
The Typical Structure of Graphs Without
Given Excluded Subgraphs*

József Balogh,1 Béla Bollobás,2,3 Miklós Simonovits4

1Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana,
Illinois 61801; e-mail: jobal@math.uiuc.edu

2Department of Pure Mathematics and Mathematical Statistics, Trinity College,
Cambridge CB2 1TQ, UK

3Department of Mathematical Sciences, University of Memphis, Memphis TN
38152; e-mail: b.bollobas@dpmms.cam.ac.uk

4Alfred Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest,
Hungary; e-mail: miki@renyi.hu

Received 20 January 2007; received in final form 1 February 2008
Published online 4 November 2008 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/rsa.20242

ABSTRACT: Let L be a finite family of graphs. We describe the typical structure of L-free graphs,
improving our earlier results (Balogh et al., J Combinat Theory Ser B 91 (2004), 1–24) on the Erdős–
Frankl–Rödl theorem (Erdős et al., Graphs Combinat 2 (1986), 113–121), by proving our earlier
conjecture that, for p = p(L) = minL∈L χ(L) − 1, the structure of almost all L-free graphs is very
similar to that of a random subgraph of the Turán graph Tn,p. The “similarity” is measured in terms of
graph theoretical parameters of L. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 34, 305–318, 2009
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1. INTRODUCTION

Notation. We restrict our attention to simple graphs and the notation we use is standard.
Thus V(G) denotes the set of vertices of a graph G, and for a vertex set X ⊆ V(G), G[X]
denotes the subgraph of G induced by X . For X ⊆ V(G), we mostly shorten e(G[X]) to
e(X). We write Gn for a graph of order n; in fact, much of the time, the first suffix in our
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306 BALOGH, BOLLOBÁS, AND SIMONOVITS

notation is the order of the graph, as in Kp, Tn,p, and Hk . The chromatic number of a graph
L is denoted by χ(L), the order of L by v(L); �(x) is the set of neighbors of a vertex x,
d(x) = |�(x)| is its degree, and d(x, A) = |�(x)∩ A| is the degree of x into a set A ⊆ V(G).
Also, �∗(X) denotes the set of common neighbors of the vertices in X: �∗(X) = ⋂

x∈X �(x).
We write Kp for the complete graph on p vertices, and Tn,p for the p-class Turán graph.

Thus to obtain Tn,p we partition n vertices into p classes so that their sizes are as equal as
possible, and join two vertices if they belong to different classes. It is easy to see that(

1 − 1

p

) (
n

2

)
≤ e(Tn,p) ≤

(
1 − 1

p

)
n2

2
and e(Tn,p) =

(
1 − 1

p

)
n2

2
+ O(n).

For a given graph Gn and p, a p-partition is a partition of V(Gn) into p classes, a p-partition
(U1, . . . , Up) of V(Gn) is optimal if

∑
e(Ui) is as small as possible. Sometimes, shortly we

refer to such a partition as an optimal p-partition.
Given a partition (U1, . . . , Up) of V(Gn), we shall call

the edges inside some partition-class Ui “horizontal edges.”1

Also, for a given partition (U1, . . . , Up) we define the
horizontal degree of x ∈ Ui to be |�(x) ∩ Ui|.

We say that a pair of vertex sets (A, B) is completely
joined in a graph Gn if A, B ⊂ V(Gn), A ∩ B = ∅, and each x ∈ A is joined to each y ∈ B
in Gn. Having two vertex-disjoint graphs M and Q, M ⊗ Q denotes the graph obtained by
joining each vertex of M to each vertex of Q.

In this article the logarithms have always base 2. We shall often use the binary entropy
function H(x) = x log2

1
x + (1 − x) log2

1
1−x .

1.1. Turán Type Extremal Problems

We say that the graph G contains L and write L ⊆ G if L is a (not necessarily induced)
subgraph of G. Given a family L of graphs, G is called L-free if G contains no L ∈ L,
We call L the family of forbidden graphs. We assume that e(L) > 0 for each L ∈ L.
P(n, L) denotes the class of L-free graphs with vertex set [n] := {1, . . . , n}2; ex(n, L) is the
maximum number of edges an L-free graph Gn can have, and an L-free graph with ex(n, L)

edges is L-extremal or sometimes simply extremal. When L consists of a single graph L,
we write ex(n, L) instead of ex(n, {L}).

The basic Turán type extremal problem is as follows.

For a given family L, determine or estimate ex(n, L), and describe the (asymptotic)
structure of extremal graphs, as n → ∞.

