that, for each i ≤ 3, all circles
of Γi pass through the common point (ai, bi). Then

TΓ1,Γ2,Γ3
(n) ≤ 210 · n2−η + 3, (9)

provided that n > n0.

Remark 19. The conjecture that in this case TΓ1,Γ2,Γ3
(n) = o

(

n2
)

, originates
from Székely (see [4], Conjecture 3.41).

Remark 20. For straight lines the situation is quite different from the one
described in Theorem 18. A configuration like the one in Figure 4(c) gives
≈ 3n2/4 triple points — where the three points (a1, b1), (a2, b2), and (a3, b3)
which are common to the corresponding families of curves, — can be considered
as points on the line at infinity.
Similarly, if we allow arbitrary (i.e. not just unit) circles then they can produce
any incidence pattern that straight lines can: just apply a suitable inversion to
any configuration of points and straight lines. Even certain other conic sections
have this property, e.g., shifted copies y = x2 + ax + b of the parabola y = x2:
just apply the diffeomorphism (x, y) 7→ (x, x2 +y) to any configuration of points
and straight lines.

6. Proof of Theorem 18

Assume we are given three families Γ1, Γ2, Γ3 of unit circles and three distinct
points (a1, b1), (a2, b2), (a3, b3) ∈ R

2, with the property that all curves in Γi

pass through (ai, bi), for i ≤ 3.
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1. During the proof we do not consider the three points (ai, bi) as triple
points (though they might be). This will only add a “+3” at the end.

2. Pick a sufficiently small positive δ so that the δ–neighborhoods Bδ(ai, bi)
do not contain any triple point.

3. We subdivide each Γi in the way described in Example 12, this subdivision
is pictured in Figure 5. Thus we get three times eight subfamilies denoted
by Gk

i with i = 1, 2, 3 and k = 1, 2, . . . 8. This subdivision will effect the
bound on TΓ1,Γ2,Γ3

(n) only by a factor of 83.

G3 G4

G2 G1 G5

G6 G7

G8
i

i i

i

i

ii

i
B (aδ i ,bi )

1
iG

Figure 5: Subdivision of the family Γi into eight subfamilies. Left hand side:
one of the subfamilies, G1

i (dotted arcs). Right hand side: all eight subfamilies.

4. Each such Γ
(k)
i only covers Gk

i once. Thus, as in Example 12, the family
can be explicitly analytically parameterized.

5. It is not difficult to find a trivariate polynomial equation F (t1, t2, t3) =
0 that is satisfied by the parameters corresponding to any triple point.
This is a rather straightforward calculation, our earlier manuscript had it.
However, wishing to emphasize that we do not care for its actual form,
we deleted it. (Actually, such polynomials can always be found in case of
three algebraically parameterized families.)

6. Each Γ
(k)
i (i ≤ 3, k ≤ 8) possesses an envelope (a quarter circle of radius

2) that is not an envelope for any of the Γ
(l)
j for j 6= i. Thus each triple

〈Γ(k)
1 ,Γ

(l)
2 ,Γ

(m)
3 〉, for k, l,m ≤ 8, satisfies the assumptions of the Main

Theorem 14. Thus they cannot have more than 2n2−η triple points for n >
n0 — where η = η(deg(F )) and n0 = n0(deg(F )) are as in Theorem 14.

7. We conclude that, indeed, TΓ1,Γ2,Γ3
(n) ≤ 210n2−η + 3.

Concluding remarks

We have given a sufficient condition for three one–parameter families of curves
(or for three copies of a single family) to have “few”, more specifically at most
n2−η triple intersections.

How far below quadratic should it be? Since we have no reasonable estimate
for η > 0, nothing is known about the exact order of magnitude. It may well be
that the number of triple points is at most n1+ε, for any ε > 0. We do not even
know any families that satisfy the assumptions of Theorem 14 and can produce
a super–linear number of triple points, say n log n.

Which more-than-one parameter families of curves can determine a quadratic
number of triple points? Our methods do not work in this generality, since
Theorem 2 only applies to 1–parameter families.
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We cannot help mentioning a related, beautiful, unsolved problem of Erdős.
Assume that, in the projective plane, n straight lines define at least cn2 quadru-
ple points, i.e. points where at least four lines meet. Is it true that, for suf-
ficiently large n > n0(c), there must exist a point where at least five of them
intersect?
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