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ALGORITHMIC SOLUTION OF EXTREMAL DIGRAPH PROBLEMS1
BY

W. G. BROWN, P. ERDOS AND M. SIMONOVITS

Abstract. For a given family JC of digraphs, we study the "extremal" digraphs on n

vertices containing no member of JC, and having the maximum number of arcs,

e\(n,^f). We resolve conjectures concerning the set {lim,, ^x (ex(n,JC )/n2)) as JC

ranges over all possible families, and describe a "finite" algorithm that can de-

termine, for any JC, all matrices A for which a sequence {A(n)} of "matrix

digraphs" is asymptotically extremal (A(n) contains no member of JC and has

e\(n,JC) + o(«2) arcs as n -> oo.)

Resume. Pour une famille donnee, JC, de digraphes, on etudie les digraphes

"extremaux" a n sommets qui ne contiennent aucun membre de JC, et qui possedent

le nombre maximal d'aretes, ex(n,JC). On resolue des conjectures qui concernent

l'ensemble {lim„_oc (ex(«, JC)/n2)} oil JC soit une famille quelconque, et on

presente un algorithme "fini" qui peut determiner, pour chaque JC, toute matrice A

pour laquelle une suite {/((«)} de "digraphes matriciels" est extremale asymp-

totiquement (A(n) ne contient aucun membre de JC et possede ex(n,JC) + o(n2)

aretes lorsque n -» oo.)

1. Introduction. Paul Turan's celebrated theorem [18, 19]—which determined, for

any k, the maximum number of edges in graphs containing no complete /c-graph

and the unique graph realizing that maximum—has led to exact results, and to a

developing theory concerning the asymptotic behavior of the extremal numbers and

extremal graphs. Brown and Harary [8] and others (cf. [12, 15], etc.) have investi-

gated related problems for directed graphs and multigraphs, with emphasis on exact

results. This paper continues a series in which the authors study digraph and

multigraph analogues of known asymptotic extremal theorems for graphs. Earlier

papers have shown the significance of "matrix digraphs", particularly of digraphs

associated with "dense" matrices. The present work resolves conjectures proposed in

the first paper of the series [3], concerning the set of attained densities of matrices,

and the number of dense matrices realizing a given density. It also refines the main

theorem of that first paper, in proving that, for any given family of "prohibited"

subdigraphs, there exists an algorithm for determining the set of dense matrices

which yield "asymptotically extremal sequences" of digraphs.

We consider digraphs and multigraphs without loops, but with parallel arcs of

bounded multiplicity; and, in this introductory section only, simple graphs—i.e.

ordinary graphs with neither loops nor multiple edges. If G is a graph, multigraph,

or digraph, then v(G), e(G), and x(G) respectively denote the numbers of vertices.
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422 W. G. BROWN. P ERDOS AND M. SIMONOVITS

edges or arcs (counted with multiplicity where applicable), and the chromatic

number; a superscript to the symbol denoting a graph, multigraph, or digraph, as in

G", always denotes the number of vertices (i.e. v(G) above). (For a general

introduction to Extremal Graph Theory, the reader is referred to the book of

Bollobas [2] and the survey of Simonovits [17].)

The general problem we wish to consider is the following (where "graph" may also

mean "digraph" and "multigraph"):

Problem 1. Given a family =S? of graphs (whose members we call prohibited), how

many edges can a graph G" of prescribed maximum edge multiplicity possess

without containing a subgraph isomorphic to some L e 3"! The maximum, and the

family of "extremal" graphs G" attaining the maximum, will be denoted by

ex(«, Ji?) and EX(«, =Sf), respectively.

Turan [18, 19] determined ex(n,{Kr}) and EX(n,{Kr}). More generally, Erdos

and Simonovits [9] proved that when <£? is any family of ordinary graphs and

r= Min{x(L):L <=£?}, ex(n,£?) = \{1 - l/(r - 1) + o(l)}n2 as n -> oo; and

that an extremal graph in EX(n,i?) can be obtained from the unique graph in

EX(n, {Kr}) by deleting and adding o(n2) edges.

Why an "algorithm"? For any family SF of ordinary graphs, (i)

lim„^00(ex(«, ££)/n2), and (ii) the structure of an "asymptotically extremal se-

quence" of graphs are both known; the limits are all of the form \ — l/(2r — 2),

where r is a natural number; one "asymptotically extremal sequence" is the "Turan

sequence" of extremal graphs for Kr. For the analogous problem for digraphs the set

of limits {limn^x(ex(n, Z£)/n2)} has infinitely many limit points; and sequences

of digraphs other than the obvious analogues of the Turan graphs play a role.

Moreover, we do not have a simple characterization, corresponding to the minimum

chromatic number criterion for ordinary graphs, of digraphs yielding a specific limit;

nor do we have a simple characterization of graphs which arise in asymptotically

extremal sequences (although we do have some necessary conditions, cf. Lemma 2).

Theorem 4 provides an effective algorithm for determining both

lim  (ey.(n,Se)/n2)
n —* oo

and a sequence of digraphs "of simple structure" which contain no member of &

and have almost the maximum number of arcs.

Basic definitions appear in §§2, 3. The main theorems are enunciated in §4. §§5

and 6 are devoted to development of the machinery needed to prove the main

results; Theorem 5 is proved in §7. The piece de resistance is the Main Lemma,

proved in §9. The main theorems are then proved in §§10 and 11. The final section is

devoted to a sketch of analogous results for multigraphs.

2. Digraphs, matrix digraphs. In the sequel we fix a positive integer q and consider

only digraphs in which any two vertices are joined by at most 2c? arcs, at most q of

each orientation. The major results of the present paper pertain to the case q = 1.

The paper should be regarded as a sequel to [3 and 4]; [6, 7] were primarily

concerned with general q. £C always denotes a fixed family of digraphs.
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Definition 1. A sequence {Sn}n=x 2 of digraphs is asymptotically extremal for

& if (i) S„ contains no subdigraph L e &; and (ii) e(Sn) = ex(v(Sn), ££) +

o(v(Sn)2) as n -» oo. Where a sequence is indexed by the numbers of vertices of its

members, i.e. where n = v(Sn), sequence members will often be represented simply

by S".

The objective of our earlier investigations [3, 4, 6] was to find asymptotically

extremal sequences of digraphs having the following "simple" structure: for some

positive integer r, the vertices can be partitioned into r classes Cx,C2,...,Cr\ the

number of directed arcs joining a vertex x of C, to a vertex v of C depends only on

i and j. This structure is conveniently represented by a matrix, as follows:

Definition 2. (a) Matrix digraphs. Let A = (a, ) be a square matrix having

r = r(A) rows and columns, for which a, has any value 0, 2, 4,..., 2q if / # j; and

au = 0,..., or 2q - 1. Let a = (ax, a2,..., ar) he a vector2 of nonnegative integers

for which

(2.1) ai < a,, < al + q < 2q    for i = 1,2,..., r.

For every partition n = xx + x2 + • ■ ■ +xr into nonnegative integers we define a

digraph Aa(x) or Aa(xx, x2,...,xf) as follows: (i) n vertices are divided into classes

Cx, C2, ...,Cr (the Aa-classes, or simply A-classes), where |C,| = xt (i = 1,2,..., r);

(ii) every vertex of C; is joined to every vertex of C by \a^ arcs oriented towards C

(/', 7 = 1,2,...,r; /' ^y); (hi) each class C, is linearly ordered—whenever u pre-

cedes o in this ordering, u and v are joined by a, arcs oriented from « top, and by

ait — ai arcs from v to w. The subscript a may be suppressed: A(x),

A{xx,x2,...,xf). When a„ = 2^ — 1, C, is a /«// class; when au = 0, it is an

independent class.

(b) As an algebraic convenience, we admit a null 0X0 matrix, which we denote

by3 0. All graphs 0 (x) are defined to be empty, having no vertices.

(c) The classes Jt r, Jt. The set of pairs (A, a) defined above will be denoted by

Jt'r. Jt = \}x_qJ(r. We may also write A £ Jtr or A e Jt to describe an integer

matrix A satisfying the conditions of (a), where no vector a is specified.

(d) Matrices A, A' e Jt are equivalent (written A ~ A') if they are equal up to

the same permutation of rows and columns. More generally, (A, a) = (A',a') if A

and A' are equal up to the same permutation of rows and columns and a and a' are

equal to the same permutation of coordinates.

Definition 3. Optimal matrix digraphs. Any matrix digraph Aa(x) having the

maximum number of edges among those for which E,*, = n may be denoted by

Aa(n) or briefly, by A(n). (Even for fixed a, A(n) may not be uniquely determined,

and we often qualify it by an indefinite article.) The vector x will be called the

optimal vector of the A(n).

Remarks. (1) Remarks following Theorem B (q.v.) justify the structure of Defini-

tion 2(a).

2 We use boldface to denote vectors. Also, where convenient, we may interpret a vector x as a row

matrix, which may be transposed.

3 A reader who finds this construct disturbing may dispense with it, and make the appropriate minor

changes in several statements and proofs.
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(2) If, in Aa(x), we replace any a, by a„ — a,., we obtain a digraph having the

same structure. We shall therefore assume that

(2.2) a,<lK,J<?-l-

In particular, for q = 1, we may and shall assume that a = 0.

(3) The choice of vector a will not affect the extremal properties under investiga-

tion in this paper. We usually speak of "a matrix A £ Jtr or A £ Jt", suppressing

mention of the vector a. The reader may wish to simplify his first encounter with the

concept by assuming, wherever possible, that a = 0.

(4) It is convenient to define a countable digraph Aa(oo) (briefly A(oo)) analo-

gously to ^4a(x>: The vertex-set is the union of r countable classes C,, C2,..., Cr, the

members of each class labelled by the natural numbers (and so ordered), with

adjacencies determined from A in the obvious way. If a digraph G can be embedded

into Aa(oo), we call it (A, a)-colourable (briefly A -colourable.). We emphasize that the

type of order imposed on any class is4 co.