We fix a forbidden family L, and let

p := p(L) = min
L∈L

χ(L) − 1. (1)

For every L there is a constant a > 0 such that

ex(n, L) = e(Tn,p) + O(n2−a) (2)

1Mostly we call these as “horizontal degrees” that corresponds to specific figures of the optimal partition where
these edges are almost horizontal.
2The vertices of our graphs are fixed, labeled and, for the sake of simplicity, we shall assume that V(Gn) =
{1, . . . , n}.
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GRAPHS WITHOUT GIVEN EXCLUDED SUBGRAPHS 307

and all the extremal graphs of order n can be transformed into Tn,p by deleting and adding
O(n2−a) edges, as proved by Erdős [5] and Simonovits [8]. For a more detailed description
of this field, see the book of Bollobás [3] or the surveys of Simonovits [9, 10], Füredi [7],
and Bollobás [4].

The main idea of the results discussed here and in the preceding papers is that most of
the L-free graphs can be regarded as subgraphs of some extremal or almost extremal graphs
for L. Our starting point was the following theorem of Erdős et al. [6].

Theorem 1. For every L

2ex(n,L) ≤ |P(n, L)| ≤ 2ex(n,L)+o(n2). (3)

Note that the lower bound in (3) is trivial, as every subgraph of an L-extremal graph
is L-free. In [2] we improved the upper bound in Theorem 1, see Theorem 3. Here we go
one step further, and give a structural characterization of almost all graphs in P(n, L). To
formulate our results, we need a definition.

Definition 2 (Decomposition Family). Given a family L (and p = p(L)), let M := M(L)

be the family of minimal graphs M for which there exist an L ∈ L and a t = tL such that
L ⊆ M ′ ⊗ Kp−1(t, . . . , t), where M ′ is the graph obtained by adding t isolated vertices to
M. We call M the decomposition family of L.

In other words, a graph M belongs to M if whenever n is sufficiently large and we
“place” M into a class Ui of Tn,p, then the obtained graph contains a forbidden L ∈ L.
(“Placing” means adding the edges of a copy of M into Tn,p, using only vertices of this Ui.)
We emphasize that M always contains a bipartite graph, otherwise χ(L) ≥ p + 2 for every
L ∈ L.

If L is finite, then M is also finite. The converse is not necessarily true. For example, if
L is the family of all the odd cycles, then M = {K2}.

In [2] we gave the following improvement of Theorem 1.

Theorem 3. For every L with p = p(L) ≥ 2, if M, the decomposition family of L, is
finite, then

|P(n, L)| ≤ nex(n,M)+cL·n · 2
1
2

(
1− 1

p

)
n2

, (4)

for a sufficiently large constant cL > 0.

To see that this does strengthen Theorem 1, for a given L, let L ∈ L have minimum
chromatic number, (i.e. χ(L) = p + 1), and pick a t with Kp+1(t, t, . . . , t) ⊇ L. This implies
that there is an M ∈ M with M ⊂ K(t, t) and Theorem 3 implies that

|P(n, L)| ≤ |P(n, L)| ≤ nex(n,M)+cL ·n · 2
1
2

(
1− 1

p

)
n2 ≤ 2ex(n,L)+O(n2−c),

where 0 < c < 1/t. Here we used (2), ex(n, K(t, t)) = O(n2−1/t), and nO(n2−1/t ) < 2O(n2−c).

Remark 4. One knowing this field may ask: do we need/use the Szemerédi Regularity
Lemma [11] in this article or not? The answer is that in some crucial steps of our previous
paper [2] we did use and here we use several results from that paper. However, here we do
not need the explicit use of the Regularity Lemma.
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1.2. Why Do We Need the Finiteness of M?

We construct a family L which shows that the condition of finiteness of M is needed
in Theorem 3. Denote by Iν the ν-vertex graph with no edges. Set f (x) = 2x2

and let
Lm := Cm ⊗ If (m), i.e. join f (m) independent vertices to an m-cycle Cm completely. Put

L := {Cm ⊗ If (m) : m = 3, 4, 5, . . . }.
We assert that for this L the conclusions of Theorem 3 (and Theorem 5 below) do not

hold: for infinite L they are not necessarily true.

a. Now, M is the family of all cycles, p = p(L) = 2 and ex(n, M) = n − 1. Hence (4)
would yield that

|P(n, L)| ≤ n(cL+1)·n · 2
1
2

(
1− 1

p

)
n2 ≤ 2n2/4+O(n log n). (5)

b. On the other hand, let Gm be a graph on m = �n/2� vertices with average degree at least
log2 n, and girth g(Gm) → ∞. (Random graph methods or the Margulis–Lubotzky–
Phillips–Sarnak type graphs imply that there are such graphs with girth g(Gm) >

c1
log m

log log m .) Let Sn := Gm ⊗ In−m. With our condition on f (x) we have f (g(Gm)) > 2m.
One can easily see that Sn is L-free and

|P(n, L)| ≥ 2e(Sn) > 2e(Tn,2) · 2cn log2 n,

contradicting (5). So Theorem 3 does not hold for this infinite L.

