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In this paper we solve a conjecture of P. Erdos by showing that if a graph 
G’” has n vertices and at least IOOkn 1+1/k edges, then G contains a cycle CzL of 
length 21 for every integer It [k, kn’l”]. Apart from the value of the constant 
this result is best possible. It is obtained from a more general theorem which 
also yields corresponding results in the case where G” has only cn(log np 
edges (.Y > I ). 

0. NOTATION 

The graphs considered in this paper are finite and have neither loops 
nor multiple edges. The number of edges of a graph G will be denoted by 
e(G). The number of vertices will be either denoted by v(G) or indicated by 
a superscript; thus G’” is always a graph on rz vertices. Ck denotes the cycle 
of length k. 

1. INTRODUCTION 

P. Erdos, in [4], published without proof the following 

THEOREM. Tllere exists a cp and an n,,(k) such that, if 

e(Gpz) > clcrzl+l/rL and n > n, , 

therl 

C2” C G”. 
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Later, Erdos asked whether (1) implies 

P C G” for every integer 1 t [k, nl/li]. 

(In [5] he proved a weaker form of this conjecture for k = 2). We shall 
prove 

THEOREM 1. [f  

t/let1 

e( ,I,) > I OOkd-':'(, (2) 

Car C G’” for every integer I E [k, knll”]. 

Renmk 1. It is reasonable to conjecture the existence of a functionJ 
such that, for all sufficiently large II, there is a graph Sn with [f(k) ,I~+~!~] 
edges that does not contain a Czr;; this is known to be the case for /i = 2, 3, 
and 5 ([3], [7]. [I], [8]). Therefore (at least for these values of k), condition 
(2) cannot be replaced by 

e( G”) > f(k) ,I~+~/~. 

In this sense our theorem is sharp. 
On the other hand, if Z” is the union of approximately (l/k)nlpl, 1. 

complete graphs on [kn1’k] vertices, then 

but Z” contains no cycle of length greater than knl;‘:. Therefore, if 
e(G) % , klrlllis the existence of a P’ in G” for I = [h-rll;“] cannot be 
ensured, and this again shows the sharpness of our theorem. 

Remark 2. In particular (for the case k = 2) Theorem 1 tells us that 
the order of magnitude of e(G”) which forces G” to contain a C” also forces 
G” to contain all the even cycles P, / 7 2, 3 ,..., 2n1/“. A similar phenom- 
enon is established in a paper of J. A. Bondy [2], where it is shown that, 
if G” has enough edges to force a triangle (that is, if e(G’“) > (17"/4)), then G” 
must contain all cycles C’, 1 = 3, 4,..., [(n + 3)/2]. 

Theorem 1 is an easy consequence of a slightly more general theorem. 

THEOREM 1 *. Let E = e(G”). Then Czl C G” for every integer I ;> 2 
satisfvitlg 

E 
I<- E 

I oot7 ’ 
]/&! SY _ 

_ lot1 

Besides Theorem 1, another consequence of Theorem I* is 
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THEOREM 2. There exists a function g such that, if 

e(G”) 3 g(e) $log n)‘+‘, 

C”’ C G” for erery integer I E 
log n 

E log log II 
, (log n)liE] . 

2. BASIC LEMMAS 

A coloring (not necessarily proper) of the vertices of a graph G is 
t-periodic if the end-vertices of any (simple) path of length t in G have the 
same color. 

LEMMA 1. Let t be a positive integer, and let G be a connected graph 
for which 

e(G) > 2tz;(G). (3) 

Then the number of colors in any t-periodic coloring qf G is at most two. 

Proof. (i) First we show that any graph G with e(G) > 2tr(G) contains 
two adjacent vertices joined by two vertex-disjoint paths, each of length 
at least t. The technique we use is due to P&a. 

In the case where each vertex has valence at least 2t, we can find such 
a B-graph in the following way. Let a longest path in G be x1 . . . x, . Then 
x1 is adjacent only to vertices of this path, say to xi,, xi, ,..., xi , where 7 

2 = i, < i, < ... < i, and r > 2t. 

The path xlxz ... 
desired O-graph. 

xi,, together with the edges xIxi, and xlxi,,, form the 

The general case, when there may be vertices of valence less than 2t, can 
now be proved by induction on c(G). For 0 < t>(G) .< 4t it is trivial that 
(3) cannot be satisfied, and so there is nothing to prove here. If z:(G) = 
4t + 1, G must be complete and clearly contains a d-graph of the desired 
type. Suppose now that every graph that satisfies (3) and has k > 4t + 1 
vertices contains such a B-graph, and let G be a graph on k + 1 vertices 
with some vertex x of valence less than 2t. Then 

e(G - x) > e(G) - 2t > 2tv(G) - 2t = 2tc(G - x). 