(5) The use of twice the multiplicity in the off-diagonal elements is, by design, to

simplify certain formulas (cf. (3.1), (3.2)).

(6) In [3] we considered the case q = 1, a = 0, using the symbol ^4((x)) for A(x).

(7) Examples, (i) Any digraph G with adjacency matrix A has structure

(2^)(1,1,...,1>. (ii) Let B he the 1 X 1 matrix (1), and let C = (cu)iJ=x„ be

defined by

c,..= /2'    1<J>
IJ     10,   otherwise.

Then   the   transitive  tournament  on   n   vertices  has  structure  B(n)   and  also

C<1,1,...,1>.

3. A connection between matrix graphs and quadratic forms. The number of arcs in

A(x) is5 (xAx* — L(a(1jc,). Thus

r

(3.1) x^x* -(2c? - 1) zZ x, < 2e(A(x)) < x,4x*.
i = i

Definition 4. (a) Let (^,a)£^r. We define the density, g(A), to be

Max{uv4u*|«, > 0 (i = 1,2,...,r); ux + u2 + ■ ■ ■ +ur = 1}, i.e. the maximum of

the quadratic form associated with A on the standard simplex in Rr. A is dense if,

for any proper principal submatrix A', g(A') < g(A); equivalently (for r > 1), if the

maximum value is realized only at interior points of the standard simplex. We define

g(0)= -oo.

(b) The subset of Jtr consisting of dense matrices (more precisely, of pairs (A, a),

where A is dense) will be denoted by £dr S> denotes Uf=0 3)r

(c) A vector u such that A(u) = g(A) is called an optimum vector6 of A.

4 But cf. Remarks following Lemma 5.

5 We denote the transpose operation by an asterisk.

6 This is not to be confused with an optimal vector associated with an optimal matrix digraph.
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Examples for q = 1. (1) The following matrices are dense: 2 J — I, where J is a

matrix of l's, and I is the identity matrix; 2J - 21; all matrices of the form

(A\U\

\2J\YJ,
where A and B axe dense.

(2) The following matrices are not dense: all matrices A such that A + A* has a

zero off-diagonal element (cf. Lemma 4).

For any .4 £ Jt, it follows from (3.1) that [6, (4.2)]

(3.2) g(A)n2>2e(A(n))

= g(A)n2 + O(n)    as n -» oo.

Thus the density is the limit of the average number of arcs joining an unordered pair

of vertices in an optimal matrix digraph.

Definition 5. A matrix A £ Jtr is asymptotically extremal (or simply extremal)

for Ji? if the sequence {A(n)} is asymptotically extremal for J?.

Theorem A [3, Theorem 1]. Let q = 1 (a = 0). For any finite or infinite family Ji?

there exists a dense matrix A which is asymptotically extremal.

We proposed the following conjecture in [6]:

Conjecture 1. Theorem A holds without restrictions on q or a: For any family J£

there exists (A, a) £ 3) such that {Aa(n)} is asymptotically extremal.

Theorem A is sharp. More precisely, we have announced for q = 1 [3, Theorem 2],

and proved for arbitrary q [6, Theorem 1], the following theorem:

Theorem B. Let (A, a) £ 3>. There exists a finite family if such that

(i) EX(n, Ji?) = {all optimal matrix digraphs Aa(n)};

(ii) any asymptotically extremal sequence   {S"}  for Ji? can be obtained from

{Aa(n)} by deleting and/or adjoining o(n2) arcs, as n -» oo; and

(iii) // (A',a') £ 3), and {A'a.(n)} is asymptotically extremal for ££', then (A', a') ~

(A,*).

Remark. The structure imposed on the vertices of any one class can be motivated

in part from Theorem A—in the case q = 1. As Theorem A is not known to hold for

general q, it is possible that some other structure might be "more interesting".

However, we do know from Theorem B that, for any (A, a) £ B, there exists a finite

family jSf of digraphs for which the sequence {Aa(n)} is extremal, and no other

sequence {A'a,(n)} is even asymptotically extremal. Thus the case a = 0 alone could

not serve to describe the general digraph extremal problem when q > 1.

4. The main results of the present paper. Theorems 1 and 2 are concerned with the

values which the density function may assume. Theorem 3 is an approximation

theorem for families of prohibited digraphs; and Theorem 4 describes an algorithm

for the determination of "extremal matrices".

For q = 1, matrices A = (atf) such that atj + aJt < 2 have densities of the form

(1 - l/p)/2 (cf. [14]). These densities have only one limit point. For higher

multiplicities the situation is more complex (cf. [5]). For example, for q = 1, the
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attained densities not exceeding § are 0, \, §, |,...,1 - 1/r_; 1, f, f,...,

4r/(3r + 1),...; f. From this, and more abundant evidence in the interval from f

to §, we were led to formulate conjectures concerning the set of densities and the

number of matrices attaining each of them [3, Conjectures 2 and 2*]. These

conjectures will be proved in the following theorems.

Theorem 1. Let q = 1. For any y > 0 there exist only finitely many dense matrices

A such that g(A) = y.

Theorem 2. Let q = 1. The set of attained densities {y: y = g(A), A £ 3)} is well

ordered (under the usual ordering of the reals).

Theorem 3 (Compactness). Let q = 1. For every infinite family £C of prohibited

subdigraphs there exists a finite subfamily £?* ci J? for which

(4.1) ex(n,J?) = ex(«,if*) + o(n2)    asn-*cn,

and such that any dense matrix A is asymptotically extremal for Ji? if and only if it is

asymptotically extremal for £?*.

Remarks. (1) Suppose if*cif**cie' and (4.1) holds. Then ex(«,if) =

ex(n, J?**) + o(n2) as n -» oo.

(2) The following weaker theorem has been proved for all q.

Theorem C (Continuity) [6, Theorems 3 and 1]. Let q be a positive integer. For

every family if of digraphs, and every e > 0, there exists a finite subfamily J? * c if

for which, for n sufficiently large,

(4.2) ex(«, if) < ex(«, if *) < ex(«, if) + en2.

The next theorem speaks of an "algorithm", meaning a programme for a "ran-

dom-access machine (RAM)" (cf. [1]). When the family S? is finite—and also in

certain other cases—the "subroutine" spoken of can itself be seen to be finite; then

a stronger theorem holds—Theorem 4(b). The input for the RAM is the set if. The

output will be a finite set of matrices.

Theorem 4. Let q = 1.

(a) Given a subroutine ("oracle") for deciding, for a given family J£ and any dense

matrix A, whether or not some A(n) contains some L^J£, there exists a finite

algorithm (independent of J£ except that it uses the subroutine) which determines all

dense matrices A which are asymptotically extremal for Ji?.

(b) There exists a finite algorithm which determines all dense matrices A for which

{ A(n)} is asymptotically extremal for any given finite family =Sf.

Remark. We conjecture that Theorems 1-4 remain valid for every q. The crucial

points where our proofs fail to generalize are Lemma 8, Theorem 5 and the Main

Lemma (Lemma 14). The latter may be true for all q, but we lack a suitable

generalization of Theorem 5.

Theorems 1-3 will be proved in §10, the algorithm of Theorem 4 in §11.
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5. The structure of dense matrices. In §§5-7 we recall, refine, and elaborate on

results of [3 and 6] concerning dense matrices, and the procedure we call augmenta-

tion.

Definition 6. Let A £ Jt. D(A) will denote any principal dense submatrix of A

having density g(A). Through use of the indefinite article, we may remind the reader

that it need not be unique.

Definition 7. (a) Let A £ Jtr. A is defined to be \(A + A*).

(h)Jtr= {A: A ^Jtr}. Jt=\J?=0Jtr.

Lemma l7 [6, Lemma 2]. Let A £ 3. Then A* £ 3. Both dense matrices have the

same unique optimum vector, i.e. a vector u with positive coordinates, for which

uAu* = u.4*u* = uAu* = g(A) = g(A*); namely the unique positive solution u of

the equations9,

(5.1) Au* = g(A)e*,       (u,e) = l,

where e = (1,1,..., 1).

Lemma 2. Let A £ 3r have optimum vector u, r > 1. Then

(a) A is nonsingular;

(b) g(A) = l/ei-'e*;

(c) u = (l/eA~le)eA~l; thus the coordinates of u are all rational.

Proof, (a) Suppose v is a nonzero vector such that A\* = 0*. Let a he any real

number, sufficiently small that all coordinates of u + av are positive; define

w = (1 + a(v,e))_1(u + av). Then wA*v/* = (1 + a(\,e))~2g(A). If (v,e) = 0, this

contradicts the uniqueness of the optimum vector u. Since r > 1, g(A) > 0; if

(v, e) + 0, a taken with the opposite sign to (v, e) yields w^4w* > g(A), contradicting

the maximality of g(A).

(b) Solving (5.1), we obtain u* = g(A)A~1e*. Then 1 = (u,e) = g(A)eA~le*.

(c)u = g(A)e[A~1]* = (l/ei"1e*)ei-1.

Remarks. (1) Lemma 2 readily yields a finite algorithm to determine whether or

not a given matrix is dense.

(2) There exist nonsingular matrices A £ Jt such that the vector eA~1/eA'le* has

positive coordinates, but that A is not dense. Consider, for example, the matrix
"0    4    6     4"

.0026, tA=    0    0     1     4      where<?=3-

.0    0    0     1.
"2       -7       11       -5"

i.-i = 1   -7       11     -16       13" 9    11     -16       20     -14   •

.-5       13     -14 8.
The submatrix obtained by deleting the second row and column of A has density A<f,

which is greater than f = l/eA~le*.

7 To be generalized in §12.

8 We denote the inner product of x and y by (x, y). Thus, following our earlier conventions,

(x,y) = xy*.
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(3) A dense matrix A need not be nonsingular. Consider, for example, the

matrices which are twice the adjacency matrix of a transitive tournament.

