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any L ∈ L. In this paper, we prove sharp results about the case
L = {O 6}, where O 6 is the graph with 6 vertices and 12 edges,
given by the edges of an octahedron. Among others, we prove the
following results.
(a) The vertex set of almost every O 6-free graph can be partitioned
into two classes of almost equal sizes, U1 and U2, where the graph
spanned by U1 is a C4-free and that by U2 is P3-free.
(b) Similar assertions hold when L is the family of all graphs with
6 vertices and 12 edges.
(c) If H is a graph with a color-critical edge and χ(H) = p + 1,
then almost every sH-free graph becomes p-chromatic after the
deletion of some s − 1 vertices, where sH is the graph formed by s
vertex disjoint copies of H .
These results are natural extensions of theorems of classical
extremal graph theory. To show that results like those above do
not hold in great generality, we provide examples for which the
analogs of our results do not hold.
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1. Introduction

1.1. Notation

Our notation is standard; in particular, the suffix is often the order of the graph in question:
Kn denotes the complete graph, Cn the cycle and Pn the path with n vertices. Also, Gn stands for any
graph on n vertices and M2s is the 1-regular graph, i.e., the complete matching, on 2s vertices. For
X ⊆ V (G) we denote by G[X] the subgraph of G spanned by X .

We define U ⊗ W to be the graph obtained by taking vertex disjoint copies of U and W and
joining each vertex of U to each vertex of W .

Given a family L, ex(n, L) denotes the maximum number of edges a graph Gn can have without
containing a graph in L as a not necessarily induced subgraph. We call L the family of excluded or
forbidden graphs. For L = {L} we simply write ex(n, L), and use analogous abbreviations elsewhere.
P (n, L) denotes the set of L-free graphs on [n] := {1, . . . ,n}. We write Tn,p for the p-partite Turán
graph on n vertices: this is the complete p-partite graph of order n in which the p classes are as equal
as possible. More generally, K (n1, . . . ,np) is the complete p-partite graph with class sizes n1, . . . ,np .
The crucial property of Tn,p is that it is the unique p-chromatic n-vertex graph with the maximum
number of edges. Also, H(n, p, s) := Ks−1 ⊗ Tn−s+1,p , and let A(n, p, s) be the class of graphs Gn

from which one can delete fewer than s vertices to obtain a graph G with χ(G) � p. Note that
H(n, p, s) has the most edges among the n-vertex graphs having s − 1 vertices whose deletion yields
a p-colorable graph.

Denote by sL the graph obtained by taking s vertex-disjoint copies of a graph L, by Γ (u) the
neighborhood of a vertex x, and write

Γ ∗(X) :=
⋂
u∈X

Γ (u) (1)

for the set of common neighbors of a set X . We shall write H(x) = x log2
1
x + (1 − x) log2

1
1−x for the

binary entropy function; note that(
n

xn

)
� 2H(x)n.

This bound is useful because H(x) ≈ −x log2 x → 0 as x → 0.

1.2. Erdős–Frankl–Rödl type results

Since all subgraphs of an L-free graph are L-free, we have
∣∣P(n, L)

∣∣ � 2ex(n,L). (2)

If L consists of a single star: L = {L}, with L = K (1, s), then ex(n, L) = �(s − 1)n/2	 and
∣∣P(n, L)

∣∣ = 2(1+o(1))(log2 n)(s−1)n/2 = 2(1+o(1))(log2 n)ex(n,L),

so |P (n, L)| is considerably larger than 2ex(n, L). However, Erdős conjectured that if L contains a cycle
then

∣∣P(n, L)
∣∣ = 2(1+o(1))ex(n,L). (3)

Erdős, Frankl and Rödl [10] proved this conjecture when χ(L) > 2. The case when χ(L) = 2 is still
wide open.

The main purpose of this and our earlier papers ([2] and [3]), is to establish sharp forms of Erdős–
Frankl–Rödl [10] type results: to prove that for a given family L of forbidden graphs almost all L-
free graphs Gn look very similar to the subgraphs of L-extremal graphs. Of course, in each case we
have to specify, what we mean by being similar. It is worth emphasizing that structural results are
much deeper than quantitative ones. Instead of going into technicalities, we explain this through an
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example. Every bipartite graph is triangle-free, but the number of bipartite graphs is larger than the
number of the subgraphs of the K3-extremal Tn,2, roughly by a factor c

√
n. The reason is simple:

non-balanced bipartite graphs are not necessarily subgraphs of the extremal graph K (n/2,n/2). So
the theorem that “almost all triangle-free graphs are bipartite” is more natural and sharper than the
assertion that “the number of triangle-free graphs of order n is 2(1+o(1))n2/4”.