1.3. Results

The goal of this article is to prove Conjecture 2.3 from [2]. We actually prove a stronger
result, Theorem 9, which provides an estimate for the decay of the number of “bad graphs”
compared to the number of L-free graphs (and gives additional structural information on
almost all L-free graphs).

Theorem 5. Let L be a finite family of graphs. Then there exists a constant hL such that
for almost all L-free graphs Gn we can delete hL vertices of Gn and partition the remaining
vertices into p classes (U1, . . . , Up) so that G[Ui] is an M-free graph for every 1 ≤ i ≤ p.

Observe that the family L constructed in Section 1.2 shows that in Theorem 5 at least
the condition that M is finite is needed.

We shall define several classes of L-free graphs; each one will be used to describe the
similarity of typical L-free graphs to random subgraphs of some L-extremal graphs.

Definition 6 (Fixing the parameters I). Let

t := max
L∈L

v(L). (6)

As in (1), let p+1 be the minimum chromatic number of a member of L and let δ < n/(p4t)

be a positive constant. We fix the constants

βr := 1

22r+1
, (7)

Random Structures and Algorithms DOI 10.1002/rsa
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and an ε > 0 and a γ > 0 satisfying that

H(ε) <
βt

100p4t2
and γ ≤ βt

100p5t5
. (8)

Here, we made use of the fact that L is finite: for infinite L this definition gives ε = 0.

Definition 7 (Good r-tuples). Given a graph G with a vertex partition (U1, . . . , Up),
call an r-tuple X ⊂ V(G) GOOD if for every Ui disjoint from X the number of common
neighbours of the vertices of X in Ui is

|�∗(X) ∩ Ui| =
∣∣∣∣∣
⋂
x∈X

�(x) ∩ Ui

∣∣∣∣∣ >
1

4r+1
|Ui|. (9)

An r-tuple is BAD if it is not GOOD. We say that X is a BAD r-tuple for a class Ui(X), if (9)
is violated. Note that a set X may be BAD for several classes in a partition, and whether X
is GOOD or BAD depends on (U1, . . . , Up).

Definition 8 (GOOD graphs). Denote by Ph
GOOD(n, L) the family of L-free graphs Gn

having an optimal partition (U1, . . . , Up) in which, if W is the set of vertices having hori-
zontal degree at least εn, (where we use the ε fixed in Definition 6) then |W | ≤ h and the
vertex set V(G) − W contains no BAD r-tuples for 1 ≤ r ≤ t in Gn.

Theorem 9. There is an h = h(L) such that almost all L-free graphs are in Ph
GOOD(n, L):

there exist two positive constants, C and ω > 1, such that

∣∣P(n, L) − Ph
GOOD(n, L)

∣∣ ≤ C

ωn
|P(n, L)|. (10)

The constants C and ω > 1 in Theorem 9 can be computed from its proof (which is
unlikely to provide the best possible values). In a forthcoming paper we plan to discuss
some consequences of Theorems 5 and 9. In the proof of Theorem 9 we shall use some
lemmas of [2].

1.4. Classes of L-Free Graphs

We shall use several subclasses of P(n, L). Often we shall neglect indicating the dependence
on all the parameters. We shall define ϑ later, in Definition 15, and then fix δ := 2

√
H(ϑ).

1. Let Pϑ(n, L) be the family of L-free graphs on [n] having (optimal) partitions
(U1, . . . , Up) for which

∑
i e(Ui) < ϑn2. These are the ϑ-Turán graphs.

2. Let3 Pδ
UNIF(n, L) ⊂ Pϑ(n, L) be the family of graphs for which every optimal p-

partition is such that for every 1 ≤ i < j ≤ p and every pair of sets A ⊂ Ui, B ⊂ Uj

with |A| = |B| ≥ �δn� the inequality e(A, B) > (1/4)|A| · |B| holds. We shall call
these graphs δ-lower regular (where “lower” refers to the fact that we have a lower
bound on the density).

3As δ is a function of ϑ , here we neglect to show in the notation the dependency of the family on ϑ .

Random Structures and Algorithms DOI 10.1002/rsa
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3. As in [2], we denote by Pϑ
WP(n, L) the family of graphs Gn ∈ Pϑ(n, L) all optimal

partitions (U1, . . . , Up) of which satisfy∣∣∣∣|Ui| − n

p

∣∣∣∣ <

(√
ϑ log

1

ϑ

)
n

for all i. (WP stands for “well partitioned.”)

Let us fix a constant ϑ with 0 < ϑ < (3p)−12. (Later we shall have some further restrictions
on ϑ .) The “Main Lemma” of [2] asserts that almost all L-free graphs are ϑ-Turán graphs.
Note that here we quote the results that we actually proved in [2], not the weaker form as we
stated them there.4 Unfortunately, in [2] we often replaced 2−ρn2

by the rather weak bound
2−n.