(4) If A is nonsingular, but A is not dense, g(A) > l/ey4_1e*. (Evaluate the

quadratic form at (l/ey4~1e*)e^4~1.)

Lemma 3 [3, p. 84]. Let A £ 3r.

(a) Valencies of vertices in A(n) differ by at most 2q.

(b) Valencies of vertices of any A(n) are g(A)n + 0(1) as n -» oo.

(c) LetA(x(n)) be an optimal digraph A(n) (n = 0,1,...). Then lim„^00 j-.x1^ = u,

the optimum vector characterized in (5.1).

Lemma 4 [generalizing 3, Lemma 1]. Let A £ 3r (r > 1). Then a(j + aJi > a„

+ ajj(i,j = 1,2,...,r; i # j).

Proof. Without limiting generality, take i = 1, j = 2; let u = (ux,u2,..., ur) be

the optimum vector of A, and define v = (1,-1,0,0,.. .,0), w = u + ux\. Since

(w,e) = 1, and w lies in the boundary of the standard simplex in W, uAu* - wAw*

> 0; hence ux\Av* < 2ux\Au* = 2uxg(A)ve* = 0 by (5.1). But \A\* = axx + a22

- aX2 - a2X.

Remark. Lemma 4 implies that the only dense matrices A of density less than 1

have A = J — I.

Definition 8. Let (A,a) £ 3, and let {G") be a sequence of digraphs. Define

/„ = max{/: Aa(l) c G"). A is weakly contained in {G"} if limsup„_^/„ = oo.

(A, a) is strongly contained in {Gn} if limn_co ln = oo.

Definition 9. Let (/I, a) eJtr and(^',a') £ Jtr,.

(a) We write (A,si)t(A', a'), or briefly A\ A', when, for infinitely many m,

Aa(m) c A',.(co).

(b) An embedding of Aa(x) into A'a,(x') is canonical if there exists a mapping /:

{1,2, ...,/•} —> {1,2, ...,/*'} such that all vertices of any class C, of Aa(x) axe

together embedded into class Cf(i) of A'a,(x'). f is said to induce the canonical

embedding. Where the same / induces canonical embeddings of every ^4a(x) into

suitable A'a,(x') (or /l'a-(oo)), we call f canonical, and write /: (.4, a) 1(^4',a'), or

simply/: At A'.

Lemma 5. Let (A,a) <Ejtr and (A',*') ^Jtr,.

(a) (A,a)t(A', a') if andonly if there exists a canonical mapping f: (A,a)t(A', a').

(b) For a canonical mapping f: (A, a) f (A', a') the following inequalities hold:

For any i, at < a'm, a„ < a'f(i)Jli).

(5 2) Whenf(i)*f(j),aiJ<a'f(i)JU).

When i *j, butf(i)=f(j),

Min(c7,7, a,,) < 2a'm, atj + aJt < 2a'f(l)JU).

Conversely, the truth of these inequalities implies that f induces canonical embeddings.

(c) The following conditions are equivalent: (i) (A,ai)t(A', a,'); (ii) (A, a) is strongly

contained in any sequence  {A'a*(n)}; (iii)  A  is weakly contained in any sequence

{A'A"))-
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(d) If A T A', g(A) < g(A').
(e) If A and A' are dense, g(A) = g(A'), and A t A', then A ~ A'. Thus the density

function is strictly order-preserving on the set of equivalence classes of 3 under = ,

partially ordered by f.

Proof, (a) Suppose (A,a)1(A',a'). For sufficiently large m every embedding of

Aa(m) into ^(oo) carries at least 2 vertices of C, of Aa(m) into some class CJ of

A'a,(oo); define f(i) = j, (i = 1,2,..., r). The converse is obvious.

(d) Let u = (ux,u2,... ,ur) be an optimum vector for A. Define y =

(Vi, y2,--., yr>) by v, = E{uf. f(j) = i) (i = 1,2,..., r'). Then E v,■ = 1 and, by

(5.2),
r r

(5.3) g«):^y*=   £    zZ a'fU)tf{k)UjUk>uAu*=g(A).
7 = 0  A: = 0

(e) For equality to hold in (5.3) all yt must be positive, so / is onto; also, equality

must hold in (5.2). Without limiting generality, suppose /(l) = f(2). Defining v and

w as in the proof of Lemma 4, we see that W/4w* = uAu*, contradicting the

uniqueness of u. Hence / is also one-to-one. The permutation of rows and columns

of A given by / transforms (A, a) into (A', a).

Remarks. (1) While it is obvious that A T A' if ^4(oo) c ,4'(oo), the converse is not

true. For each positive integer r, let an r X r upper triangular matrix A = (atj) be

defined by

a.=(2'   i<j'
''     (0,  otherwise;

then A f(l). In another example,
"0   2   0   2] i-j    2   2i

A-    \\   I   \.    At-   2   0   2,    *A)-1     gOO-f.
.0   2   2   oj L UJ

In both cases inclusion fails because of the type of order imposed on full classes.

(2) While the definition we have chosen for A(cc) appears a "natural" generaliza-

tion, problems concerning order type are not central to our present study. We could

also obtain the results we require by endowing its full classes with the order type

co* + co of the integers, or X, of the rationals.

The existence in a matrix digraph A(x) of a subdigraph having "many" arcs

induces a lower bound for the density g(A):

Lemma 6. Let A £ 3. Then g(A) = Max{2(e(G")/n2): G" is A-colourable).

Proof. If G" c ^<x>, where Lx, = n, then, by (3.2), e(G")/n2 < e(A(n))/n2 =

g(A) + 0(l/n) as n -» oo. But A(n) is A -colourable.

6. Augmentation of matrices. Our basic technique for proving digraph extremal

theorems is to show that, if G" has "many" arcs, there must exist suitable dense

matrices A of sufficiently high density such that G" contains optimal matrix

digraphs A(m). Our reasoning will involve a recursive procedure we call augmenta-

tion, at each iteration of which a matrix is replaced by one of higher density.
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Definition   10.   (a)   Let   r > 1,   1 < k < r + 1,    B = (at.),• j=x     r+1,   b =

(ax,...,ar+1), (B,b)<EJtr+x,   A = (aiJ)iJ=x.k_uk+x.r+1,  a = (ax,...,ak_x,

ak+x,...,ar+x), (A,a.)&3r; that is, A is obtained by deleting the Arth row and

column of B. Let u be the optimum vector of A. If

1 r+1

(6-1) Y= y I K, + aM]H,>gU),
..' = 1
y*A

we say that 5 is obtained from A by augmentation by y, or that fi is an

augmentation of y4. We call any matrix A' = D(B) a reduced augmentation of A by

y. We also regard any lxl matrix as an augmentation of 0 by zero. Where k—the

number of the augmenting row and column—is not specified, it will be taken to be

r+1.

(b) akk and ak may have any values consistent with (2.1).

Remarks. (1) Let x = (xx,x2,...,xr), m = T,ri=xxi, m' = [1 - g(A)/y]m +

o(m), z = (xx, x2,..., xr, m'), n = m + m'. Motivation for the preceding definition

comes from a recurrent situation wherein we shall wish to conclude, from the

existence in a digraph G" of an optimal matrix subdigraph of structure A(x) and

from information of the form e(G") > (g(A) + c)(2), that G" contains optimal

matrix digraphs B(z), where A is a proper principal submatrix of B, g(B) > g(A).

By (3.1),

i r r
e(B(z)) > - xAx* + m'zZ (a,+ i,, + aLr+x)Xj + O(m)

l ;=i

= — {g(A)m2 + 2mm'y + O(m) + mm'o(l)}    as m -> oo

(y defined by (6.1)). Hence

^<»»»(^)+12^f)(2)-<»J)
i        y2       tn\       ,  2\

=  2 2y - g(A)\2) + °(" )    aS^°°

and g(B) > g(A) (cf. (3.2)). (Usually z will not be the optimum vector for B.) To

conclude this we require that there exist sufficiently many vertices m' outside of the

optimal matrix digraph A(m), all having the same types of adjacency to and from

all vertices of each class of vertices of the A(m).

(2) Augmentation "by at least y" or "by more than y" (briefly "by > y" or

"by > y") will mean augmentation by y' such that y' > y or y' > y, respectively.

(3) Where we wish to emphasize that a single application of the augmentation

process is involved, without iteration, we may speak of direct augmentation.

Lemma 7. Let A £ 3.

(a) [3, Lemma 2]. If B is a (direct) augmentation of A by y > g(A),

(6-2) g(B) > g(A) +  []~8{fA\ > g(A).2y - g(A)
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(b) Iterative augmentation [6, Lemma 8]. A sequence {A,} of dense matrices is

defined recursively. Let A0 = A. If g(Aj) > y, define Aj+x = Af ifg(Af) < y, let A^

be any augmentation of A, by at least y, and choose A,+ x = D(A'f) (j — 0,1,...).

Then lim ■_„, g(/4-) > y. Moreover, there exists for every e > 0 an integer K =

K(y, e), independent of { A,}, such that g(Af) > y — e when j > K.

(c) [3, Lemma A]. For any real numbers e > e' > 0, and positive integer m, there

exists an integer m0 = m0(A,e,e',m) such that, for any sequence {G"}, if (i) G"

contains a subdigraph A(m0); (ii) every valency9 in G" exceeds (g(A) + e)n; and (iii)

n is sufficiently large, there exists a reduced augmentation A' of A by > g(A) + e' for

which G" contains A'(m).

(d) Let A be weakly contained in a sequence [G") of digraphs, respectively of

minimum valency 8(G"). Suppose that y = liminfn^x(8(G")/n) > g(A). Then

there exists a direct augmentation A' of A by at least y which is weakly contained in

{G").

