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Our old friend, Gyuri Elekes1 was already very ill when we have finished
one of his last paper2 [3]. He died within a month. This paper is a continu-
ation of [5], that contains some personal memories of the first author. Here
we describe our joint work, partly published in [3] and also a basic ingredient
of it, a joint paper of Elekes and Szabó [4]. The papers [3] and [4] seemed
to be very important for Gyuri Elekes.

When Elekes learnt that he was soon to die, in a very short period he
has finished seven papers. Two of them were these papers [4] and [3].

1. The beginning

In January 2006 Elekes wanted to prove Theorem 1 below and for this he
needed that some functional relation of the form

F (ϕ1(u, v), ϕ2(u, v), ϕ3(u, v)) = 0

cannot be satisfied (see [4, 3]) unless F has a very special form. Investigating
the singularities of the functions ϕi, Elekes and Simonovits proved that3

Theorem 1. There exist two constants c > 0 and
η > 0 such that if we consider three non-collinear
points in the plane, A, B, and C, and we have
through each of them n unit circles,4 then the num-
ber of triple points, i.e. points belonging to three
such circles, is at most cn2−η.

1More precisely, György Elekes.
2More precisely, this three-author paper was written up by Gyuri.
3A more detailed story is described in [5]

1



Simonovits, Szabo: Gyuri Elekes and the incidences 2

The motivation of this was the following.

Consider a square grid arrangement in the plane and n horizon-
tal, n vertical straight lines, and n of slope 1 (i.e. at 45o). They
will have cn2 triple points. This can be seen in Figure 1(b).
Moreover, using k ≥ 3 appropriate slopes we obtain k families of
straight lines for which the number of crossings of multiplicity k
is ckn

2.

Figure 1: (a) Circles (b) and straight lines

This makes a combinatorial distinction between straight lines and unit
circles. For arbitrary circles such a distinction cannot be made, since the
straight lines can be transformed into circles by an inversion that keeps the
incidences.5

Having this, we wanted to find out, when and why can such systems of
curves have cn2 triple points. We wished to show that the number of triple
points is small in the typical cases: if we have many triple points then we
have a “strongly degenerate” case.

The proof of Theorem 1 and some of its generalizations heavily used (and
also influenced?) a result of Elekes and Szabó [4]. This is why three of us
decided to finish our work together. We had also another reason to join our
forces: we three had three different ways of looking at the subject, and the
various approaches helped each other.

We have already mentioned that Elekes worked a lot and hard in his
last weeks on these two papers (too). Writing that “we have finished our
paper” was a slight cheating. Actually, we have finished and published its
first version [3], where we avoided using analytic branches of inverse func-
tions of polynomials. This paper has already appeared. However, we still

4From now on, we shall write “n+ n+ n curves” in such cases.
5 The opposite direction does not hold: two points can be contained in arbitrary many

circles and this incidence pattern cannot be obtained using straight lines.
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have to finish a more general, deeper version of our paper. Technically
speaking, the difference between these versions is that in the first version we
restrict our consideration to explicitly parameterized 1-parameter families of
curves, while the second version will settle the problem of implicitly param-
eterized families.6 Elekes felt that whenever one can apply the theorem to
implicitly parameterized families of curves, then the curves can be cut into
some subsegments, so the families can be replaced by explicitly parameter-
ized families, and applying the special version (on explicitly parameterized
curves) gives the same conclusion. This would mean that the practical dif-
ference between the “explicit” and “implicit” versions is not that much, at
least from the point of view of applicability. The first author of this paper
felt that the “implicit” version is much more natural and nicer.

The main question is as follows.
Given a 1-parameter family of “nice” curves, it may happen that they

have cn2 triple points. We have seen this in case of straight lines. Applying
inversion, we saw that this may happen for circles, too. We have stated
that this cannot occur in case of unit circles, pierced by three distinct given
points.

So the main question asks:

Given three 1-parameter families of nice curves, when can we
have cn2 triple crossings and why?

Remark 2. The properties we investigate are – in some sense – invariant un-
der “nice” transformations. “Nice” could mean continuously differentiable,
or C∞, however, for us “nice” means analytic, or algebraic. If we have three
nice families of curves with many triple points, we may apply any (nice)
transformation7

u := f(x, y), v := g(x, y) (1)

to these families to get “nice” curves with the same number of triple points:
If the transforming functions are nice then the new families will also be a
1-parameter families, smooth (nice) and appropriate n+n+n curves of the
new families will again have ≈ cn2 triple crossings.8

6Some definitions will follow only afterwards. Here we yield the definitions in this
footnote but later we return to this. A family {γt} of plane curves given in the form
F (x, y, t) = 0 is implicitly parameterized, but if this family is parameterized in the form
t = f(x, y) then it is explicitly parameterized.