Lemma 10 (Main Lemma in [2]). Let 0 < ϑ < (3p)−12. Then, for a suitable positive
constant ρ = ρ(ϑ) > 0 and an integer n0(ϑ), for n > n0(ϑ) we have

|P(n, L) − Pϑ(n, L)| ≤ 2e(Tn,p)−ρn2
. (11)

Lemma 11 (Lemma 6.1 in [2]). Let 0 < ϑ < (3p)−12. Then for δ ≥ 2H(ϑ) there is a
positive constant ρ = ρ(ϑ , δ) such that for n sufficiently large we have∣∣P(n, L) − Pδ

UNIF(n, L)
∣∣ < 2e(Tn,p)−ρn2

.

Lemma 12 (Lemma 6.6 in [2]). Let 0 < ϑ < (3p)−12. Then, for a suitable positive
constant ρ = ρ(ϑ) > 0 and for n sufficiently large we have∣∣Pϑ(n, L) − Pϑ

WP(n, L)
∣∣ < 2e(Tn,p)−ρn2

.

We shall say that a family of graphs is negligible if its cardinality is at most 2e(Tn,p)−ρn2

for some constant ρ > 0.

Remark 13. Lemmas 11 and 12 assert that the typical vertex-distribution and edge-
distribution are very even in our optimal partitions.

Lemma 14 (Lemma 7.1 in [2]). Given L, let p be defined by (1). For any ε > 0 there is a
0 < δ(ε) < 1/p such that if ϑ > 0 satisfies that δ := 2

√
H(ϑ) < δ(ε), then the following

holds: there exist two integers h0(ϑ , ε, L) and n0(ϑ , ε, L) for which, if Gn ∈ Pδ
UNIF(n, L)

and n > n0, and if V(Gn) = (U1, . . . , Up) is an optimal partition of Gn, then for every
1 ≤ i ≤ p

|{x ∈ Ui : d(x, Ui) ≥ εn}| ≤ h0(ϑ , ε, L).

Roughly speaking, Lemma 14 states that in an optimal partition “the number of vertices
with ‘high’ horizontal degree is bounded.”

4The weaker bounds would be sufficient as well for our purposes, but now we think that stating the sharp results
is better from the point of view of understanding the proof better.
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Definition 15 (Fixing the parameters II). In Definition 6 we already determined (for a
given L) the integers p and t and the constants βr , γ , and ε. For this ε, we choose a δ(ε) as
in Lemma 14, and our δ > 0 and ϑ satisfying δ = 2

√
H(ϑ) < δ(ε). Let ρ > 0 be defined

to be the minimum of the ρ ′s provided by Lemmas 10, 11 and 12. Make sure that ϑ , δ, and
ρ are small enough (compared to γ ) to satisfy

2H(ϑ) + ρ <
βtγ

4pt
. (12)

All these constants should be (and can be) chosen small enough to satisfy

2pH(pδ + 2pγ ) + H(ε) + 4
√

ϑ log
1

ϑ
+ γ <

βt

10pt
. (13)

Finally, we fix h := p · h0(ϑ , ε, L), where h0 is the constant whose existence is provided by
Lemma 14, and let � := �γ n�.

Let

Qh
GOOD(n, L) := Ph

GOOD(n, L) ∩ Pϑ
WP(n, L) ∩ Pδ

UNIF(n, L). (14)

The next lemma is essentially proved in [2].

Lemma 16 (M-Extension Lemma). Assume that n > n0(L) and Gn ∈ Qh
GOOD(n, L).

Denote (U1, . . . , Up) an optimal p-partition of V(Gn). Let W be the set of vertices of Gn

having horizontal degrees at least εn in this partition. Then for every M ∈ M and every i
we have that M �⊆ G[Ui − W ].

Proof. Let Wi = W ∩ Ui. For a contradiction, assume that
there is a graph M ∈ M with M ⊆ G[U1 − W ]. Then there
is an L ∈ L such that L ⊂ (M ∪ It) ⊗ Kp−1(t, . . . , t), i.e.
L is a ‘reason’ that M ∈ M. So there is a vertex partition
of L into L1, . . . , Lp such that L1 spans M and probably some

additional isolated vertices, and each of L2, . . . , Lp is independent in L. By the assumption,
we can embed M (spanned by L1) into U1 − W1. We fix such an M. The set L1 is a good
(≤ t)-tuple in U1 − W1, since v(L) ≤ t. Therefore, using that Gn ∈ Ph

GOOD(n, L) we have
(�∗(L1)∩ U2)− W2 consists of at least βtU2 −|W | vertices, and using that Gn ∈ Pϑ

WP(n, L)

it is at least βtn/(2p). So an L2 could be chosen from it. Fixing L2, the set L1 ∪ L2 is a
good (≤ t)-tuple in (U1 ∪ U2) − W , therefore �∗(L1 ∪ L2) ∩ U3 − W3 is ‘large’ and an
L3 ⊂ �∗(L1 ∪ L2) ∩ U3 − W3 could be chosen. This can be continued till we find Lp in Up,
therefore we have a copy of L in Gn as a subgraph, a contradiction.