Proof of (d). Suppose that 0 < 2e < y - g(A). For any integer m and for

infinitely many n, G" contains a subdigraph A(m0(A,y - g(A) - e, y - g(A) —

2e, m)). For each such n there exists an augmentation A'„ m of A by > y - 2e such

that G" contains A'n m(m). As A admits only finitely many augmentations, we may

conclude, by taking e sufficiently small, that there is one augmentation A' of A by at

least y such that A'(m) c G" for infinitely many n. Hence there exists some A'

which is weakly contained in {G"}.

We shall require the following result for q = 1, announced in [3, Theorem 3]. The

proof will be given in the next section.

Theorem 5. Let q = 1, A = (a,;) £ 3. If akk = 1, then ajk = akj = 2(j ¥= k).

Remarks. (1) The following converse of Theorem 5 holds for all q (cf. §3,

Example 1): Let A and B be square matrices, and J any suitable square matrix of Vs.

Then the matrix

(A   \2qJ\

\2qJ I    B~J
is dense if and only if both A and B are dense.

(2) As a first step towards proving Theorem 5, we have

Lemma 8 [3, Lemma 3]. Let q = 1. Suppose that B £ Jtr+x is an augmentation of

A = (O/j), j = x 2_    r £ 3r such that, for some i (1 < / < r),

/I.       J = '•
a'J     a"     \ 2,        l<j<r,j*i.

Then ar+x , = ajr+x = 2,  and every D(B)  contains entries from the ith row and

column of B.

9 In-valency + out-valency.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



432 W. G. BROWN, P. ERDOS AND M. SIMONOVITS

Proof. Let u = (ux, u2,..., ur) be the optimum vector of A. By (6.1) and (5.1),
r r

*>   E (ar+u + aJr+x)uJ>2g(A)=   £ (atJ + aJt)uj = 4 - lu,\
7=1 7=1

hence
r

2", >   E (4 - ar+i.j ~ aj,r+i)uj > (4 - ar+i,; - air+x)u, > 0,

7 = 1

and ar+Xl = a, r+x = 2. If Z)(fi) contained no entries from the ith row of B, we

could augment D(B) by 2 to obtain a principal submatrix of fi whose density

exceeds g(D(B)).

Example. If A' is a reduced augmentation of A, it need not follow that A | A'.

Let c7 = 1,

/0    2    0    2\ (0    2    0    2     0\
2   0   2   0 2   0    2   0    2 /<>   2    2\

^=;;^"^"=2202    2fi4'=202.

o ° ; 2 °^       U ^ oi
\0    2    2    0 I  0/

^", having density j, is an augmentation of A, a dense matrix with optimum vector

u = (i, %, i, I) and density g(A) = \. A' = D(A") is obtained by deleting the 1st

and 4th rows and columns of A. For m > 4, A'(co) cannot contain A(m), since

X(A(m))> 4.

7. Augmentation schemes.

Motivation. We can approach the question of whether or not digraphs in a

sequence {G"} contain an L £ if by seeking a matrix A such that some A(m) can

be interposed between some L £ J£ and G"; determination of A usually involves

iterative augmentations. We may also proceed systematically: Beginning with 0, we

determine iterated augmentations contained weakly in {G"}. Any matrix A, each of

whose augmentations A' is prohibited by if (in the sense that some L £ if is

A '-colourable), is identified as an end-matrix, and augmented no further. Should the

procedure terminate, we have a "finite augmentation scheme". Defining y' to be the

maximum density of matrices in the scheme, we argue that, for any e > 0 and for n

sufficiently large, any graph G" of the sequence with e(G") > (y'/2 + e)n2 must

contain L £ Ji?. These schemes are specified by three types of information: (i) by the

rate at which the densities are permitted to increase—more precisely, by a lower

bound on y in (6.1); (ii) by the rule by which a matrix is designated an end-matrix;

(iii) by restrictions on the population of matrices from which an augmentation may

be considered.

Definition 11. Let {if },=o,i... be a sequence of disjoint sets of dense matrices;

let ^ = Uf_0i^, ir=U"_0i^,. A directed graph s? with vertex set T is an

augmentation scheme if

(a) an arc is directed from A to A' only if A' is a reduced augmentation of A;

(b) directed to every matrix in S?i + X there is at least one arc from a vertex in 6?:

(i > 0);
(c) all arcs emanating from matrices in if terminate in JT^X  (i ^ 0).
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Definition 12. (a) Let y be a real number, S£ a (possibly empty) family of

digraphs, and S?0 a nonempty set of dense matrices each weakly contained in a

sequence {Gn} of digraphs. The augmentation scheme s0(£?o,y, {Gn}) is defined

recursively as follows: if, having been defined, define $ln to be the set of reduced

augmentations A' of any A £ Sfn such that

(7.1) A' is a reduced augmentation of A by > y,

(7.2) g(A) < y,

(7.3) A' is weakly contained in {G"},

and let S?„+l = ^„\U,"=0^,- Tne vertex set of the scheme is \J™_0S?„; where

conditions (7.1)-(7.3) are satisfied, an arc is directed from A to A'. The scheme

j^+(if0, y, {G"}) is defined analogously, replacing (7.1), (7.2) by

(7.4) A' is a reduced augmentation of A by > y,

(7.5) g(^)<Y-

We speak of augmentation in {Gn}. When G" = B(n), B £ 3, we speak of

augmentation in B, and, may write s/(£f0, y, B) or s/+(6C0, y, B).

(h) When condition (7.3) is superfluous, we may abbreviate the notation to

j*(S?0,y)ands/+(yo,y).

(c) When conditions (7.1) and (7.2) are replaced by

(7.6) A' is a reduced augmentation of A,

we obtain the complete augmentation scheme jtf(J>co).

(d) Let if be a fixed family of digraphs. If we adjoin to conditions (7.1)-(7.3) the

additional requirement

(7.7) no L £ if is A '-colourable

we obtain an augmentation scheme j^(6?q, y,{G") mod if); where condition (7.3)

is superfluous we write j^(S^0, y mod S?). We speak of augmentation modulo J£.

Remarks. (1) Lemma 7(b) is concerned with a scheme ji/({A0 }).

(2) In the proof of Theorem 4 we shall exploit a subscheme s/({ 0 }, y mod Ji?),

wherein augmentations at the jth level will be "by" a constant y determined by the

matrices in levels 0 through j.

Lemma 9. Let A £ 3r, A & 3-r. 0 + A t A.

(a) If A * A, there exists a direct augmentation A' of A by ^ g(A) such that A' | A.

(b) There exists a finite sequence A = A0, Ax,..., Ap = A such that Att A andAt is

a reduced augmentation of At_x by at least g(A)(i = 1,2,..., p).

(c) A is a direct augmentation of one of its proper submatrices.

(d) The set of matrices in s/({ 0}) can be generated by recursive augmentations of

0 without reduction;  any dense r X r matrix can be reached through a chain of

precisely r dense matrices, each augmenting its predecessor, beginning with 0.
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Proof, (a) By Lemma 5(d) and (e), g(A) < g(A). Apply Lemmas 3(b), 7 to

{G"} = {A(n)}.

(h) Suppose that /': A'T A is the canonical embedding. If any entries in the

augmenting (r + l)st row and column of A' axe not equal to the corresponding

values in A, replace the offending values in A' by the larger entries from A, thereby

obtaining another matrix which surely augments A by at least g(A). f'(r + 1) =£

/'(/) for all i ¥= r. We apply (a) to Ax = A', to obtain, after reduction, A2. The

process is repeated, and must terminate after finitely many applications, since the

number of rows and columns of At will never exceed r + r.

(c) Among all dense proper principal submatrices of v4, let A denote one whose

density is maximal. By (a), A admits a direct augmentation A' having a canonical

embedding /: A' \ A. The maximality assumption ensures that / is one-to-one and

onto. A must be a direct augmentation of A.

Remarks. (1) While Lemma 9(b) asserts the existence of a finite chain, there can

exist infinite chains. For example, if At is the i X i triangular matrix with zeros

below and on the main diagonal, and 2's above (i.e. twice the adjacency matrix of a

suitably labelled transitive tournament on i vertices), then Ai is an augmentation of

A,_xhy>l,A^A(l) (j = l,2,...).

(2) Lemma 9(b) implies that the restriction of f to dense matrices is contained in

the transitive closure of the reduced augmentation relation.

(3) Proof of Theorem 5. By Lemma 9(b) there exists a finite sequence (1) =

A0, Ax,..., A = A such that At is a reduced augmentation of A,_x (i = 1,2, — p).

Repeated applications of Lemma 8 imply that any row or column of A with

diagonal entry 1 has all other entries equal to 2.

Lemma 10 (Approximation Lemma). Let ,9>0 cz 3, e > 0, and let [G") be a

sequence of digraphs such that

(7.8) liminf^^->y.
n—* oo ^

Then any nonempty augmentation scheme s/(,Sf0, y, {G"}) must contain a matrix A

such that g( A) > y — e.

Proof. Let A0 be a matrix in the scheme such that g(A0) < y - e. By (7.8), for

sufficiently large n, S(G") > (y - e/2)n > {g(A0) + e/2}n. Lemma 7 ensures the

existence of a reduced augmentation of A0 by ^ y which is also weakly contained in

{G"}. We obtain, after at most K(y - e/2, e/2) iterations, a matrix in the scheme,

weakly contained in {G"}, and having density exceeding y - e.

The preceding lemma may be applied to prove the following weakened version of

Theorem A, valid for all q.

Lemma 11. Let J? be a family of digraphs.

(a) [7, Lemma 2]. The sequence {ex(«, if)/(2)} decreases monotonically.

(b) Let y = limn^00{ex(n, J?)/n2}. Let e > 0. Then the augmentation scheme

•*?({ 0},y m°d ^?) contains a matrix A such that y - e < g(A) < y.