7and not just the “inversion”
8Of course, we may use any – not so nice – transformations as well. However, here we

are interested only in nice families.
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2. Incidences

Elekes was interested above all, — at least in the area described here — in
the following.

If we have a general family A of plane curves and we select n
curves from A, then the number of double-points can easily be
quadratic, (i.e. > cn2), however, the number of triple points is
(mostly) relatively small. We have seen that in case of straight
lines we may have cn2 triple points. However, this is a degener-
acy, some kind of a strange coincidence. Which type of degen-
eracies should be excluded to ensure that the number of triple
points be small?

Investigations of this type, on the incidence structures of straight lines
and points, – or more general families of curves – belong to the fundamental
questions of combinatorial geometry and perhaps the famous English math-
ematician, Sylvester was the first to investigate them, approximately 140
years ago. He proved that

Theorem 3 (Sylvester). Let L be a system of n straight lines in R
2. Then

the number of triple points is at most n2/6 +O(n), and this is sharp.

If we ask for the maximum number of triple points in case of unit circles,
then not only the number of triple points but the number of double points
(intersections) is at most n(n − 1). Moreover, if we restrict ourselves to
curves where any two intersect in at most B points, then the number of
intersections is still at most O(n2). Answering a question of Paul Erdős,
Elekes proved that

Theorem 4 (Elekes [2]). There exist n unit circles with at least cn3/2 triple
points.

The upper and lower bounds are rather far from each other.
We could conjecture that if we consider “nice” families of curves that are

not straight lines, then we may have only o(n2) triple points. This is not
so: the family of straight lines can be transformed into families of congruent
parabolas with cn2 triple crossings. (Or – as we have mentioned – it can be
transformed into families of circles.)

On the other hand, if we consider nice families of curves and exclude
certain degeneracies, then we can prove that the number of triple points is
only at most cn2−η, for some suitable constants c > 0 and η > 0.
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Here we shall explain our results, and the background, without trying
to formulate them in their most general form. We should clarify – among
others – two questions:
• Which are the nice curves and nice families of curves?
• Which degenerate cases should be excluded to get only o(n2) triple

crossings.

2.1. Nice families of curves and their Enveloping curves

Below we wish to explain the most important phenomena. Therefore occa-
sionally our formulations will be slightly loose, often heuristic. In our next
paper, on the implicitly parameterized families, we shall take the effort to
be 100% precise.

We start with defining the curves, families of curves and the main content
of our results. Here a curve γ is always the 0-set of some polynomial P of
two variables, in the plane:

γ =
{

(x, y) ∈ R
2

∣

∣

∣
P (x, y) = 0

}

(2)

Of course, the questions we consider can be considered above any field,
primarily above the reals and complex numbers. However, we assume that
most of our readers prefer the real curves. Thus here we shall restrict our-
selves (with two exceptions) to the real case. The curves will be denoted by
script capital letters: A, B, C, E , or sometimes by γ.

If we start changing smoothly some parameter in the equation (2) de-
scribing a curve, then the curve itself often starts changing smoothly. This
way we get a family of curves. If the parameter is t, then we mostly consider
families of curves described by polynomials depending on t:

γt =
{

(x, y) ∈ R
2

∣

∣

∣
Pt(x, y) = 0

}

(3)

Here we are interested only in families of curves where the coefficients are
polynomials of a parameter t: Pt(x, y) = P̃ (x, y, t), where P̃ is a polynomial
of the three variables. The families usually will be denoted by script capital
letters, like {At}, {Bt}, where the index is the parameter: If t1 ∈ R is a
parameter value, then At1 denotes the member of the family {At} corre-
sponding to t = t1.

Example 5. Whatever we write here is valid for arbitrary families of curves.
However, it is worth keeping in mind the following case that is slightly more
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general than the unit circles in Theorem 1. We are given a point A in the
plane and a convex closed curve A0, defined by a polynomial. We rotate
A0 around A, getting a family of curves, see Figure 2. We do not assume
A ∈ A0. Denote by At the curve rotated by α, for t = tan α

2
.

AA

P P

EE

F
F

AtAt

Figure 2: Families of convex curves, two situations

The reader could ask, why did we use t = tan α
2
, to parametrize the

curves, instead of using α itself. The answer is that in the equations of
the rotated curves we have sinα and cosα. They are not polynomials of α.
However, if we use t = tan α

2
, then we shall obtain polynomials of t, after

some work. Here we emphasize that the actual form of these polynomials is
completely irrelevant for us, we need only the existence of these polynomials.
Moreover, the proofs will neither use these polynomials.