Throughout this paper, for a given family L, we define

p = p(L) := min
{
χ(L) − 1: L ∈ L

}
. (4)

We shall need the notion of the “decomposition family” of L, since in extremal graph theory often
this governs the finer error terms.

Definition 1 (Decomposition family). Denote by Iν the ν-vertex graph with no edges. Given a family L,
let M := M(L) be the family of minimal graphs M for which there exist an L ∈ LL and a t = tL such
that L ⊆ M ′ ⊗ K p−1(t, . . . , t), where M ′ = M ′(t) is the graph obtained by adding t isolated vertices
to M . We call M the decomposition family of L.

If L ∈ L with minimum chromatic number, then L ⊂ K p+1(t, . . . , t) for some t � 1, therefore the
decomposition family M always contains some bipartite graphs.

Example. Denote by O 6 the edge-graph of the octahedron; equivalently, O 6 = K (2,2,2). As O 6 =
K (2,2,2) = C4 ⊗ K1(2) we have that M(O 6) = {C4}. Note also that M(C2�+1) = {K2} showing that
for � > 1 the role of M ′ is important in Definition 1.

In [3] our main result was the following.

Theorem 2. Let L be an arbitrary finite family of graphs. Then there exists a constant hL such that for almost
all L-free graphs Gn we can delete hL vertices of Gn and partition the remaining vertices into p classes,
U1, . . . , U p such that each G[Ui] is M-free.

Recently, in [1] and [4], similar results were obtained about characterizing the structure of almost
all L-free graphs Gn , when Gn has no induced subgraph L ∈ L.

Note. Here and elsewhere, “almost always” means that all but o(|P (n, L)|) of the considered graphs
(i.e. Gn ∈ P (n, L)) have the claimed property.

Remark. The main motivation for this paper is to investigate to what extent Theorem 2 is sharp. As
we shall see, in several instances it is indeed sharp. However, we have to be cautious: as we shall see,
we have to avoid certain pitfalls; we shall return to this in Section 6.

2. New results

In this paper we prove several sharp results, and will discuss some of the limitations of our meth-
ods.

We say that L is a weakly edge-color-critical graph if there is an edge e ∈ E(L) for which χ(L − e) <

χ(L). The edge e itself is called critical. We shall call these graphs shortly weakly critical. A graph L
is edge-color-critical if each edge e of L is critical. Important examples of edge-color-critical graphs
are the complete graphs and the odd cycles. In extremal graph theory, if an assertion can be proved
for K p+1, then usually it can be proved for weakly (p + 1)-critical graphs L as well. To illustrate the
differences between the notion of weakly critical and edge-color-critical, consider L := C� ⊗ Cm for
�,m � 3. If both � and m are odd, then L is 6-chromatic and edge-color-critical. If � is odd, m is even,
then L is 5-chromatic and the edges of the C� are critical, but the edges of Cm are not, neither are



70 J. Balogh et al. / Journal of Combinatorial Theory, Series B 101 (2011) 67–84
the cross edges. If both � and m are even, L is 4-chromatic and has no critical edges: deleting any
edge leaves some K4 ⊂ L untouched.

For every weakly edge-color-critical graph L having a critical edge, Prömel and Steger [19] proved
that almost all L-free graphs have chromatic number χ(L) − 1. Their result is clearly sharp, since no
graph with chromatic number χ(L) − 1 contains L as a subgraph. To demonstrate the power of our
methods we prove a generalization of their result: we consider the case when the excluded graph is
L = sH , where H is weakly critical, and χ(H) = p + 1 � 3. Note that Simonovits [21] proved that for
n sufficiently large, the unique L-extremal graph is H(n, p, s). Observe that if one can delete s − 1
vertices of a graph Gn to obtain a p-partite graph, then Gn is L-free. We shall prove that almost all
L-free graphs have this property.

Theorem 3. Let p and s be positive integers and H be a weakly edge-color-critical graph of chromatic number
p + 1. Then almost every sH-free graph Gn on n vertices has a set S of s − 1 vertices for which χ(Gn − S) = p.