(c) Let a > y = lim,,^^ {ex(«, =Sf )/n2}. Then any augmentation scheme s/({ 0 },

a mod if) is finite.
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Proof, (b) Let S" £ EX(«, if) (n = 1,2,...). By (a), e(S") = yn2/2 + o(n2) as

n -> oo. A standard technique [3, p. 91] yields a sequence of subdigraphs U""-n) c 5"'

for which m(n) is strictly increasing and S(Um)^ (y - e/2)m for m sufficiently

large. By Lemma 10 there exists in the scheme ss?({ 0 }, y, {l/m(n)}) a matrix A such

that g(A) > y - e, and that no L £ if is /l-colourable.

(c) By Lemma 7, sufficiently many iterated augmentations yield a matrix A of

density exceeding y. By (3.2), e(A(n)) > ex(n, J£) for n sufficiently large, so some

L £ if is A -colourable.

Example. For q = 1 we may determine the first levels of the complete augmenta-

tion scheme stf( 0) recursively. We tabulate (up to equivalence) the matrices in the

first four levels, and their optimum vectors.

Level Matrix Optimum Vector Density

0 0 -oo

1 (0) (1) 0

(1) (1) 1

2 («) (ii, i

(id     at.      t
/ 0 2 2 \

3 002 (hhf) f
\oooj

I020\
002 (M,i) §

\200/

/022\
202 (i if) f

\200/

/022\

202 (ii}) f
\220/

202 (f,i,|) 1
\200/

(ii)       «•»        »

202 (i.i.i) §

\220/

212 (!,f,|) f
1220/
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Suppose A £ 3, 1 < g(A) < f. By Lemma 9 and the preceding computations we

know that A can only be a (possibly iterated) reduced augmentation of

(0    2   2\ /0    2   0\
0   0   2      or      o   0   2.

\0   0   0/ \2   0   0/

We may prove by induction that no such A exists.

8. "Splitting" a dense matrix. We pause to forge a technical tool needed in our

proof of the Main Lemma. The concept of " splitting" will permit approximation of

a dense matrix by one of almost the same density, having zeros on its main diagonal.

Definition 13. Let (A, a) £ 3r, and let k he an integer, 1 < k < r.

(a) (A', a') £ Jt r+x is a stretching of the kth row and column of (A, a) if

(8.1) a'u-au,       l<i,j<r,(i,j)*(k,k);

(8-2) a',+i,j = akJ,    a'jr+x = ajk,    a) = a},       1 <y < r; j # k;

(8-3) a'kr+x = 2ak,        a'r+Xk = 2(akk-ak);

(8-4) a'kk = a'r+Ur+i = ak<k,       a'k = a'+1 = ak.

(h) (A', a') £ Jtr+x is a splitting of the kth row and column of (A, a) if (8.1), (8.2)

hold, and also

(8.5) a'kr+x = 2ak + 2,       a'r+xk = 2(akk-ak),

(8-6)     a'kk = a'r+Xr+x = akk-l>0,        a'k = a'r+x = Max{ak - 1,0}.

Lemma 12. Let (A,a) £ 3r.

(a) Let (A', a') be a stretching of (A, a). Then (A, a) is not dense, but (A', a') t (^4, a)

and g(A') = g(A).

(b) Let (A', a') be a splitting of (A,a). Then (A,a) is dense, and g(A') = g(A).

(c) There exists (A', a') £ 3 having zero trace, and such that g(A') = g(A).

Proof, (a) Evidently

(xx,x2,...,xk,...,xr,xr+x)A(xx,x2,...,xk,...,xr,xr+x)

= (xx, x2,..., xk + xr+x,...,xr)A(xx,x2,...,xk + xr+x,..., xk)   ,

so g(A') < g(A). But A is a proper submatrix of A', so g(A) < g(A').

(b)

(xx,x2,...,xk,...,xr,xr+x)A(xx,x2,...,xk,...,xr,xr+x)

= (xx,x2,...,xk + xr+x,..., xr)A (xx, x2,..., xk + xr+x,..., xr)

— (xk — xr+x) .

Hence g(A') < g(A). If u = («,, u2,...,uk,..., uf) is the optimum vector of A, and

v = (k1,«2,...,k*_1, uk/2, uk+x,...,ur, uk/2), then \A'\* = g(A), so g(A') =

g(A). It follows that A' is dense.

(c) Iterations of the splitting operation progressively reduce the sum E, 3a".
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It is possible to "approximate" a dense matrix by matrices with zeros in the main

diagonal, using the operation of stretching followed by suppression of the new

diagonal nonzero elements. More precisely, we have the following

Lemma 13. For any (A,a) £ 3r, e > 0, there exists (A',a') ^ 3 such that

(A',a')1(A,a) and g(A') > g(A) — e, where all main diagonal entries in A' are zero.

Proof. It suffices to prove the case where A has exactly one nonzero main

diagonal element, which we take to be in position (1.1). In graph-theoretical terms,

the operation described below corresponds to partitioning the first class of A(n) into

many parts, and suppressing arcs having both ends within any one part. Let k

= \ q/e]. After k iterated stretchings of the first row and column, and rearrange-

ment, A becomes a matrix of the form

where U has all main diagonal entries equal to axx, all entries below the diagonal

equal 2a,, and all above the diagonal equal 2a„ - 2a,; X consists of k identical

rows which coincide with the first row of A, but with the first entry of each replaced

by 2a,; analogously Y. Then let the first k + 1 main diagonal entries of Ak he

replaced by zeros, to form a new matrix we call A'k; evidently^ t A, g(A) ^ g(A'k)

> g(A) - e. Take A' = D(A'k).

9. The Main Lemma. Proofs of Theorems 1-4 will involve application of the

following

Lemma 14 (Main Lemma). Let q = 1, A £ 3. There exists a constant c = cA and a

positive integer mA such that, for any B £ 3 satisfying

(9.1) g(A)^g(B)<g(A)+c,        B*A,

no A(mA) is B-colourable.

We reformulate the lemma more explicitly.

Lemma 14'. Let q—\, A £ 3r. Define c = cA = \ Min{g(^') — g(A)} as A'

ranges over all augmentations of A and of matrices obtainable from A by successive

splittings. Then there exists an integer mA such that, for any B £ 3 satisfying (9.1)

and for n > mA, no A(n) is B-colourable.

A digraph A(m) may be embedded in fi(oo) in such a way that the vertices of a

full class of A(m) are distributed one each over distinct independent classes of

fi(oo). As such an embedding is not canonical, we cannot apply Lemma 9. We cope

with this situation by proving the existence of a large subdigraph—where each

vertex of A(m) is replaced by a set of vertices. More specifically, we shall apply the

following construction.

Definition 14. Let Abea positive integer, and G a given digraph. By G ° I,, we

shall mean the digraph obtained from G by replacing each vertex x by a class Jx of

h vertices, joining new vertices by arcs of the same multiplicity as those joining the

vertices they replace. In other words, if A is twice the adjacency matrix of G, then

G ° Ih is defined to be A(h, h,... ,h) = A(he).
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Proof of Lemma 14': (A) Outline. Our proof will be by induction on s(A),

defined to be the number of nonzero main diagonal entries in A. The case where A

has zero trace is disposed of in paragraph (C). At the critical step (paragraph (I)) we

show—on the assumption that, for large m and very large n, A(m) is embedded in

B(n)—that there exists either an augmentation A' of A such that A'(m) c B(n), or

a splitting Ax of A such that Ax(m) c B(n): the former would contradict the choice

of c, while the latter would violate the induction hypothesis.

(B) "Small" matrices B. Let B £ 3p he given, satisfying (9.1). There exists an

integer mx = mx(B) such that no A(mx) is fi-colourable. (Otherwise At B; by

Lemma 9 there would exist a reduced augmentation A' of A such that A't B;

implying that g(A) + 2c < g(A') < g(A) + c.) Thus, if we consider first only those

B for which p < m2(A)—to be defined in (F)—any value greater than the maxi-

mum of the values mx(B) will do for mA. The main difficulty will be in coping with

infinitely many B's simultaneously. We must prove the existence of mA, independent

of B, such that A(mA) is not fi-colourable.

(C) Zero main diagonal. Let 5 = 0. By Lemma 3 there exists an integer w3 = m3(A)

such that, for every integer n > w3, every class of every A(n) is nonempty. As s = 0,

the fi-colourability of A(e) would imply that of A(mx(B)). Hence A(e) is not

fi-colourable, and we may take mA = m3 in this case.

(D) Difficulties. If s ¥= 0, we must cope with two types of complications.

(Dj) It may happen that some A(m) is fi-colourable, while some A(m') (m' > m)

is not: the vertices of some full class of the A(m) could each be placed in a different

class of fi(oo).

(D2) g(A) = lim„_00(e(A(n))/(2)), a measure of the fraction of the total

number of potential arcs realizable in a matrix digraph. When A has zero main

diagonal, and m has suitable divisibility properties, this limit coincides with ym =

limh^x(e(A(m)o /„)/("*))• When s > 0, y„, < g(A).

(E) Assume the lemma known for s = s(A) — 1. Let A, B satisfy (9.1). By

Theorem 5 and Lemma 12, splitting any row and column of A containing a nonzero

diagonal entry always yields (up to equivalence) the same dense matrix Ax for which

s(Ax) = s(A) — 1, g(A) = g(Ax). Iterated splittings of Ax axe also iterated splittings

of A, so cA ^ cA. Restrictions on m2 below will imply that m2> r. Hence B * Ax

and, by the induction hypothesis, there exists an integer m4 = m4(A) = mA (inde-

pendent of B) such that no Ax(m4) is fi-colourable.

(F) By (3.2), there exists an integer m5 (m5 > m4) such that for all (of the finitely

many) reduced augmentations A' of A, and for m > m5,

(9.2) e(A'(m))>{{g(A) + c}m2.

Let m6 = mb{A) be the least common multiple of the denominators of the (rational)

optimum vector u of A; let m2 = m2(A) = 3msmb. For any s and p < m2(A). it

suffices to take m4 =m7 = Max{m,(B): B dense, g(A) < g(B) < g(A) + cA,

B * A, p «s m2(A)}.