The Reader can see two situations in Figure 2: On the right the center A
(of the rotation) is inside of At, on the left it is outside. The curves cover a
ring type domain in both cases. If A happened to be on A0, then the inside
circle of this ring would shrink to a point, so the rotated curves would cover
a disk.

One can see two special curves on this figure: E and F . They are the
enveloping curves of these two families. In general,

Definition 6. We call a curve E the enveloping curve of {At} if in each
point of E some curve At of the family is tangent to E , however, no At has
an arc common with E .

So nearby points of E are tangent-points of distinct curves At, hence
infinitely many curves At are tangent with E . 9 10

9Observe that we have formulated our definition so that a non-degenerate sub-arc of
an enveloping curve is also an enveloping curve, where degenerate means a point or an
empty arc.

10If the parameterized family is given in form of F (x, y, t) = 0, then the enveloping
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We have subdivided each curveAt of Figure 2 into two arcs, one indicated
by a thiner line the other by a thicker but broken line. Each point in the
domain covered by the whole curves is covered by two such half-curves: a
thin continuous line and a thick broken line.

Figure 3: The lifted curves define a “spiral column”

It would simplify the situation if we could achieve that the points on
a curve determine the parameter of that curve: each point is only on (at
most) one curve At. Staying in R

2, we cannot achieve this. Therefore we
apply a “lifting”: the curve At (see Figure 3) is lifted from the plane into
the space, into height t. These space-curves constitute a spiral tube (similar
to the barock columns). Let

V =
{

(P, t) ∈ R
2 × R

∣

∣

∣
P ∈ At

}

.

Clearly, if we draw our curves onto the surface V , then they become non-
intersecting: each point of the surface belongs only to one curve. Let us
return to the problem of triple points.

Definition 7. Given three families of curves: {Ar}, {Bs}, and {Ct}, we
shall say that they are “in special position”, if for some constant c > 0,
for infinitely many integers n we can find three n-tuples of parameters,
X, Y, Z ⊂ R for which “the generalized grid” X × Y × Z ⊂ R

3 has at

curves are (basically) described by

F (x, u, t) = 0 and
∂

∂t
F (x, y, t) = 0 .

We have to remark here that there are several ways to define the enveloping curves and
they are not completely equivalent.
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least cn2 parameter-triples (r, s, t) (out of the n3 possible ones) that are
triple points:

Ar ∩ Bs ∩ Ct 6= ∅.

Actually, a point can correspond to many triple intersections and we are
counting the points, not the parameter triples.

If our curves are not “in special position”, then we say that they are “in
typical position”.

These definitions are motivated by that mostly (?) the number of triple
points is small. Thus, e.g., the families of circles in Theorem 1 are “in
typical position”. Observe this fairly surprising jump in the number of triple
points: three such families of curves either have (at least) cn2 triple points,
for suitably chosen parameters, or the families are “in typical position”, and
then — whichever way we choose the three n-tuples X, Y , and Z above, —
the generalized gridX×Y ×Z ⊂ R

3 will give at most cn2−η parameter-triples
(r, s, t) corresponding to triple intersections.11 We shall see both behaviours
below. In Example 8 we shall see families of parallel straight lines “in special
position”. On the other hand, in Example 9 we see families of circles “in
typical position”. This will lead us to the generalization of Theorem 1.

Example 8. Let Ar,Bs, Ct denote the horizontal line y = r, the vertical
line x = s and the skew line y = x + t, respectively. They form three
families: {Ar}, {Bs} and {Ct}. In Figure 1(b) one can see this three families
of lines, and it is easy to count the triple-crossings. It is clearly a “special
arrangement of curves”: for example if X = Y = Z = {a, 2a, 3a, . . . na} for
an arbitrary value a > 0, then in the “generalized grid” X × Y × Z there
are cn2 triple-crossings.

These three families of lines will play an important role. We shall see
in Theorem 16 that each “special arrangement of curves” can be recon-
structed12 via clever transformations from this single configuration.

Example 9. In Figure 4(a) one can see three copies of the families of curves
of Example 5. Given three centers of rotation and three closed convex curves,
we rotate each of the three curves around the center assigned to it. This
way we get three families of curves. Denote them by {Ar}, {Bs} and {Ct}.

11If n is large, then n2 is much larger than n2−η. So either we have very many triple
points, or very few: there are no in-between situations. Similar phenomena occur in some
other combinatorial situations as well.