2. SOME IMPORTANT LEMMAS

The following easy lemma says that if the size of a subclass of the L-free graphs can be
estimated by 2e(Tn,p)−ρn2

then this subclass is really negligible.

Lemma 17 (Many GOOD Graphs). For any fixed t and h > 0,∣∣Qh
GOOD(n, L)

∣∣ > (1 − o(1))2e(Tn,p) as n → ∞.

Random Structures and Algorithms DOI 10.1002/rsa



312 BALOGH, BOLLOBÁS, AND SIMONOVITS

We shall need the following simple tail estimate (see, for example, [1]).

Lemma 18 (Tail Estimate). If ξ1, . . . , ξm are m independent random 0–1 variables for
which Prob(ξi = 1) = u > 0, then

Prob

(∑
ξi <

1

2
um

)
< e− 1

2 u2m.

We shall use this lemma in the following setting.

Lemma 19. Let Gn,1/2 be a random graph where each edge is chosen independently, with
probability 1/2. Let X := {x1, . . . , xr} ⊆ V(Gn,1/2). Let U ⊆ V(Gn,1/2) be an m-element set
disjoint from X. Then,

Prob
(
|�∗(X) ∩ U| <

m

2r+1

)
< e−βr m. (15)

Recall that �∗(X) := ∩x∈XN(x) and βr = 2−(2r+1). When we apply Lemma 19, we tend
to take |X| bounded, and |U| linear in n.

Proof. Let

ξy =
{

0 if y �∈ U ∩ ⋂
i≤r �(xi),

1 if y ∈ U ∩ ⋂
i≤r �(xi).

Clearly, |�∗(X) ∩ U| = ∑
y ξy. Apply Lemma 18 with u = 2−r :

Prob

(∑
y

ξy <
m

2r+1

)
< e−0.5·2−2r m = e−βr m.

Proof of Lemma 17. The Turán graph Tn,p has 2e(Tn,p) subgraphs. Take any of them at
random: select each edge of Tn,p independently, with probability 1

2 .

1. We know that for all but o(2e(Tn,p)) subgraphs Gn ⊆ Tn,p, if (U1, . . . , Up) is the original
partition of Tn,p, then—in the random subgraph—each x ∈ Ui is joined to each Uj

(j �= i) by at least n
3p edges.

2. Similarly, if A ⊂ Ui, B ⊂ Uj, where i �= j, and |A|, |B| > n0.6, then in all but o(2e(Tn,p))

subgraphs Gn ⊆ Tn,p has an edge between A and B.

Restricting ourselves to these subgraphs, an optimal partition of Gn coincides with the
original partition (U1, . . . , Up) of Tn,p. For this partition the number of horizontal edges is
0. If there is an other optimal partition V1, . . . , Vp, then by property (1) there is a labelling
of the classes, such that

∑p
i=1 |UiVi| = o(n). But by property (2) if two partitions differ

then their symmetric difference is at least n/(3p), a contradiction, proving the unicity of the
optimal partition. We need this because whether an r-tuple in Gn is BAD or GOOD depends
on the partition as well.

A standard application of Lemma 18 implies that all but o(2e(Tn,p)) subgraphs Gn ⊆ Tn,p

belong to Pδ
UNIF(n, L), and trivially a typical Gn is well partitioned, so Gn ∈ Pϑ

WP(n, L).
Recalling that Qh

GOOD(n, L) = Ph
GOOD(n, L)∩Pϑ

WP(n, L)∩Pδ
UNIF(n, L), it remains to prove

Random Structures and Algorithms DOI 10.1002/rsa
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that Gn ∈ Ph
GOOD(n, L) w.h.p.. We assert that the probability that Gn has a BAD r-tuple is

o(1) for every r ≤ t. By Lemma 19, only o(2e(Tn,p)) subgraphs have BAD r-tuples. Indeed,
an r-tuple can be chosen in at most

(n
r

)
ways; fixing this r-tuple X = {x1, . . . , xr}, the

expected size of Uj ∩ �∗(X) is around (n/p) · 2−r . So, for any fixed r-tuple X ⊂ V(Gn), if
X ∩ Uj = ∅, then

Prob

(
|�∗(X) ∩ Uj| <

n

p2r+1

)
< e−n/(p22r+1),

and

p ·
(

n

r

)
e−n/(p22r+1) = o(1).

Definition 20 (�-BAD graphs). For given positive integer �, let

R�
BAD(n, L) ⊂ Pϑ(n, L) ∩ Pϑ

WP(n, L) ∩ Pδ
UNIF(n, L)

be the family of graphs Gn having an optimal partition (U1, . . . , Up) for which the following
holds. For at least one i ≤ p, there are pairwise disjoint BAD (≤ t)-tuples X1, X2, . . . , Xs ⊆
V(Gn) − Ui − W, with the (same) distinguished class Ui, such that∣∣∣∣∣

⋃
j≤s

Xj

∣∣∣∣∣ ≥ �. (16)

The next lemma claims that, in most GOOD graphs, for a fixed optimal partition the
BAD (≤ t)-tuples can be represented by o(n) vertices.