Thus, by the induction hypothesis, G - x contains a e-graph of the 
desired type and hence so also does G. 
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(ii) Let the three cycles of such a O-graph be C, , C, , C, with lengths 
I1 , I2 , I,, respectively. Clearly, the restrictions of the t-periodic coloring 
of G to the d-graph and to each cycle Ci are also t-periodic. Let ti be the 
smallest integer such that C, is t,-periodic, i = 1, 2, 3. It is easy to see 
that any period on one cycle induces the same period on the other cycles 
and therefore 

also, rj ~ I, . i -= I, 2, 3. If C, is the longest of the three cycles, then 

I, - I, ~- I, 2. 

Setting 1, = t*, i == 1, 2. 3, we find that t* ~ 2 and hence that t* = 1 or 
I* = 2. Therefore, the number of colors in the B-graph is at most two. 

(iii) Because G is connected, each vertex of G is joined to some vertex 
of this O-graph by a path of length X-t, for some integer k, and hence has 
the same color as this vertex. It follows that the number of colors in the 
whole graph G is also at most two. This completes the proof of the lemma. 

It is, in fact. easy to show that either G is bipartite with the natural 
coloring (trivially a 2-periodic coloring). or else G is unicolored. 

LEMMA 2. Let G” be a bipartite ,graph in Ivhick erer!* rertex has raience 
ut least s 7: max{51n1:‘, 5011. Tllerl G’” contnitw a C”‘. 

Pro@ Choose an arbitrary vertex s of G” and let Vi be the set of 
vertices at distance i from x. Since G” is bipartite, each set Vi is an indepen- 
dent set. 

Suppose that G” contains no C”‘. We shall show that this implies that, 
for 1 < i 2.; I, 

thus leading to the contradiction that QG”) ;- II, (since s 3 51nli’ and, 
consequently, j V, I 3 nl/” i V-l I). 

We prove (4) by induction on i. It is trivial for i = 1 since the vertex x 
has valence at least s. Suppose that it is true for i - I. Let HI , Hz ,..., H, 
be the components of the subgraph H of G” induced by I’-l u Vi , and 
let W, be the set of vertices of Hj that are on level i - I, that is, in I’_, 
(see Figure I). 

A path x,x, ... x,, in G” will be called monotonic if the distance between 
x and xi is monotonic. (This means that a monotonic path crosses any 
level at most once.) 
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v 

“1 x 
FIGURE I 

We shall show that e(H,) < 41c(H,) . This is trivial if IV, has just 
one vertex, so assume that WI has at least two vertices. Let a E V, be a 
vertex of G” such that 

(i) there are two monotonic paths P, , P, joining a to W, which have 
just the vertex a in common, 

(ii) p is the minimum subject to (i). 

First we show that each vertex of WI is joined to a by a monotonic 
path. For y E W, is joined to x by a monotonic path P, and, by the mini- 
mality of p, P, must intersect PI in some vertex z. The path consisting of 
the section of P, between y and z and the section of PI between z and a is a 
monotonic path from y to a. This is illustrated in Figure 2. 

We now assign colors red and blue to the vertices of W, in such a way 

“i-1 

FIGURE 2 
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that, if two vertices have different colors, then they are joined to a by 
vertex-disjoint monotonic paths. This is done as follows. Each vertex of 
W, that can be joined to a by a monotonic path disjoint from P, is colored 
red: all other vertices of WI are colored blue. To see that this coloring has 
the required property, let s1 and x, be vertices of W, colored red and blue, 
respectively, let P,’ be a monotonic path from x1 to a disjoint from P, , 
and let P,’ be a monotonic path from x2 to a. Moving along P,’ from x, 
towards a, let I’ be the first vertex of (P,’ u P2) -- a encountered (see 
Figure 3). Because x, has the color blue, such a L’ exists; z’ cannot belong 

V 
i-1 , 

FIGURE 3 

to P,’ for then the section of P,’ between .Y, and ~7 together with the section 
of PI’ between ZJ and a would constitute a monotonic path from xy to a 
disjoint from P, , contradicting the assumption that x2 is colored blue. But 
then ~1 E P, and we have a monotonic path x,P,‘z~P,a disjoint from P,‘. 