12Basically it contains an image of such a configuration
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F

G

P
Ar

Bs

Ct

Figure 4: (a) Three families of circles (b) circular pentagon

In Figure 4(a) the letter P marks a triple-crossing of three curves, one
from each family: one curve is drawn continuously, the other one is dashed
and the third one is dotted. Each of the three families sweeps through an
annulus, the domain of triple-crossing points is the intersection of the three
annuli. On the left it is just the “curvy triangle” EFG. In general, the
situation can be more complicated. E.g., if we slightly shrink B0, the family
{Bs} will not reach F . Hence the triple-crossing points will not cover this
corner of the domain EFG. There are cases where the domain of triple-
crossing points is even more complicated, see Figure 4(b).

Theorem 10. Suppose that in Example 9 the three families of curves are
arranged according to Figure 4(a), i.e. the set of triple-crossings is precisely
the “curvy triangle” EFG. Then our configuration is a “typical arrangement
of curves”, hence n − n − n curves can have at most cn2−η triple-crossings
for some suitable constants c > 0 and η > 0.

Naturally there are many other “special arrangements of curves” besides
the one in Example 8. We have seen in Remark 2, how to get, with the
help of continuous transformations, numerous new “special arrangements of
curves” from a single one. Presently we use only transformations that can
be given via polynomial functions, and their image set is two dimensional.
(This later condition excludes, e.g., the projection to a line.) They are called
polynomial transformations.

Example 11. Let f(x, y) = x2 and g(x, y) = y3 − 3y in (1) in Remark 2.
This is an extremely special situation, since the transforming functions de-
pend only on one variable: we may study separately the horizontal and
vertical behaviour of this transformation. On the one hand, the function x2

maps R into itself “folding” the negative side back onto the positive side.
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Figure 5: Folding the plane

Therefore our transformation also “folds the plane in half” along the vertical
line x = 0. On the other hand, the function y3−3y is increasing on the half-
line (1,∞), then “turns back” and decreases on the interval (−1, 1), then
“turns” again and increases on the remaining half-line (1,∞). Therefore our
transformation also “folds” the plane twice in the y direction: along the hor-
izontal lines y = −1 and y = 1. One can imagine a sheet first folded in half
along a vertical line, then “wrinkled” along two (nearby) horizontal lines,
and finally “ironed” into the plane. Our transformation works in the plane
in much the same way, but there is a subtle difference. If one cuts the sheet
into rectangles along the fold-lines, then the ironing smoothes each rectan-
gle congruently into the plane. However, our transformation “distorts” the
rectangles both horizontally and vertically: some parts get stretched out,
others are shrunk.

This example illustrates well the behaviour of other polynomial trans-
formations — the most important difference being that the fold-lines are no
longer straight lines. Let φ : R2 → R

2 be any polynomial transformation.
The locus of critical points, where the Jacobian determinant of φ vanishes,
consists of finitely many curve components and finitely many isolated points.
The curve part is the correct generalization of the fold-lines of Example 11,
φ will actually “fold” the plane along some of these curves. One can add a
few more curves to the picture so that these curves together “cut up” the
plane into “curvy polygonal domains”, and φ is one-to-one on each of these
domains. The addition of extra curves is necessary as shown in the example
(x, y) → (x2 − y2, 2xy), which is simply the map z → z2 of the complex
plane, and has a single critical point at the origin.

Univariate polynomials usually have no inverse function, hence we of-
ten use “multi-valued inverse functions”. Good examples are the formulas
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for solving quadric, cubic or quartic equations which are two, three and
four-valued. More generally, the inverse of a polynomial of degree d is (at
most) d-valued. Analogously, we can invert polynomial transformations.
Their inverses are “multiple-valued transformations” which send each point
to multiple images13. One can easily estimate the number of images. There
can be finitely many exceptional points in the plane whose image is an entire
curve (hence infinitely many points), but all other points can have at most
deg(f) ·deg(g) images,14 where f and g denote the polynomials defining the
transformation to be inverted (see formula (1) of Remark 2).

Figure 6: (a) Spiral and “parallel lines” (b) Grid on the cylinder

There is another possibility that we haven’t used so far: one can draw not
only in the plane, but on a sphere, on a cylinder, or on any other smooth
enough surface. We met such a drawing, e.g., in Figure 3. In this paper
we use smooth algebraic surfaces, that is, surfaces defined via polynomial
equations which have a tangent plane at each of their points.