In our main result below we describe the structure of almost all octahedron-free graphs. We say
that a graph G has property Q = Q(C4, P3) if its vertices can be partitioned into two sets, U1 and U2,
such that C4 � G[U1] and P3 � G[U2]. As we remarked earlier, if G ∈ Q then G does not contain O 6.
It was proved by Erdős and Simonovits [12] that for n sufficiently large every O 6-extremal Gn has
property Q. Here we prove the following.

Theorem 4. The vertices of almost every O 6-free graph can be partitioned into two classes, U1 and U2 , so that
U1 spans a C4-free graph and U2 spans a P3-free graph.

A similar, slightly simpler, result is the following. Denote by P (n;a,b) the family of graphs Gn for
which no a vertices of Gn span at least b edges. In some sense, G.A. Dirac [8] started investigating
such problems. Several results of Erdős and Simonovits are related to this topic, and they became
very important for hypergraphs, see, e.g., Brown, Erdős and V.T. Sós [7], or Ruzsa and Szemerédi [20].
Much later, Griggs, Simonovits and Thomas [15] proved that, for n sufficiently large, the vertex set of
any extremal (6,12)-free graph Gn can be partitioned into U1 and U2 so that the induced subgraphs,
G[U1] is {C3, C4}-free and G[U2] is an independent set. Note that if G1 is {C3, C4}-free and e(G2) = 0
then G1 ⊗ G2 is (6,12)-free.

Theorem 5. The vertex set of almost every graph in P (n;6,12) can be partitioned into two classes, U1 and U2 ,
so that U1 spans a {C3, C4}-free graph and U2 is an independent set.

Note that what we actually prove is that almost every L-free graph G can be partitioned into
two classes, U1 and U2, so that U1 spans a {C3, C4}-free graph and U2 is an independent set, where
L = {O 6, C3 ⊗ I3, P3 ⊗ (P2 + I1)}.

Along the lines of the proofs of Theorems 4 and 5, the following can also be proved. We leave the
details to the reader.



J. Balogh et al. / Journal of Combinatorial Theory, Series B 101 (2011) 67–84 71
Theorem 6. Let p and 2 � a2 � · · · � ap be integers. Then for L = K (2,2,a2, . . . ,ap), almost every L-free
graph G has a partition (U1, . . . , U p) where G[U1] is C4-free, and P3 � G[Ui] for i > 1.

Theorem 7. For p � 2, almost every (3p,9
(p

2

) + 3)-free G has a vertex-partition (U1, . . . , U p) for which
G[U1] is {C3, C4}-free, and e(Ui) = 0 for i > 1.

One important difference between the octahedron problem and the (6,12)-problem is that we
know much about the C4-extremal graphs, including asymptotically sharp bounds on the extremal
number ex(n, C4), while concerning the {C3, C4}-extremal problem there is the following tantalizing
unsolved conjecture of Erdős (see [13]).

Conjecture 8.

ex
(
n, {C3, C4}

) = 1

2
√

2
n3/2 + o

(
n3/2).

What this conjecture claims is that if we exclude C3 in addition to C4, then we are not far from
having excluded all the odd cycles.

In our proofs below we shall make use of the following lower bounds on ex(n, {C4}) and
ex(n, {C3, C4}), see Kővári, V.T. Sós and Turán [18], Erdős [9] and Erdős, Rényi and V.T. Sós [11].

Theorem 9.

ex
(
n, {C4}

) = 1

2
n3/2 + o

(
n3/2)

and

ex
(
n, {C3, C4}

)
� 1

2
√

2
n3/2 + o

(
n3/2). (5)

Our results are, in some sense, pseudo-generalizations of the corresponding results in extremal
graph theory: formally they do not imply the theorems: knowing the structure of almost all L-free
graph yields ex(n, L) only asymptotically. However, our results do show that the structural description
of the extremal graphs, provided by us, is really the crucial one.

One would think that for every classical theorem of extremal graph theory it would not be too
difficult to obtain natural generalizations to counting results. Our previous papers contain several
such theorems. However, here we consider finer descriptions of almost all L-free graphs. These finer
extensions cannot be taken granted: there are cases, where the finer extremal results do not extend
to counting versions. This is shown by our next example.

Definition 10. Let s, p > 0 be integers. For t � 2s, let Q (t, p, s) be the complete p-partite graph with
t vertices in each class and with additional s independent edges, say, in the first class.