Lemma 21. For the constants fixed in Definition 6, and � := �γ n�, there is a ρ = ρ(γ ) >

0 such that ∣∣R�
BAD(n, L)

∣∣ ≤ 2e(Tn,p)−ρn2
for n > n0.

Proof. Consider a graph Gn ∈ R�
BAD(n, L). By definition, Gn has an optimal partition

(U1, . . . , Up) and a class Uj such that there are pairwise disjoint Uj-BAD (≤ t)-tuples
X1, . . . , Xs with | ⋃ Xi| ≥ � and s ≤ �. We shall use an estimate of the form

∣∣R�
BAD(n, L)

∣∣ ≤ p · pn · n · 2H(ϑ)n2+1 · ntn · N1 · N2, (17)

where on the right-hand side of (17), p stands for the number of ways of choosing a dis-
tinguished class Uj, pn is a crude upper bound on the number of (optimal) p-partitions, n
bounds the number of choices for s, and

∑
i≤ϑn2

((n
2

)
i

)
≤ 2

( (n
2

)
ϑn2

)
≤ 2

(
n2/2

ϑn2

)
< 2H(ϑ)n2+1 (18)

bounds the number of ways of fixing the at most ϑn2 horizontal edges (as Gn ∈ Pϑ(n, L)).
The explanation of the factor ntn · N1 · N2 is given below.

Each Xi can be chosen in at most
∑

r≤t

(n
r

) ≤ t
(n

t

) ≤ nt ways. So the system {Xi} can be
chosen in at most nts ≤ ntn ways.
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Let S := ⋃
i Xi. To count the graphs Gn ∈ R�

BAD(n, L), we fix an (optimal) partition
(U1, . . . , Up) in each such Gn and then the sets Xi described above. For each Xi put

Ei :=
s⋃

i=1

{(x, u) : x ∈ Xi, u ∈ Uj} and Ei := |Ei|.

• N1 bounds the number of choices of the edges in E := ⋃
Ei.

• N2 bounds the number of choices for the edges in the remaining vertical pairs, i.e.
between Ui and Uj for i �= j. If E := |E| = ∑

i Ei, then

N2 ≤ 2e(Tn,p)−E . (19)

The key step in our proof is our bound on N1. The crude bound would be 2E = ∏
2Ei , but

that is not sufficient for us. Therefore we shall sharpen this bound, checking, for each i, by
how much we can decrease the bound 2Ei .

Fixing (U1, . . . , Up), the distinguished class Uj and the set-pairs (Xi, Uj), we count the
number of ways the edges can be placed between Xi and Uj:

Assuming that the connection of Xi to Uj is random, the expected number of vertices
u ∈ Uj ∩�∗(Xi) (i.e. completely joined to Xi) is |Uj| ·2−|Xi |. However, as Uj is bad for Xi, the
number of common neighbours is below half of the expected number, therefore the number
of possibilities of these connections is at least 2−β|Xi |·|Uj | times smaller, by Lemma 19. So,
taking the total number (i.e. the product of the possibilities) we have an additional factor at
most ∏

i≤s

(2−β|Xi |·|Uj |) < 2− ∑
i≤s β|Xi ||Uj | ≤ 2−βt s|Uj | ≤ 2−βt�n/(2pt),

since, by (16), s ≥ �/t and as Gn ∈ Pϑ
WP(n, L) we have |Uj| ≥ n/(2p). Hence, using

� := �γ n�, we obtain
N1 ≤ 2E−βt�n/(2pt) ≤ 2E−γβt n2/(2pt). (20)

Combining inequalities (19), (20) and (12) with (17), we find that∣∣R�
BAD(n, L)

∣∣ ≤ pn+1ntn+1 · 2H(ϑ)n2+1+e(Tn,p)−E+E−γβt n2/(2pt) ≤ 2e(Tn,p)−ρn2
,

if n is sufficiently large.

3. PROOF OF THEOREMS 5 AND 9

Proof of Theorem 5. By Lemmas 10, 11 and 12, almost all graphs from P(n, L) are in
Pϑ

WP(n, L) ∩ Pδ
UNIF(n, L) (here we use that |P(n, L)| ≥ 2e(Tn,p)). By Theorem 9, almost all

graphs from P(n, L) are in Ph
GOOD(n, L), i.e. almost all of them are in Qh

GOOD(n, L). Now
Lemma 16 implies Theorem 5.