Example 12. Let us consider again Example 8 and the corresponding Fig-
ure 1(b). If we “roll up” this drawing vertically then we get a horizontally
lying cylinder and three families of curves drawn on it: The horizontal lines
turn into a horizontal ruling of the cylinder, the vertical lines turn into ver-
tical circles (the orthogonal cross-sections of the cylinder), and the skew

13More precisely: a single point can have zero, one, ore many images.
14A system of two bivariate polynomial equations have either infinitely many solution

or at most as many as the product of the degrees of the equations. (Bezout Theorem?)
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lines become spirals running round-and-round. They together form another
“special arrangement of curves”.

If we “roll up” the cylinder again around a vertical axis, then we get a
torus. The horizontal lines turn into horizontal circles, the vertical circles
remain vertical circles (but they are no longer parallel, they revolve around
the new axis) and the spirals on the cylinder will turn into spirals on the
torus. This is again a “special arrangement of curves”.

The spirals drawn onto the torus can close into themselves, or can run
round-and-round the torus indefinitely — it depends on the relationship
between the two “rolling ups”. For us only the self-closing spirals are im-
portant, since they can be defined with polynomial equations. (The actual
form of these polynomials is, as usual, irrelevant.)

It is worth contemplating for a moment: if a spiral drawn on a torus
does not close into itself, then it travels all over the torus uniformly, and
its image is a dense subset. These dense spirals are impossible to define
with polynomial equations. Indeed, if a polynomial vanishes along a dense
subset, then it is zero on the entire torus.

3. Reasons to be special

Definition 13. We shall use the name line-like arrangement of curves for
the three kinds of curve configurations we met in Examples 8 and 12. Let us
note that none of the families in these arrangements has enveloping curve.

Soon we shall see that all “special arrangement of curves” can be obtained
from one of the line-like arrangements of curves via polynomial transforma-
tions and their inverses: this is the meaning of Theorem 16. As a matter
of fact, we constructed each line-like arrangement of curves via a continu-
ous transformation from the line families of Example 8, hence all “special
arrangement of curves” originates eventually from this single one. But the
transformation used in Example 12, the “rolling up”, is not a polynomial
transformation. (A periodic function cannot be a polynomial.) In this pa-
per we prefer to use polynomials only, this is why we need three “basic”
arrangements instead of just one.

Example 14. Given a line-like arrangement of curves on a surface F .
(Hence F is either the plane, or a cylinder, or a torus.) We would like
to build from it as many “special arrangements of curves” as we can. Let us
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choose an arbitrary smooth algebraic surface W and two polynomial trans-
formations: φ : W → R

2 and ψ : W → F . Let us denote by φ(ψ−1( ))
that “multiple-valued transformation” that we get by first applying the in-
verse of ψ (this is multiple valued, denoted by ψ−1), and then applying φ.
This composed transformation maps the surface F first into W and than
transforms it further into the plane. Naturally, the line-like arrangement
of curves drawn on F gets also transformed into a “special arrangement of
curves” in the plane.

In an ideal world one would hope that the main reason for a configuration
to be special is that it contains some kind of image of the three line families
of Example 8. This is essentially true, as we shall see, apart from a few
exceptions.

Even if a configuration is a “special arrangement of curves”, we cannot
expect that all of its portions be “nice”. It may happen that someone
adds a few “unnecessary” arcs15 to an already nice configuration — this will
certainly not decrease the number of triple-crossings. Therefore the most we
can hope for is that from each “special arrangement of curves” one can select
the “essential” arcs, and this essential part behaves already “truly well”.

Definition 15. Let {Ar} and {Bs} be two families of plane curves. We say
that they have a common component, if for all values of r there is a value of
s such that the curves Ar and Bs have a common arc. 16

Theorem 16. Suppose that the families {Ar}, {Bs}, {Ct} form a “special
arrangement of curves”. Then, as in the Example 14, there exists

• a line-like arrangement of curves {Ar}, {Bs} and {Ct} drawn on a
surface F (so F is either the plane, or a cylinder, or a torus),17

• a smooth algebraic surface W and two polynomial transformations φ :
W → R

2 and ψ : W → F

such that the “multiple-valued transformation” φ(ψ−1( )) sends the family
{Ar} to a family of plane curves that have a common component with the

15The extra arcs are sometimes the continuations of the original arcs, but one can add
brand new components as well.

16The definition suggests that this relation is symmetric, however, one has to prove
this, under some additional conditions.

17We use the notation r, s and t for these parameters to distinguish them from the
original r, s and t parameters. The theorem states that each curve Ar is related in a
certain way to some other curve Ar, but it does not tell anything about the relationship
between the two parameter values r and r.
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family {Ar}, and similarly, the transformed image of {Bs} and {Ct} have a
common component with {Bs} and {Ct} respectively. (One can choose the
arcs of these common components in such a way that they too form a “special
arrangement of curves”.)