Simonovits [22] proved that if 2s � t , and n is sufficiently large, then H(n, p, s) is the unique
extremal graph for Q (t, p, s).
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Originally we thought that the following conjecture should hold.

Conjecture 11 (Disproved below). Fix three integers p > 1 and t � 2s > 0. Let L ⊂ Q (t, p, s) with χ(L) =
p + 1. Then almost all L-free graphs Gn contain a vertex set S with at most s − 1 vertices such that G − S is
p-chromatic.

We shall see that this conjecture often holds, however, not always. To our surprise, we have found
some counterexamples. Conjecture 11 holds for s = 1 by Prömel and Steger [19], since then L has a
color-critical edge. Also, Theorem 3 yields it for L = sH , if H is a weakly critical graph. However, for
s � 2 there are graphs for which Conjecture 11 is false. Below we describe such a counterexample.

Let B(U , V , x) be the family of graphs Gn with vertex set [n], and x ∈ [n] for which Gn − x is
bipartite with bipartition (U , V ).

Example 12. Let t � 4 and L = Q (t,2,2). Conjecture 11 asserts that almost all L-free graphs belong
to one of the classes B(U , V , x). Since

∣∣B(U , V , x)
∣∣ � 2|U ||V |+n−1,

that would imply the following bounds:

∣∣P(n, L)
∣∣ �

(
1 + o(1)

) ∑
{U ,V ,x}

2|U ||V |+n−1 ≈ 2n2/4+3n/2. (6)

Note that in the above summation the main contribution is coming from triplets with ||U | − |V || =
o(n), which can be assumed when |P (n, L)| is estimated.

However, we can generate many more L-free graphs: let B(U ′, V ′, x, y) be the family of graphs Gn

with vertex set [n], and x, y ∈ [n] for which Gn − {x, y} is bipartite with bipartition (U ′, V ′), and no
vertex v ∈ [n] − {x, y} joined to both x and y. One can check that these graphs are L-free, and

∣∣B
(
U ′, V ′, x, y

)∣∣ = 2|U ′||V ′|3n−2.

Some of Gn ∈ P (n, L) are in more than four families B(U ′, V ′, x, y), however, almost all of them
uniquely determine x, y, U ′ , V ′ , apart from that x and y can be switched and U ′ and V ′ can also be
switched. But this results in a loss of a factor at most 4, i.e., we obtain the following lower bound on
|P (n, L)|:

∣∣P(n, L)
∣∣ � 2n2/4+3n/2−o(n)

(
3/(2

√
2)

)n
.

Comparing it with (6) yields a contradiction with Conjecture 11. (Here we used that there are
2(1+o(1))n pairs of U ′ , V ′ with ||U ′| − |V ′|| � 1.)

Example 13. Note that in Example 12 both p and s could have been chosen larger, providing coun-
terexamples to Conjecture 11 for many p, s � 2. More importantly, we obtain an example (actually
family of examples) which shows that the “condition of deletion of h vertices” cannot be omitted
from Theorem 2. To spell out, fix p = 2 and some s > 1.

If Theorem 2 were true with h = 0, then the vertices of almost all Q (2s,2, s)-free graphs could
be partitioned into two classes, each spanning an M2s-free graph. Denote by D(k, s) the number of
M2s-free graphs on k vertices. As an M2s-free graph cannot contain more than s − 1 vertices with
degrees at least 2s, and 2s − 2 vertices cover all the edges,

2(s−1)(k−s) = 2(s−1)k+o(k) � D(k, s) � 22s−2
(

k

2s − 2

)(
k

2s

)s

2(s−1)k = 2(s−1)k+o(k),

for fixed s as k is tending to infinity. So for a fixed partition U , V of [n], the number of such graphs
is
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D
(|U |, s − 1

)
D

(|V |, s − 1
)
2|U ||V | = 2|U ||V |+(s−1)n+o(n).

However, we can construct for a fixed partition U , V a larger family of Q (2s,2, s)-free graphs.
Assume that |U | � |V |, and fix an �-set S ⊂ U . We let U − S and V to span independent sets, there
is no restriction for the edges between U − S and V , and each vertex of S is joined to at most s − 1
vertices of U ∪ V − S . It is easy to check that these graphs are Q (2s,2, s)-free, and for a fixed partition
U , V we constructed

Ω(1)

((
�

0

)
+ · · · +

(
�

s − 1

))n

2(|U |−�)|V | (7)

graphs. Note that for most of the graphs constructed that way, the partition (U − S, V , S) can be
reconstructed, a factor of 2 might be lost if U − S and V cannot be distinguished.