(G) Let p > m2. By Lemma 3 there exists an integer m8 = m%(A) > m2 + w3

such that, for n > w8, every A(n) contains ^<w2u>; let one such digraph be called

A[m2], having ^-classes Cx,C2,...,Cr. We assume that A[m2] is fi-colourable, and
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derive a contradiction. mA will be taken to be the maximum of m7 (for p < m2) and

w8 (for p > m2), both defined in terms of A. Let v be the optimum vector of B;

henceforth we restrict n to be divisible by the product of m 2! and the least common

multiple of the reduced denominators of the (rational) coordinates of v. Let H" be a

digraph of structure B(nv), having fi-classes Cx, C2,..., Cp. For n sufficiently large,

any embedding of A[m2] into fi(oo) induces one into H". Among all such embed-

dings we fix one for which the number of classes of H" containing vertices of A[m2]

is minimized. For this embedding all vertices of C, are contained together in one

class of H", unless possibly C, is full and its vertices are each contained in a distinct

independent class of H", containing no vertex of C- (i, j = 1,2,..., r; i =£ j); and

then every class of H" which does not contain embedded vertices of A[m2] is an

independent class. (We have applied Theorem 5.)

(H) We now broaden our view to include the induced imbeddings into H" of

digraphs Gx'lh of structure ^4[m2]° Ih, where each vertex x of A[m2] is replaced by

a set Jx of h vertices, all in the same class C, of H" containing x. More precisely, we

require one such embedding that, for maximum h, completely exhausts the vertices

in at least one C,; this requirement is feasible since the number of vertices of A[m2]

in any C- divides nv;. Let G = Gmih he the subdigraph of H" spanned by Gxlh, and

let eG denote the number of arcs joining vertices of G to vertices of H" - G.

Without limiting generality, we assume that the pth class of H" is completely

contained in G, and denote by B' the proper principal submatrix of B obtained

through deletion of the pth row and column. Then there exists a vector w such that

H" - G has structure fi'(w); and

(9.3) eG = e(H")-e(G)-e(H"-G).

(I) Determining an augmented graph structure. We shall prove that there exists a

reduced augmentation A' of A such that A'(m5) c fi(oo). This will contradict (9.1)

since, by (3.2), (9.2), and Lemma 5, g(B) > g(A') > g(A) + c.

(Ij) We first prove the existence of positive constants c' = c'(B), c" = c"(B) such

that H" — G contains c'n vertices belonginig to the same class C of H" — G, each

joined to A[m2] by at least {g(B) + c"}m2 arcs. (While c" appears to depend on

B, Theorems 1 and 2 will imply the existence of c" independent of B.) Let B" be the

principal submatrix of B corresponding to classes of H" containing vertices of G.

Since p > m2, B" must be a proper submatrix of the dense matrix B, so g(B") <

g(B). By (3.2) there must exist a constant c" = c"(B) > 0 such that

(9.4) e(H" - G) < \g(B')(n - m2h)2 < \{g(B) - 2c"}(n - m2h)2,

(9.5) e(G) < \g(B")(m2h)2 < \_{g(B) - 2c")(m2h)2,

while, by (3.2),

(9.6) e(Hn) = \g(B)n2 + o(n2)    as « ^ oo.

From (9.3) through (9.6) we obtain

(9.7) eG> \{2c" + o(l)}n2 + {g(B) -2c"}m2h(n- m2h)

> {g(B) + 2c" + o(l))m2h(n - m2h)    as n -* oo

> { g(B) + c"} m2h(n - m2h)    for n sufficiently large.
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Let C be a fi'-class of H" - G whose vertices are each connected to vertices

of G by, on the average, the maximum total number of arcs, viz. by more than

{g(B) + c"}m2h. There exists a "small" positive constant c' = c'(B) such that

\C'\ > c'n for all n. All that we require is that \C'\ ^ m5.

(12) The matrix A". A" eJtr+x is obtained from A by adjoining an (r + l)th

row and column, defined as follows:

(i) where C, contains at least m5 vertices each joined to and from vertices in C by

arcs in both directions, we put a, r+1 = ar+Xi = 2;

(ii) where C, contains at least m5 vertices joined to vertices in C by single arcs

directed towards C, but (i) does not hold, we put a, r+; = 2, ar+Xi = 0;

(iii) where neither (i) nor (ii) holds, but where vertices of C are joined to at least

m5   vertices of  C,   by single arcs directed  away from  C, we put   a, r+1 = 0,

<*r+i,i = 2;

(iv) by Lemma 4 applied to B, one of the cases (i)-(iii) must hold for each i

(/ = 1,...,r);

(v) ar+x r+x is defined to be zero.

Taking the appropriate m5 vertices of C and m5 from each C, (i = 1,2,..., r) we

obtain (for n > ms/c') a subdigraph of H" of structure A"(m5e). Hence, for

A' = D(A"), A'(mf) c H". We must prove that A" is an augmentation of A, i.e.

that condition (6.1) is satisfied. When we now speak of A[m2] as a subdigraph of G

or of H", we intend a fixed one of the possible subdigraphs obtainable by selecting

one vertex from each of the sets Jx; only in subparagraph (I5) will be require more

than one vertex in any Jx.

(If) Some vertex of any full A-class C, of A[m2] is joined to all vertices of C by

double arcs. Assume the contrary—that each vertex of C is adjacent to A[m2] by at

most one plus the valency in A[m2] of any vertex in C„ which is (1 - a,,) + the ith

component of Am2u, i.e. g(A)m2 arcs. But we chose C so that the average would

be at least {g(B) + c"}m2 as n -> oo.

(14) Suppose a,, = 1, ar+x, + a, r+1 < 4. by (I3), C" and C cannot both be

subsets of the same full class of H"; hence C is in an independent class of H", and

vertices of C, are contained in distinct independent classes, Cx,C2,...,Cm of H".

Let C" be a set of m5 vertices in Cm . By Theorem 5 any vertex in C" is adjacent

with vertices of G outside of C, by double arcs, with all but one vertex in C, by a

single arc at least. Suppose that ar+x ■ + a,r+1 < 4, where j # /'. Then the number

of double arcs connecting a vertex of C with C, would be less than m5. By the

maximality assumption on C, any vertex of C would have to be connected with

vertices of C, by at least (m2 - 1) + m2 - m5 arcs; there would certainly be m5

vertices in C, connected to vertices of C by double arcs, a contradiction. We may

conclude that ar+x ■ = aJr+x = 2 when j + i.

(15) Suppose a„ = 1, ar+1, + a, r+1 = 2, ar+Xj = ajr+x = 2 (j=h i). By (lx),

some vertex x £ C, is adjacent by double arcs with every vertex of C. By replacing

C, by C and ms vertices in Jx, and selecting m5, we obtain a fi-colourable graph

Ax(m4), where Ax is the splitting of the ith row and column of A. This contradicts

the hypothesis of (E). We must conclude that whenever a,, = 1, ar+1, = a, r+x = 2.
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(I6) We form A(m5e) by selecting from each class C, the ms vertices having the

highest adjacencies with a vertex of C. The number of such adjacencies is

1    r m

1 zZ(ar+i,i + a^r+x)m5ui>-^{g(A) + c"}m2,   by (lx).
1  , = 1 W2

By (6.1), A" is an augmentation of A. Lemma 6 and (9.2) lead to a contradiction.

Example. For use in a forthcoming example, and as an indication that the proof

of Lemma 14 can be rewritten in constructive terms, we consider two specific simple

examples. First we take Ax = (2 I), having density 1, and no splittings. Up to

equivalence, its dense augmentations are

/0 2 2\   /0 2 2\   10   2    2\
202,    202,   202,

\2 2 1/   \2 2 0/   \2 0 2/

of densities f, f, f; it has one other augmentation—not dense—

(0   2   2\
2   0   2,

\2    0    1/

having density f and maximal dense submatrix (2 2). So we may take cA = f^. For

m > m3(Ax) = 2, every class of Ax(m) is nonempty and contains Ax(e); if Ax(e)

were fi-colourable, so also would be all Ax(n). We take mA = 2. Ax is the only

splitting of A = (1); its augmentations, both dense, are (\ I), (\ \), having densities

§, |, respectively. We may take cA = {%. By Lemma 9 and the example of §7, Ax is

the only dense matrix B such that B * (1) and 1 < g(B) < jf. As .4(3) is not

^-colourable, we may take mA to be 3 by the theory of (F). (The induction step is

not required here. No attempt has been made to state best possible values for the

various constants.)

10. Proofs of Theorems 1-3. For the purpose of this section we assume that the

number mA of Lemma 14 is fixed for any A. We assert that the proof of Lemma 14

can be rewritten so that mA may be determined constructively.

Definition 15. Let q = 1, and let a be any positive real number. <fa = {A(mA):

Ace 3, g(A) = a). Jfa = {A(e): A=(atJ)&3, g(A) > a, a„ = 0 (i =

1,2,...)}.

Lemma 15. (a) If A has zero trace andA(e) is B-colourable, then g(A) < g(B).

(h) The mapping fa onto </a U Jfa defined by

A^A(mA)     ifg(A) = a,

A ■-> /1(e) ifg(A) > a and A has zero trace

is one-to-one.

(c) If g(A) = a, the only A-colourable digraph in /„UJfa  is A(mA).

Proof, (a) Since A has zero trace and A (e) is fi-colourable, A f B. We apply

Lemma 5.
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(b) Suppose that fa(A) = fa(B), hence A(e) is fi-colourable, B(e) is ^-coloura-

ble. If g(A) > a, A has zero trace; by (a), B also has zero trace; from A(e) = B(e)

we may conclude that A = B. Similarly, if g(B) > a. If g(A) = a = g(B), A(mA)

would be fi-colourable, contradicting Lemma 14.