We shall close this paper with a variant of this theorem, (namely Theo-
rem 20) as it was used in [3]. Here we shall continue with some topological
explanations. Much of this – as we stated – is on the level of heuristic
arguments that can be turned into precise arguments.

4. Reasons to be typical

It turns out that there is a very general principle, a good geometric expla-
nation for the “typical” behaviour of most curve configurations. On the one
hand, a family of plane curves usually has plenty of envelopes. On the other
hand, envelopes are scarce inside a “special arrangement of curves”. We
shall use an irreducibility condition to formulate this principle precisely. A
priori an enveloping curve can have information only about those arcs in the
family members which are tangent to it — but the irreducibility will ensure
us that this information automatically “spreads all over”: in an irreducible
family almost all the arcs behave uniformly.

Definition 17 (Concurrency). Given three families of curves in the plane.
We say that “the graph of triple-crossings is irreducible”, if there is an
irreducible trivariate polynomial Ψ(r, s, t) that vanishes in all the parameter-
points (r, s, t) corresponding to the triple-crossings. Ψ is called the concur-
rency function.

At the moment, this definition may seem too algebraic to be useful.
To remedy the situation, we shall describe a simple geometric test for ir-
reducibility. The spatial surface given by the equation Ψ(r, s, t) = 0 could
be called the graph of triple-crossings, but here we use slightly different
language instead.
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Theorem 18. Given three families of curves: {Ar},
{Bs} and {Ct}. Suppose that one of them, say {Ct} has
an envelope E , and this envelope meets in a single point
two members, say Ar0 and Bs0 from both of the other
families (here r0 and s0 denote appropriate parameter
values). If no two of the three curves E , Ar0 and Bs0 are
tangent to each other, and the graph of triple-crossings
is irreducible, then the three families form a “typical ar-
rangement of curves”, i.e. three times n curves can have
at most cn2−η triple-crossings.

This theorem, again, has several forms and variants. Below we formulate
a variant of this theorem, as stated in [3] (without much explanation, in its
complex version). Denote cl(X) the closure of X.

Theorem 19 (Main Theorem). Let {Ar}, {Bs} and {Ct} be families ex-
plicitly parameterized by the functions f1, f2, f3, analytic

18 on open domains
G1, G2, G3 and continuous on the closed domains cl(G1), cl(G2), cl(G3), re-
spectively, Assume that G = G1∩G2∩G3 is connected. Assume that any two
curves intersect in at most B points, and the concurrency of three curves is
described by a polynomial Ψ (see Definition 17). Moreover, assume that

(a) {Ct} has an envelope E ;
(b) E ⊆ G1 ∩G2;
(c) No fi (i = 1, 2, 3) is constant on any non–empty open sub–arc of E . 19

Then the number of triple points is at most B · n2−η, for a suitable η =
η(deg(Ψ)) — provided that n > n0 = n0(deg(Ψ)).

Let us return to Theorem 10. It is a special case of Theorem 18. We shall
see later that in this situation the graph of triple-crossings is irreducible. In
Figure 4 we can see three envelopes: the fattened arcs EF , FG and GH.
Let us consider, say, the arc EG. One can see well in the drawing that both
the dashed curves (the members of the family {Ar}) and the dotted curves
(the members of the family {Bs}) intersect the arc EG, but none of them
are tangent to it. Moreover, those dashed and dotted curves which meet
each other just on the arc EG, cross each-other transversally. Therefore
one can apply Theorem 18 to this enveloping arc EG, proving Theorem 10.
(Needless to say that one could apply it to the other two envelopes as well.)

18Here we could write polynomial instead of analytic, since we promised to restrict
ourselves to polynomially defined curves.

19Intuitively: no non–empty open sub–arc of E is contained in any of the considered
curves of {Ar}, {Bs} and {Ct}.
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4.1. Some remarks about the proof of Theorem 18

Suppose, to the contrary, that the three families form a “special arrange-
ment of curves”. According to Theorem 16, there is a “multiple-valued
transformation” φ(ψ−1( )) which rebuilds20 our three families from a line-
like arrangement of curves. (A pleasant consequence of irreducibility is that
the transformation rebuilds our entire configuration, not just a small portion
of it.) Of course, the line-like arrangement of curves contains no envelopes
at all, hence our envelope E “was born” during the transformation. We have
discussed on page 10 after Example 11 that a polynomial transformation be-
haves very nicely in the complement of a certain curve F (which contains the
critical curves, among them all the fold-curves, and may have further com-
ponents). Each connected component K of the complement of F is mapped
one-to-one into the plane. If a family of curves has no envelopes inside K,
then after transformation, this portion of the family looks “essentially the
same”, cannot “develop” an envelope. The same description remains valid
for “multiple-valued transformations”. Therefore envelopes can “be born”
only along the curve F corresponding to φ(ψ−1( )). Let us pretend for
a moment that F consists of fold-curves only. The image of a fold-curve
should be an envelope for all three families, as all curves “turn back” at the
fold-curve (in fact the entire “sheet of paper” turns back there). But this
possibility is excluded by the other condition in Theorem 18: the curves Ar0