If we manage to find an � and an s such that
(
�
0

) + · · · + (
�

s−1

)
> 2s−1+�/2 then the second family

is exponentially larger than the first, justifying our claim. In general, if � is around 2s + o(s) then this
should be true: an example (with the smallest possible s) is s = 8 and � = 19.

The organization of the paper is as follows: in Section 3 we lay the groundwork for our proofs, in
Section 4 we prove Theorem 3, in Section 5 we prove Theorems 4 and 5, and in Section 6 we make
some concluding remarks.

3. Notation, parameters, lemmas

In this section we state a sharper version of Theorem 2, needed in many applications. We shall
define a system of parameters. Assume that a finite family L is given. We have already defined p
in (4): p = p(L) := min{χ(L) − 1: L ∈ L}.

Definition 14 (Parameters). Let t := max{v(L): L ∈ L}. Fix an ε > 0, satisfying

H(ε) <
(
100e1020 · 4t+1 p5t5)−1

. (8)

This choice of ε ensures that

(511/512)10−9/2(27/ε3)ε < 1 − 10−14. (9)

Now, depending on this ε we fix a (small) positive δ (actually depending on Lemma 14 in [3]) and to
be sufficiently small to satisfy

(
1 − 10−14)24H(4δp) < 1. (10)

Now we define ϑ by δ = 2
√

H(ϑ). Note that δ will be chosen to be much smaller than ε, so that we
can find appropriate embeddings as in the proof of Claim 20 needed.

For this ε and δ we choose a (large) integer h (again by Lemma 14 in [3]). Note that ε, δ,ϑ > 0
in general are assumed to be smaller than any fixed numerical positive constant (for example they
satisfy (9) and (10)).

Note that we need two upper bounds on ε: we wanted (9) to be satisfied, and in [3], from which
we use several results here, we had H(ε) < (4t+1 p5t5)−1.

Using these parameters, we define several graph (sub)-classes of P (n, L), whose intersection,
P ∗(n, L), is the most important for us.

Definition 15 (Optimal partition). Given a graph G , a vertex partition (U1, . . . , U p) of V (G) is an optimal
p-partition of G if

∑
i e(G[Ui]) is the minimum possible. Given (U1, . . . , U p), we shall call the edges

joining vertices in the same Ui horizontal, vertices from different classes vertical edges.

Note that the names “horizontal” and “vertical” were motivated by the way the classes are repre-
sented in the figure below.
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Definition 16 (GOOD graphs). Given a graph G with a vertex partition (U1, . . . , U p), call an r-tuple
X ⊂ V (G) GOOD if, for every Ui ⊆ V (G) − X ,

∣∣Γ ∗(X) ∩ Ui
∣∣ =

∣∣∣∣
⋂
x∈X

Γ (x) ∩ Ui

∣∣∣∣ >
1

4r+1
|Ui |. (11)

An r-tuple is BAD if it is not GOOD. We say that X is a BAD r-tuple for a class Ui , if (11) is violated.4

Note that a set X may be BAD for several classes in a partition, and whether X is GOOD or BAD
depends on (U1, . . . , U p).

Definition 17. P ∗(n, L) is the family of graphs Gn ∈ P (n, L) satisfying the following conditions: for
every optimal p-partition (U1, . . . , U p) of Gn

(i)
∑

i e(Ui[Gn]) < ϑn2.
(ii) For every 1 � i < j � p and every pair of sets A ⊂ Ui , B ⊂ U j with |A| = |B| � �δn� we have

e(A, B) >
1

4
|A| · |B|.

(iii) For i = 1, . . . , p,∣∣∣∣|Ui| − n

p

∣∣∣∣ <

(√
ϑ log

1

ϑ

)
n.

(iv) If W is the set of vertices with horizontal degree � εn, then Gn − W has no BAD (� t)-tuple
with respect to this (U1, . . . , U p). (By Lemma 14 in [3] we know that |W | � h.)5

Of course, P ∗(n, L) strongly depends on the constants fixed in the first part of this paragraph. In
[3] we introduced the GOOD graphs in several steps.6 In a more technical form, our main result in [3]
was the following.