(c) If g(B) = a, then fa(B) = B(mB) cannot be A -colourable, by Lemma 14

applied to B. If fa(B) = B(e) is ^-colourable, where g(B) > a and B has zero

trace, then, by (A), g(B) < g(A), a contradiction.

Proof of Theorem 1. (A) Let y > 0. We wish to prove Jy finite. Application of

Theorem A to J?=c?y U Xy yields a matrix if £ 3 which is asymptotically ex-

tremal. If g(U) > y, then, by Lemma 13, there exists U' £ Jt with zero trace such

that g(U') > g(U) - 2~{g(C/) _ Y} > Y. and no member of J£ is U'-colourable;

but U'(e) £ Jf, a contradiction. Nor could g(U) = y, for then Lfmy) would be

(7-colourable, and U could not be asymptotically extremal. It follows that g(U) < y.

Define a = y - g(U). Then

(10.1) ex(«,/y U Jfy) = \(y - a)n2 + o(n2)    asn^ao.

(B) By Lemma 11 j/({0}, y mod if) is finite. Suppose B is a matrix in the

scheme having reduced augmentation B' such that B'(oo) contains a prohibited

subdigraph (in Jy U Jfy): Fix one such subdigraph L(B'). We denote by J£y the

family of these L(B') as B' ranges over all B. Since Ay is finite, and since (by

Lemma 15) dense matrices of density y are equinumerous with members of #

Theorem 1 will follow from the finiteness of fy - J£y.

(C) Let A(mA) £</r - if,,- Since g(A) > y - a, A(oo) must contain a prohibited

subdigraph in # U $?y; by Lemma 15 this is uniquely A(mA). Among all matrices B

in the finite scheme such that B t A, select one for which g(B) is maximal;

g(B) < y - a < y = g(A). By Lemma 9 there exists a reduced augmentation B' of

B such that B"[ A. B' cannot belong to the scheme, so B'(oo) (and hence also

A(oo)) must contain a subdigraph in J?y. By Lemma 15 again, this is A(mA), which

we have assumed not to be in ify. We conclude that fy cij£y.

Example. # may be properly contained in ££'. Let q = 1, y = §. There are (up to

equivalence) two matrices of density f:

(0   0   0\ /0   0   2\
A' =    2   0    0      and    /I" =    2    0    0   ,

\2    2    0/ \0    2    0/
having matrix digraphs containing, respectively, only transitive triangles and only

cyclic triangles. Let J£= {A'(3), ^"(3)}. The matrix (/=(,§) yields an asymptoti-

cally extremal sequence for J£ (indeed, extremal). For no U(n) contains a triangle;

and g(U) = i- But, by the Erdos-Stone Theorem [2, 9] for any e > 0, any fixed

positive integer m, and sufficiently large n, any G" having (^ + e)n2 arcs must

contain a matrix digraph A'(m) or A"(m). Up to equivalence, Jf2/3 consists of all

graphs A(e) where A is dense and contains one of the following as a principal dense

submatrix:

/0    2    2    21

(3)=(0    2\ ,,4)=    0    0    2    2

\2    0/' 0    0    0    2"
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The first level in jz?({ 0 }, § mod £?) contains only (0). Augmenting by > § modulo

Jf we obtain «o other matrices. But the digraph L(B) which we choose in order to

exclude the augmentation matrix (\%) from the scheme cannot be either of the

members of #2/-i. However, both members of ^2/3 may aPPear in ^2/3! f°r

example, L((l)), chosen for the augmentation of 0, could be A\mA.) (but it could

also be Aw(e)). S?((°2 2)), from the augmentation of (0), could be A"(mA„).

Proof of Theorem 2. Let y be any positive real number, and define J£ and J?y

as in the proof of Theorem 1. Let A he dense, g(A) > y; let fi be a matrix in

s/({0},y,{An} mod J?) such that B\ A and g(B) is maximal. If g(B) = y,

B(mB) <^#y czJf would be fi-colourable. If g(B) < y, then, by Lemma 9, there

exists a reduced augmentation B' of B by > g(A) such that B' | A. B' is not in the

scheme, so there must exist as an A -colourable digraph either (i) L(B') = C(mc) £

fyr\<£y, g(C) = y; or (ii) L(B') = C(e> e/y n JS?Y, g(C) > y; and there also

remains the possibility that (iii) g(A) > g(B) > y. In (i) g(A) 3* g(C) + cc = y + cc

(Lemma 14); in (ii) g(A) > g(C) > y (Lemma 15). Define c3 = Min{y + cc:

C(mf)e/yn^}, c4 =Min{g(C): C(e) ^J?y n J?y}, c5 = Min{g(fi): g(B) >

y, fi £ j/({ 0 }, y, {A"} mod if)}. The three sets to be minimized are all finite, by

Theorem 1, and all their elements are greater than y. We can conclude that no dense

matrix A has the property that

(10.2) y <g(/f)<Min{c3,c4,c5}.

Thus the set of densities is well ordered.

Proof of Theorem 3. Let q = 1, and let £? he an infinite family of digraphs. For

each positive integer p let J?lp) denote the set of members of J? having at most p

vertices. By Theorem A there exists for each p a dense matrix A{p)  which is

asymptotically extremal for J^"-p). Consequently

(10.3)

Hm   ex{"'nf} =  lim    hm   ex(";;f(") = 2  Um g(AW) = 2g(A<»)
n —* 00 (2) p—* 00   n—* oc (2) p—* oc

for sufficiently large p, by Theorem 2 and the fact that ex(n, J?(p))/(2) is mono-

tonely nonincreasing in both n and p. Any matrix asymptotically extremal for Ji?

will surely be asymptotically extremal for J£(p) for sufficiently large p. By Theorem

i there are finitely many matrices A such that g(A) = lim„_<002(ex(rt, if)/(2)). For

any such A which is not asymptotically extremal for =Sf, there will exist a positive

integer pA such that some L £ J?(-p) is /I-colourable when p > pA. Taking p

greater than all such pA, we obtain if* =if(/,) having the same asymptotically

extremal matrices as £?.

11. Proof of Theorem 4.

Introduction to the algorithm. (A) Let q = 1, and let Ji? he a given family of

digraphs. We describe a method that must eventually yield all asymptotically

extremal matrices A. We do not consider the efficiency of the procedure.

(B) There exists an enumeration of all matrices A £ Jt. This cannot list the

matrices in increasing order of their densities, since, notwithstanding Theorems 1

and 2, the set of densities has infinitely many limit points (the least is 1, which is theLicense or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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limit of the densities of triangular matrices with 2's above the main diagonal and O's

elsewhere). For any A £ Jtr, there exists a bound—depending only on r—on the

number of integer arithmetic and logical operations which must be performed to

determine its density, and whether it is dense (cf. Lemma 1). We leave it to the

reader to verify that Lemmas 7 and 9 may be rewritten in constructive versions, so

that, in Lemma 14, both cA and mA can be determined in a bounded number of

steps. We describe below an algorithm for determining, for a given A £ 3r, whether

or not A is asymptotically extremal for Ji?.

(C) A dense matrix A will be an end-matrix if it is a reduction of a restricted type

of augmentation defined below, and if, in addition, each of its reduced augmen-

tations A' of this restricted type has the property that some L £ Ji? is ^'-colourable.

There exists a recursive function in = mA defined on the end-matrices A such that if

(i) B is dense, (ii) g(B) > g(A), (iii) B *■ A, (iv) A(mA) is fi-colourable, then some

L £ if is fi-colourable. (Let m denote a sufficiently large integer that, for each of

the—finitely many—augmentations A' of A, A'(m) contains some LS:£?. By

Lemma 14, conditions (i)—(iv) ensure that g(B) > g(A) + cA; by Lemma 3, all

valencies in B(n)—for n sufficiently large—exceed {g(A) + cA/2). Applying

Lemma 7, we conclude that B(n) contains an A'(m), which, in turn, contains some

L £ ££. Our proof requires constructive versions of Lemmas 3, 7,14.)

(D) We construct recursively a finite subscheme stf^ of s/({ 0 },y mod Ji?), in

which we augment "by" progressively larger constants. Each level will require a

finite number of decisions of the type "does i^ contain a fi-colourable digraph".

Suppose that s/g, has been defined for S?_x, j > 0. The construction process

involves (i) determination of the finitely many matrices of S?-; (ii) scanning of each

of these to determine which matrices in S? _x axe end-vertices; (iii) determination,

for each end-vertex A in S?,:_x, of mA and cA; (iv) determination of the maximum,

y., of the densities of all matrices then in the scheme. The process begins with 0,

having density -oo, and reduced augmentations (0) and (1).

Description of the algorithm. (I) Let j' = 0. yo = {0}. y0 = -oo. Set j = 1 and

go to (II).

(II) Determine all reduced augmentations A' of each matrix A of S?j_x by 3* Yy-_t.

Exclude, however, all A' such that either (a) some L £ if is ^'-colourable; or (b)

some digraph C(mc) is ^'-colourable, where C * A' and C is an end-vertex of the

scheme in some level up to but not including the (j — l)th. These augmentations,

excluding those which are already present in the scheme, constitute the members of

£^j, and an arc is directed from each A in Sfj_x to its reduced augmentations (unless

such arc is already present from processing earlier levels); an arc may even be

directed to a matrix in a lower level, but only if all intervening values of yk are

equal. Go to (III).

(III) For every A in S?j_x, if every (direct) augmentation A' of A has been

excluded, designate A an end-vertex of the scheme. Go to (IV).

(IV) Determine, for the end-vertices A in S?J_1, the constants mA (defined above),

and cA (defined in Lemma 14). As seen in (C), there must exist, for any dense matrix

B such that g(A) < g(B) and A(mA) is fi-colourable, a fi-colourable L £ J^. Set y-
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equal to the maximum of y._1 and of the densities of all matrices in i^. If all

matrices in Sfj_x are end-matrices, go to (V); otherwise replace j by j + 1 and go to

(II).
(V) End-matrices having maximum density will be the extremal matrices for if.