and Bs0 cross transversally our envelope E .21 We ran into a contradiction,
hence the three families do not form a “special arrangement of curves”. In
general, F may have components which are not fold-curves. It turns out
that only those components can produce envelopes which are critical (i.e.
where the Jacobian of the transformation is not invertible, the fold-curves
are among them), and a slight modification of the above argument applies
to all such components.22

Next we introduce a very general geometric technique, the construction
of ramified coverings. We shall use it to show (as promised) that the graph
of triple-crossings is irreducible in Theorem 10. General techniques like this
one have many applications. For example, they play a central role in the
proof of Theorem 16 (that we cannot reproduce here because of its length).

20Rebuilds? This heuristic description means that one of the configurations of three
families of lines is “embedded” into our families and therefore provides the many triple
points, proving that our families are “in special position”, as explained in Examples 8, 12
and Theorem 16.

21Here the transversality of one of them would be enough, but later we need both.
22This is the point where we need the transversality of both curves Ar0 and Bs0 .
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Let us return to Figure 4 and the families of Theorem 10. According
to our assumptions, all triple-crossings live in the “curvy triangle” EFG.
Hence we shall restrict our attention to this domain only and to the portion
of the arcs running within that. In Figure 4 we see three arcs passing
through the point P , but the drawing is not complete: each of the three
families has two arcs (altogether six arcs) passing through P and through
any other point of the “curvy triangle” EFG. As a contrast, in Figure 1(b),
at each point there is only a single line passing through from each of the
three families (altogether three lines). With our ramified coverings, we shall
try to eliminate this striking difference.

We have seen in Figure 3 how “lifting” helps to separate in the space
the members of a family of plane curves. Let us repeat the same trickery,
say, with the family {Bs}. Originally, in Figure 3 we have “unfolded” a
planar domain (an annulus) along one of its boundary arcs (the darkened
one) and obtained a domain on a spatial surface (a tube-like thing in that
case) which covers doubly the original domain, and the new family drawn
onto the new surface has only one curve passing through any of the points.
From the whole annulus right now we are interested in the “curvy triangle”
EFG only (see that in Figure 4). Therefore, instead of the whole darkened
fold-curve of Figure 3, only the arc EG will play a role now. (The rest of
that picture, though remains valid, is simply ignored.)

Figure 7: Folding up a flattened ball

Similarly, now we unfold (i.e. double) our “curvy triangle” along the arc
EG, and the two copies smooth out into a spherical slice. This unfolding,
among other things, is illustrated on the last two images of Figure 7. We
have photographed the three-step folding up of a flattened ball. There are
four phases in Figure 7, with a single fold taking place between any two
consecutive images. In the last step we have folded in half a spherical slice,
and obtained a spherical triangle — quite a bit thickened, since the sheets of
a real-world ball do not usually squeeze tightly together. The final spherical
triangle is very much like our “curvy triangle” EFG, so our unfolding should
look much the same as the unfolding of the folded-up ball (doing backward
the last step of Figure 7). One can clearly see on the photo that, after



Simonovits, Szabo: Gyuri Elekes and the incidences 18

doubling, the two copies of the front side EF of the spherical triangle smooth
together into the circular arc (the front edge on the third photo), and the
same thing happens with the right hand side FG (which turns into the back
side edge on the third photo).

This trick separates only the curves of the family {Bs}, they will disjointly
rule the ball-slice on the third photo (similarly to Figure 3). Imagine now
that we copy also the other two families of curves, {Ar} and {Ct} on our
folded-up ball (fourth photo), the same way as they can be seen in the
“curvy triangle” EFG in Figure 4. Press the pencil hard to make the curves
appear on all the eight sheets. After the unfolding, each arc appears twice
on the ball-slice (on the third photo), but the two copies of the arcs in the
families {Ar} and {Ct} do not smooth out, they stay separate. Our goal is
not completely achieved yet: through each point of the ball-slice there are
still two arcs passing through from both the families {Ar} and {Ct}.