Theorem 18 (Good graphs). Let L be a finite family of forbidden graphs. Then almost all L-free graphs are in
P ∗(n, L): there exist two positive constants, C and ω > 1 such that

∣∣P(n, L) − P ∗(n, L)
∣∣ � C

ωn

∣∣P(n, L)
∣∣. (12)

We shall use the following important lemma that a typical L-free graph has not many optimal
partitions. (The lemma has an easy proof, it is essentially the same as that of Lemmas 6.10–6.11 in
[2] and Lemma 22 in [3].)

Lemma 19. The number of optimal partitions of a Gn ∈ P ∗(n, L) is at most 24H(4δp)n.

4 We shall use CAPITALS for ordinary words, like GOOD/BAD to emphasize that we use them here in a predefined way.
5 The set of graphs from P(n, L) satisfying (i) were called as Pϑ (n, L), (i) and (ii) P δ

UNIF(n, L), (i) and (iii) P ϑ
WP(n, L), and

(i) and (iv) P t,h
GOOD(n, L).

6 There

P ∗(n, L) = P t,h
GOOD(n, L) ∩ Pϑ (n, L) ∩ P δ,λ

UNIF(n, L) ∩ P ϑ
WP(n, L).
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4. Proof of Theorem 3: L = sH , where H has a critical edge

Proof of Theorem 3. We shall deduce Theorem 3 as a simple corollary of the main result of [3], here
Theorem 18. The decomposition family for sH consists of one graph: M2s := sK2, a graph of order 2s
with s independent edges. Fix an ε > 0 and then δ and ϑ as in Definition 14. Let m = |V (H)|. Fix a
p-coloring of H which is almost proper, the only “violation” is that the first color class contains the
critical edge, badly colored. Denote the sizes of the color classes m1, . . . ,mp . We can assume that H
is a complete p-partite graph with m1, . . . ,mp vertices in the classes, with an extra edge in the first
class, as this assumption just increases the number of sH-free graphs, and we still claim that almost
all of them have property A(n, p, s).

Consider an arbitrary graph Gn ∈ P ∗(n, sH). Fix an optimal partition (U1, . . . , U p). Let W be the set
of vertices with horizontal degrees higher than εn. Let F be a maximal set of independent horizontal
edges in Gn − W .

Claim 20. Every graph Gn ∈ P ∗(n, sH) contains s′H as a subgraph, where s′ := |W |+|F |. In particular, s′ < s.

Proof. Write {v1, . . . , w |W |} ∈ W . Then for every i and j, |N(v j) ∩ Ui | > εn, and by property (ii) of
P ∗(n, L) (and using ε � δ), v can be easily extended to a copy of H , H j ⊆ Gn . Moreover, for each
v j ∈ W a new copy of H , H j ⊆ Gn can be chosen to be vertex disjoint from H j′ for every j′ < j, since
the sets N(v)∩ Ui − W satisfy property (ii) of Definition 17. This way |W | vertex disjoint copies of H
can be found in Gn .7

Let uw ∈ F be a horizontal edge of U1 − W . The set {u, w} with any m1 − 2 additional vertices
forming H1 in U1 − W is a GOOD m1-tuple. So they have many common neighbors in U2 − W . Denote
an m2-set of them by H2. The set H1 ∪ H2 is a GOOD (m1 + m2)-tuple, so they have many (linear
in n) common neighbors in U3, etc. Observe that during building H we always had many options to
choose the next vertex, therefore the copies of H ’s can be chosen to be pairwise vertex disjoint from
each other. This way we find |F | additional copies of H , implying s′H ⊆ Gn . �
Claim 21. Let Gn ∈ P ∗(n, sH). Given an optimal partition (U1, . . . , U p) of Gn, set Ũ i := Ui − W , where
W is the set of vertices of high horizontal degree. Then {Ũ1, . . . , Ũ p} is independent of the optimal partition
(U1, . . . , U p).