We now color the vertices of HI in Vi green and show that this coloring 
of H, is t-periodic with t = 2(1 - i + p -2 I). For, since t is even. if one 
end-vertex of a path of length t in H, is green, then so is the other. Also, 
there can be no path of length t joining a red and a blue vertex, because, if 
a red x1 were joined to a blue xi by such a path, this path together with 
vertex-disjoint monotonic paths from x1 to a and from x2 to a would 
form a cycle of length 21. Therefore, the coloring of HI is indeed t-periodic. 
Since three colors are used in this coloring, Lemma 1 implies that 

e(H,) < 2tr(H,) < 4h(H,). 

Arguing similarly for H2 ,..., H, , we obtain 

e(H)) < 41C(Hj), j = I,..., q> 



CYCLES OF EVEN LENGTH IN GRAPHS 

and, since the Hj are the components of H, 

e(H) < 4/r(H). 

Let H* denote the subgraph of G” induced by Vi-, 
similarly, 

e(H*) < 41v(H*), 

and, by the induction hypothesis, 

I vi-1 I ;> 2 . 
/ vi-:! 1 ’ 51 

But, clearly, since each vertex of G” has valence at least S, 

e(H) + e(H*) > s 1 Vj-l 1 . 

Therefore, by (5) and (6), 

41(/ vi-1 I t I vi I + ! vi-2 I + I vi-1 I> 

u 
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(5) 

VieI . Then, 

(61 

(7) 

and so 

= 41(21(H) + r(H*)) > e(H) + e(H*) 3 s I Vidl I 

/ vi j > $ ((s - 81) I vi-l ! - 41 I vi-2 ‘). 

Using (7) we obtain 

and, therefore, since s 2 501, 

I v; I -___ 
I vi-* I :,~(.J.-9/)>~.++p 

as desired. 

3. MAIN THEOREM 

We are now in a position to prove Theorem I*. First we recall its 
statement. 

THEOREM l*. Let E = e(G)“). Then PC G” for erery integer I 2 2 
satisjj+ng 
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Prooj’ (by induction on n). For II = 1 the theorem is trivial, since 
condition (8) cannot be satisfied in this case. We now suppose that the 
theorem has been proved for all graphs on n - 1 vertices. Let G” be a 
graph on II vertices and let 1 ‘;- 2 be an integer satisfying (8). 

It has been shown by Erdiis [6] that any graph G contains a bipartite 
spanning subgraph H with e(H) > e(G)/2: in fact H can be chosen so that 
each vertex has valence in H at least half its valence in G. 

So let H” be such a bipartite spanning subgraph of G”. If each vertex of 
H” has valence at least E/2/2n then. by Lemma 2, we have that, for every 
integer I such that 

max{Sllll”, 5011 C:~ Ej2n, 

H” contains a cycle of length 21. Thus, in this case, Theorem I* is proved. 
So suppose now that some vertex \c of H” has valence less than E/2n. 

By the choice of H”, 10 has valence less than E//z in G”. Let G”-l = G” ~ IV. 
By the induction hypothesis, Gn- l contains a cycle of length 21 for every 
integer I satisfying 

But if I satisfies (8) with G”. then it also satisfies (8) with G’“-l since, 

(a) if 1 < e(G’“)/lOOn, then 

I .I e(P) e(G”) ~.. e(GT1)/‘~~ _ e( G-l) 
=> 10011 = lOO(n -‘1) :a lOO(n - Ii 

(since IV has valence less than e(G”)/\l). 

(b) if Ml’ < e(G’“)/10,7, then 

Hence G+-l, and therefore also G”, contains a cycle of length 21 for every 
integer 1 satisfying (8). This completes the proof. 

Perhaps, by other methods, Theorem 1 * could be improved so as to be 
meaningful for 

E2 
en log II 
log log II * 
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However, this would then be the best possible result since, if c* is small, 
there exists no fixed I such that every graph on n vertices and with 
(C*II log n)/(log log n) edges has a cycle of length 21. 

Remark 3. One can find an I satisfying (8) in Theorem I* if and only 
if 

E ‘, 1000 log 77 

y log 10 (9) 

If (9) holds, then (8) is satisfied for all values of 1 in an interval. The 
upper end of this interval is E/loon. The lower end can be determined in 
the following way: 

For a fixed n the function y = NA!~ IS strictly decreasing in (0, log n]. 
Let 4,( 1:) = x denote its inverse. Then +,(E/lOn) is the lower end of our 
interval. +n(E/lO?z) is a transcendental function but one can easily give 
good approximations for it using the iteration 
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