Proof of Theorem 9. The proof is based on a pseudo-symmetrization. Let

P�
BAD(n, L) := Pϑ(n, L) ∩ Pϑ

WP(n, L) ∩ Pδ
UNIF(n, L) − Ph

GOOD(n, L) − R�
BAD(n, L).

(Although we use � = �γ n�, we carry it in our notation.) We shall map each graph
Gn ∈ P�

BAD(n, L) onto many L-free graphs, changing at most γ n2 edges in Gn. The
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set of these graphs will be denoted by �(Gn). Roughly, the main idea is that we show
that for most of the graphs Hn we have |�−1(Hn)| = o(|�(Gn)|). This will imply that
|P�

BAD(n, L)| = o(|P(n, L)|). We actually will show that P�
BAD(n, L) is an exponentially

small part of P(n, L). We have to prepare the ground to carry out these ideas.
Let Gn ∈ P�

BAD(n, L). Since V(Gn) = {1, . . . , n} is ordered, we may define (U1, . . . , Up)

as the “lexicographically first” optimal partition of Gn. (Of course, we do not care about
the “lexicographical order”: we just wish to fix one optimal partition.) As in Definition 8,
let W denote the set of vertices of Gn of horizontal degree at least εn in (U1, . . . , Up). Let
{X1, . . . , Xs} be a maximal system of pairwise disjoint BAD (≤ t)-sets toward U1. (Again, the
first one in some well-defined ordering.) We define the mapping � : P�

BAD(n, L) �→ 2[P(n,L)]

as follows.
For Gn ∈ P�

BAD(n, L), let �(Gn) be the family of graphs obtained by joining X =
X(Gn) := X1 ∪ · · · ∪ Xs to the vertices of V(Gn)− U1 − X − W in any way. More precisely,
let �(Gn) denote the set of graphs obtained as follows:

First we remove all edges between X and V(Gn). Then “put” the elements of X into U1:
join the vertices of X to the vertices of V(Gn) − U1 − W − X arbitrarily.

To make our argument more transparent, we define � directed graphs
−→D i on the vertex

set P(n, L): in the ith graph
−→D i, there is an edge from Gn to Hn, if Gn ∈ P�

BAD(n, L),

Hn ∈ �(Gn), and |X(Gn)| = i. Then our aim is to show that in each
−→D i the outdegrees are

large and the indegrees are small.
Perhaps the most important property of this map is that �(Gn) ⊂ P(n, L): the graphs

in �(Gn) are L-free. Note that this is the part of the proof where we could not avoid using
that L is finite.

To show that any Hn ∈ �(Gn) is L-free, observe that if we obtained some L ∈ L during
our “symmetrization”, i.e. if L ⊂ Hn, then the original Gn also contained an L′ � L. Indeed,
V(L) in Hn can be partitioned into four parts:

i. R∗ = V(L) ∩ X �= ∅,
ii. C∗ = V(L) ∩ U1 − X: the remaining part of L in U1,

iii. W∗ = V(L) ∩ W − U1 − X ,
iv. L∗ = V(L) − U1 − W − X .

Observe that L∗ was a GOOD (≤ t)-tuple in Gn, otherwise
{X1, . . . , Xs}was not maximal. Hence |�∗(L∗)∩U1−X−W | >

|V(L)|. Therefore we can fix a set Y ⊂ �∗(L∗)∩U1 −X −W
with |Y | = |R∗|. In Hn there is no edge between X and W ,
and between X and U1. So in Gn the graph spanned by C∗ ∪
W∗ ∪L∗ ∪Y contains an L. This contradiction shows that L �⊆
Hn.

The next step is to give a lower bound on the outdegrees in
−→D i, i.e. to estimate |�(Gn)|,

given that |X(Gn)| = i. Creating the graphs in �(Gn), for any pair (a, b) with a ∈ X
and b ∈ V(Gn) − U1 − X − W , we may include or exclude (a, b) as an edge. Hence,
using that |X| ≤ γ n ≤ � and that by Gn ∈ Pϑ

WP(n, L) the classes are not big, i.e. |U1| ≤
(1/p + √

ϑ log(1/ϑ))n, we have

|�(Gn)| = 2|X|·(n−|U1|−|X|−|W |) ≥ 2in(1−1/p−√
ϑ log(1/ϑ)−i/n−o(1))

≥ 2in(1−1/p−γ−√
ϑ log(1/ϑ)−o(1)). (21)
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Our final aim is to bound the indegrees in
−→D i. In order to do this, first we bound the

number of optimal partitions of graphs in P(n, L). Note that during the operation � the
number of horizontal edges in the optimal partitions does not increase, hence Gn ∈ Pϑ(n, L)

implies �(Gn) ⊂ Pϑ(n, L).

Lemma 22. Given a graph Hn ∈ Pϑ(n, L), the number of optimal partitions of the graphs
in �−1(Hn) is at most 22pH(δp+2γ p)n, where the same partition obtained from different graphs
are counted only once.