We repeat the process two more times, we “unfold completely” the ball
as it is shown on the series of images (from right to left) in Figure 7. In the
first step, as we have already discussed it, we have separated the arcs of the
family {Bs}. It is easy to check that with the second step we separate the
arcs of the family {Ar}, and the last step separates the arcs of the family
{Ct} as well. Hence on the fully unfolded ball, through each point there is
only one arc passing through from each of the three families.

One can easily verify, that along the way each arc is quadrupled — since
they are not doubled in that step when we “separated” them from their own
family mates. The unfolded arcs are not necessarily smooth, they can have
angles along the fold-curves.

Why did we work so hard? Of course, we had no chance to get the
same arrangement as the one in Figure 1(b): after all, our configuration is
not supposed to be a “special arrangement of curves”. But we had quite a
different goal in mind. Within our new configuration drawn on the surface
of the ball, any triple-crossing can be moved continuously into any other
(the sphere is a connected surface). In fact, as we shall explain it soon, this
indicates that the graph of triple-crossings is irreducible.

In general, we can play our unfolding game on any configuration along
each enveloping arc. If we duly go through the whole process, finally we
arrive to a surface W which is “ruled only one-fold” by each of the three
families of curves. Of course, there is no guarantee that we get a sphere
again. It may very well happen that our newW consists of, say, two spheres
and a torus. It turns out, that if W has only a single component, then the
graph of triple-crossings is irreducible. It is a much more involved task to
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decide the shape of the components of W , but luckily we are not concerned
now with that problem.

We have completed this unfolding for the configuration of Theorem 10
and we have obtained a single component, a sphere. Hence the graph of
triple-crossings is irreducible, one can apply Theorem 18. In fact, this is the
standard way to apply our methods. We always unfold our surface and study
the unfolded W instead. Finally, let us reveal one more secret of the trade:
even if the irreducibility condition fails, and one cannot apply Theorem 18
directly, one can still study the components of W separately and try to find
for each of them an appropriate enveloping curve. With this method, most
of the time it is possible to decide whether one has a “special arrangement
of curves” or not.

5. Appendix: The Surface theorem

With this we have finished the mathematical discussions. As an “Appendix”
we include that very version of Theorem which we used in [3], from [4].
Again, we skip most of the explanation. The meaning of the next theorem
is that if we have many triple points then the surface Ψ(r, s, t) = 0 goes
through many “generalized grid points” (r, s, t) ∈ X × Y × Z and this can
happen only if Ψ is basically r + s + t, apart from some coordinatewise
transformation.

Theorem 20 (“Surface Theorem”, see [4], Theorem 3.). For any positive
integer d there exist positive constants η = η(d) ∈ (0, 1) and n0 = n0(d) with
the following property.
If V ⊂ C

3 is an algebraic surface (i.e. each component is two dimensional)
of degree ≤ d then the following are equivalent:

(a) For at least one n > n0(d) there exist X, Y, Z ⊂ C such that |X| =
|Y | = |Z| = n and

|V ∩ (X × Y × Z)| ≥ n2−η;

(b) Let D ⊂ C denote the open unit disc. Then either V contains a cylinder
over a curve F (x, y) = 0 or F (x, z) = 0 or F (y, z) = 0 or, otherwise,
there are one-to-one analytic functions g1, g2, g3 : D → C with analytic
inverses such that V contains the g1 × g2 × g3-image of a part of the
plane x+ y + z = 0 near the origin:

V ⊇
{(

g1(x), g2(y), g3(z)
)

∈ C
3 : x, y, z ∈ D, x+ y + z = 0

}

.
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(c) For all positive integers n there exist X, Y, Z ⊂ C such that |X| =
|Y | = |Z| = n and |V ∩ (X × Y × Z)| ≥ (n− 2)2/8.

(d) Both (b) and (c) can be localized in the following sense. There is
a finite subset H ⊂ C and an irreducible component V0 ⊆ V such
that whenever P ∈ V0 is a point whose coordinates are not in H
and U ⊆ C

3 is any neighborhood of P , then one may require that
(

g1(0), g2(0), g3(0)
)

= P in (b), and the Cartesian product X×Y ×Z

in (c) lies entirely inside U . Furthermore, P has a neighborhood U ′

such that each irreducible component W of the analytic set V0 ∩ U ′,
with appropriate g1, g2 and g3, can be written in the form

W =
{(

g1(x), g2(y), g3(z)
)

∈ C
3 : x, y, z ∈ D, x+ y + z = 0

}

.

If V ⊂ R
3 then the equivalence of (a), (b), (c) and (d) still holds with real

analytic functions g1, g2, g3 defined on the interval (−1, 1).
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[4] György Elekes and Endre Szabó, How to find groups? (And how to use
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