Remarks. (1) Before commencing verification of the algorithm, we attempt to

explain and to illustrate its operation.

(2) The careful reader may wonder why condition (b) of (II) is needed. While we

augment all A in if by at least the maximum density of members of the level, the

densities of the augmentations obtained need not be greater than—or even equal to

—that maximum; thus it may happen that some such augmentation A' is such that

no L £ if is A '-colourable, yet A' contains some C(mc). Our proof will show that

such an A' is not required in the procedure of determining the desired matrices; and

—if we did not exclude it—might render the process infinite (cf. the example

below).

(3) The example provided below is intended to illustrate the various stages of the

algorithm—not to demonstrate its effectiveness in resolving the extremal problem

for the given digraph. The exact solution is known in this case: ex(n,L) = 2[n2/4];

indeed, EX(«, L) is also known (cf. [8, Theorem (6.1), (6.5)]). Notwithstanding the

extended length of the discussion, we have used ad hoc arguments at several stages

to abbreviate the procedure.

Example. Let ^£ consist of one 3-vertex digraph L—having two "double" arcs

and one "single" arc. i"0 = { 0}, y0 = -oo. 6?x = {(0), (1)}, yx = 1; neither (0)(oo)

nor (l)(oo) contains L, so 0 is not an end-matrix. No augmentation of (1) survives,

as both "contain" L. Up to equivalence, the only members of 6?2 are (2 °)> (•> o)>

having densities \, 1, respectively. Here y2 = 1, and (1) is the only end-matrix in 6?x.

(At this point we would normally have to determine m(X) and c(1). By the example of

§9, we may take these constants to be 3 and yV respectively. In fact, A (3) cannot be

fi-colourable when g(B) = 1 and B * A = (1), since then B = (% I), and fi(oo) has

no triangles.) Augmenting (° o) and reducing yields (up to equivalence) (1), (° o),

and the following 5 matrices:

(0    0 0\  /0 0 2\ (0    0 2\  /0 0 2\  ,_ .,
2 0 0,200,202,  2 0 2 ,  I ( ,

\2 2 0/  \0 2 0/  \2 2 0/  \2 2 1/  V   ;

having densities f, f, f, |, f, respectively; of these, the last three "contain" L.

Augmenting (2 I) yields, in addition to

/°   °   2\ (0   2\
2   0   2      and      "   \),

\2   2   0/ V        ;

the matrices

(0   2   2\ /0   2    2\
2   0    2      and      2   0    2,

\2    2    0/ \2   2    1/
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having densities f and 4 respectively, and both "containing" L. Thus in 6?2, Ax =(2 \)

is an end-vertex, and ([] I) is not. (By earlier computations, the only B we need

consider is (1). Ax(2) is not fi-colourable. So we may take mA  = 2.) We augment

10   0   0\ 10   0   2\
2   0   0      and      2    0    0

\2    2    0/ \0    2    0/

by > 1. Reductions of augmentations not containing L and not already in the

scheme will be matrices associated with the various tournaments on four vertices,

and their densities will be f. The process may be repeated. Without (II)(b), it would

produce an infinite sequence of levels, containing the matrices associated with

tournaments with increasing numbers of vertices, and all having density less than

that of (1). However, sufficiently large tournaments must contain a transitive

subtournament on m(X) vertices, and the procedure must terminate. The matrices

yielding asymptotically extremal sequences will then be (1) and (2 q).

Verification of the algorithm. (A) Let U £ 3r be an asymptotically extremal matrix

for J?. Define y = g(U) = 2limn^x(ex(n, S?)/n2). By Lemma 9 there exists a

nested sequence of principal dense submatrices 0 = A0, Ax,..., Ar = U, where At

is an augmentation of At_x by >, y > g(A^x) without reduction; we prove by

induction that Af is in j^ (i = 1,2,..., r). By definition, 0 £ £f0. Since no L £ if

is (7-colourable, and the sequence is nested, no such L is ^,-colourable, so Aj+X will

not be excluded in (II) by virtue of condition (a). We assert that no C(mc) is

yf,+ 1-colourable, where C is an end-vertex of an earlier level of the scheme; for this

would entail that C(mc) he (7-colourable, and so, by definition of m, U ~ C. From

this contradiction we conclude that if belongs to the scheme stf^.

(B) By (3.2) and 11(a), no matrix in s/j? can have density exceeding y.

(C) We prove that for any if—even infinite J£—s^ie can have only finitely many

nonempty levels. We know by Theorem 1 that only finitely many dense matrices

have density y. Among these are the extremal matrices, say Ux, U2,..., LJt, which, by

(A), all figure in the scheme, each as end-matrix. Let jQ denote the highest level

containing one of these matrices. By (B) above, y = y for j > jX). Let J?* = ifu

{Uk(mu): k=l,2,...,t}.By Theorem A there exists a dense matrix V extremal

for if*. Uk(m~u ) cannot be f-colourable, so V is distinct from Uk (k = 1,2,...,/);

since £?Q JF*, g(V) < y. By 11(b) none of the matrices above the y0th level can have

density exceeding g(V). As we are augmenting by y > g(V), we know from Lemma

7 that there can be only finitely many levels beyond the y0th.

(D) In the highest level all matrices will be end-matrices. Any matrix in j/^,

having the maximum density y must be an end matrix, and must be one of

Ux,U2,...,Ut; and, as observed earlier, each of Ux,U2,...,Ul is an end-matrix.

12. Multigraphs. Our results for digraphs imply multigraph analogues. To dis-

tinguish multigraph versions from digraph versions in this context, we shall superim-

pose a circumflex " or an arrow -* over certain symbols; in particular, ex and EX

will denote the functions denoted by ex and EX in §§2-11. That this use of" is

consistent with Definition 7 will be shown below.
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Let q he a fixed positive integer. We may relate multigraph extremal problems

with odd maximum edge multiplicity q = 2q - 1 to problems where q is even by

interpreting the former as having maximum edge multiplicity 2a, and adjoining to

the family of prohibited multigraphs a multigraph G0 having 2 a parallel edges

connecting 2 vertices. The extremal problem for q = 2q — 1 and family 'S is

equivalent to that for q = 2q and family ^U {G0}.

Definition 16. (a) The underlying multigraph L of a digraph L is obtained by

suppressing orientations. The multiplicity of an edge will be the sum of the

multiplicities of the arcs joining its ends with either orientation10. If if is a family of

digraphs, J^= {L: L£if}.

(b) A (regular) orientation of a multigraph G is any digraph L such that G = L.

(An essential constraint is that arcs in either direction must not have multiplicity

exceeding a.) The set of orientations of G will be denoted by G; U{ G: G £ 9} will

be denoted by @.

Proposition. Let q = 2a. Let 'S be a given family of multigraphs. Then

(12.1) EX(«,S?) = EX(«,#).

A multigraph G" is extremal for @ if and only if it admits a regular orientation S"

which is extremal for @; moreover, if G" is extremal for 'S, then every regular

orientation S" is extremal for &.

The preceding permits the reduction of each multigraph extremal problem (with

even multiplicity q) to a corresponding digraph problem.

Definition 17. Matrix multigraphs. Let A = (a, ) be a symmetric r X r matrix,

for which a,y = 0,1,..., or 2a if ;' + j; and a,, = 0,1,..., or 2a — 1. For every

partition n = xx + x2 + ■ ■ ■ +xr into nonnegative integers we define a multigraph

A(x) as follows: (i) n vertices are divided into r classes CX,C2,...,C,., where

|C,-| = x,; (ii) every vertex of C, is joined to every (distinct) vertex of C, by a,- edges

(i, j = 1,2, ...,/•). The set of matrices defined above may be denoted by „kf.

For any A £ Jtr, the matrix A of Definition 7 satisfies the conditions of

Definition 17. Conversely, for every matrix A satisfying Definition 17, there exist

A £ Jtr such that A + A* = 2A. A and A give rise to the same quadratic form (cf.

Lemma 1). Density may be defined in the obvious way. Consequently, Theorem 1

for a = 1 impliles an unoriented analogue for q = 2; likewise Theorem 2.

Theorem 1. Let q = 2. For any y > 0 there exist only finitely many symmetric

dense matrices A ^Jt such that g(A) = y.

Theorem 2. Let q = 2. The set {y: y = g(A), A £ 3} is well ordered.

We shall not work systematically through all results for digraphs: analogues

suggest themselves without surprises. We have proved a matrix analogue of Theorem

A in [3], announced one of Theorem B in [6], and stated other results in [4]. A

10 We do not associate (as is sometimes the case, cf. [7]) pairs consisting of one arc in either direction

with a single edge.
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multigraph analogue of Theorem 3 holds:

Theorem 3. Let q = 2. For every infinite family <§ of prohibited submultigraphs

there exists a finite subfamily 'S * C & for which

(12.2) ex(n,<$) =ex(/j,3?*) + o(n2)    asn^oo,

and such that any dense matrix A £ Jt is asymptotically extremal for & if and only if

it is asymptotically extremal for '&*.

Proof. By Theorem 3 there exists a finite set of digraphs JiCc^ <g such that

(12.3) ex(n,£?) = e7(n,^) + o(n2)

= ex(/i,0) + o(n2)    as n -> oo,

by (12.1). Since if c/#c #,

~e~x(n,£?) > ex(w, &) > ex («,#).

By (12.3), (12.1),

(12.4) ex(n,&) = ex(«,S?) + o(n2)    as n -> oo.

If {^4(«)} is an asymptotically extremal sequence for ^, then, by (12.4), the

sequence is surely asymptotically extremal for J&, which is a subset. If A is extremal

for &?, any matrix,>4 such that A = \(A + A*)is extremal for Jf, hence for 5?, and

A is extremal for &= <&. We take J" as ^*.

Theorem 4 also particularizes to multigraphs with <? = 2. It suffices to work with 0

and to ignore nonsymmetric matrices produced by the algorithm.
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