Proof. Let Hn ∈ Pϑ(n, L) and G1, G2 ∈ �−1(Hn), where G1 = G2 is allowed. Recall that
the domain of � was a subset of Pδ

UNIF(n, L) ∩ Pϑ
WP(n, L). Let (U1, . . . , Up) be an optimal

partition of G1 and (V1, . . . , Vp) of G2. For j = 1, 2, let Xj be the i-set of the vertices of
Gj incident with the edges that were changed by � to obtain Hn. Note that as the optimal
partitions of Gi are δ–lower regular and balanced, for every a there is at most one b such that
|Va ∩ Ub| > δn + 2i (for 1 ≤ a, b ≤ p). Otherwise, if say |Va ∩ Ub1 |, |Va ∩ Ub2 | > δn + 2i,
then eG2(Va ∩ Ub1 , Va ∩ Ub2) ≥ δ2n2 ≥ 4ϑn2, contradicting G2 ∈ Pϑ(n, L).

This implies the existence of a labelling of the classes such that for every a, 1 ≤ a ≤ p
we have |Va − Ua| ≤ (p − 1)(δn + 2i).

As for a given optimal partition (U1, . . . , Up) and Da := Va−Ua, the partition (V1, . . . , Vp)

is determined, the number of optimal partitions (V1, . . . , Vp) is bounded by the number of
ways the difference sets Da can be chosen:(

(p−1)(δn+2i)∑
j=0

(
n

j

))p

<

(
n

δpn + 2ip

)p

< 22pH(δp+2pγ )n.

Our next step to bound the indegrees in
−→D i is to give an upper bound on the number of

ways of choosing the BAD (≤ t)-tuples. The number of ways of choosing the index j in Uj

which is the distinguished class is bounded by p. Then we can fix s, the number of sets in
{X1, . . . , Xs} in less than n ways. The number of ways to choose {X1, . . . , Xs} is less than nts.
Then for each x ∈ ⋃

X� we may choose the class Um containing x in p ways: altogether in
pi ways. By Lemma 22, the number of ways to fix an optimal partition of Gn ∈ �−1(Hn) is
at most 22pH(pδ+2pγ )n.

Fixing an optimal partition of Gn and the sets X1, . . . , Xs, we know all edges of Gn, except
the ones adjacent to X . Note that by the definition of a BAD-tuple, each x ∈ X had horizontal
degree at most εn. Thus the number of ways of adding the horizontal edges with at least
one end point in X is at most(

εn∑
j=0

(
n

j

))i

≤ 2i ·
(

n

εn

)i

≤ 2i+H(ε)in.

We shall use that, as Gn ∈ Pϑ
WP(n, L), we have

n

p
− √

ϑ log(1/ϑ)n ≤ umin := min
1≤j≤p

{|Uj|} ≤ umax := max
1≤j≤p

{|Uj|} ≤ n

p
+ √

ϑ log(1/ϑ)n.

For a vertex x ∈ X ∩Uj the number of possibilities of having the edge set in Gn between x
and V(Gn)−U1 −Uj is at most 2n−2umin . So the total number of ways of joining the elements
of X to the rest of the graph excluding to its own class and U1 is at most

2|X|(n−2umin).
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For any j ≤ s as |�∗(Xj) ∩ U1| is smaller than half of its expected value in a random
graph, by Chernoff’s inequality (Lemma 19), the number of ways having the edges between
Xj and U1 is at most

2umax(|Xj |−βt ).

We have to consider this for each Xj. Note that �i/t� ≤ s ≤ i. Putting these together, we

have the following upper bound on the maximum indegree in
−→D i:

22pH(pδ+2γ p)n · p · n · nts · pi · 2i+H(ε)in · 2|X|(n−2umin) · �s
j=12umax(|Xj |−βt )

≤ 2in[2pH(pδ+2pγ )+o(1)+H(ε)+1−2/p+2
√

ϑ log(1/ϑ)+1/p+√
ϑ log(1/ϑ)−sβt/(ip)]

≤ 2in[1−1/p+o(1)+2pH(p(δ+2γ ))+H(ε)+3
√

ϑ log(1/ϑ)−βt/(pt)].

With this bound our proof is essentially complete. Recall that the outdegree was bounded
from below by

2in(1−1/p−γ−√
ϑ log(1/ϑ)−o(1)). (22)

Comparing the upper bound on the indegree and (22), the outdegree estimate in
−→D i, and

using (13), we see that the ratio of them is at least 2βt n/(2pt), i.e. the number of BAD graphs
with |X| = i is at most |Pϑ(n, L)| · 2−βt n/(2pt). Since i ≤ n, the number of BAD graphs is at
most, |Pϑ(n, L)| · 2−βt n/(3pt), say. Considering only the “good graphs” we neglected fewer
than 4 · 2e(Tn,p)−ρn2

(other) graphs. This completes the proof.
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