Proof. Assume that (U ′
1, . . . , U ′

p) is an other optimal partition of Gn . By relabelling, if necessary, we
may assume that |Ui�U ′

i | � 2pδn for every i, 1 � i � p, otherwise by Definition 17(ii) there were too
many horizontal edges in Gn . It is sufficient to prove that if u ∈ U1 − W then u ∈ U ′

1 − W as well. If
u ∈ U1 − W then |N(u) ∩ U1 − W | � εn, so |N(u) ∩ U ′

1 − W | � (ε + 2pδ)n. However u is a good 1-
tuple with respect to the partition (U1, . . . , U p), so |N(u)∩ Ui − W | � 0.02n/p, so |N(u)∩ U ′

2 − W | �
0.01n/p for every 2 � i � p. Using ε + 2pδ � 0.01/p we obtain that u ∈ U ′

1. �
Now we turn to the proof of Theorem 3. For s = 1 we are instantly done by Claim 20, so we shall

assume s � 2. For each p-partite graph F on [n] with p-partition (U1, . . . , U p), assign a subfamily
Φ(F ) ⊂ P ∗(n, �) of graphs Gn ∈ P ∗(n, �) with optimal partition (U1, . . . , U p) and vertical (cross)-
edges of Gn spanning F . By Claim 20, for each Gn ∈ P ∗(n, �) the set of vertices of high horizontal
degree vertices has fever than s elements. So, by Claim 21, for each Gn there are at most ps−1 copies
of F with Gn ∈ Φ(F ). This implies that it is sufficient to prove that all but 2−n/20p |Φ(F )| graphs of
Φ(F ) are in A(n, p, s).

For a given F , if Gn ∈ Φ(F ), then by Claim 20, in Gn there are at most s′ := 2(s − 1 − |W |) vertices
covering every horizontal edge. This gives that the number of possible ways the horizontal edges not
covered by W can be placed is at most

7 This, or a similar, embedding algorithm can be found in several papers, see for more precise reference [2].
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(
n

s′

)(
n

εn

)s′

� 2s′ H(ε)n+o(n).

However if Gn /∈ A(n, p, s) then s′ > 0. Consider Ψ (Gn), defined as the subfamily of Φ(F ), that con-
sists of graphs obtained from Gn by removing all horizontal edges not covered by W , but to one
arbitrary vertex x ∈ [n]− W add arbitrarily n/18p horizontal edges. (We have the upper bound n/18p
on the number of edges added, as in the constructed graphs we would like to keep the same optimal
partition.) Then Ψ (Gn) ⊂ A(n, p, s),

∣∣Ψ (Gn)
∣∣ >

(
n/2p

n/18p

)
> 2n/18p and

∣∣Ψ −1(Gn)
∣∣ < n2s′ H(ε)n+o(n).

This implies that all but n2−n/18p+s′ H(ε)n+o(n)|Φ(F )| < 2−n/20p |Φ(F )| graphs from Φ(F ) are in
A(n, p, s), completing the proof. �
5. Proof of Theorems 4 and 5

The proofs of the two theorems are the same till the very last step; up to that point we use only
that (6,12)-free graphs are O 6-free and that our graphs are O 6-free.

In the first part of the proof we can assume that L = {O 6} or L consists of all graphs with
6 vertices and 12 edges, the arguments are valid in both cases. We shall consider the typical L-
free graphs Gn ∈ P ∗(n, L) with one of their optimal partitions (U1, U2). Now, the number of high
horizontal degree vertices is bounded: |W | = O (1). The decomposition family of L, M(L), contains
a C4, so by Theorem 18, every at most 4-tuple is GOOD inside Ui − W , so Ui − W must span a C4-free
graph.

The difference between the O 6-free and the (6,12)-free cases is that in the O 6-free case one of
the classes (say U1) spans a C4-free graph and the other a graph with maximum degree at most 1,
while in the second case U1 spans a {C3, C4}-free graph, and U2 should span an independent set. We
prove this in several steps. First, in Section 5.1, we show that

e(U1) + e(U2) � n3/2

20000
.

Then we prove that in most L-free graphs the horizontal edges are distributed unevenly, most of
them are in one of the classes (say in U1). Then we prove in Section 5.2 that in any optimal partition
of the remaining graphs W = ∅. In the last step we complete the final structural description of the
graphs spanned by U2. At that point we shall separate the proofs of the two theorems from each
other.

One idea used several times is that given the assumed typical graph structure, we fix the graph
spanned by U1 and compare the size of the set of graphs with this U1 having the “required” structure
with the size of the family of graphs not having nice structure. We show that for each fixed partition
the number of “bad” graphs is “negligible” among the graphs with that partition, which implies that
the total number of “bad” graphs is negligible.

5.1. The number of horizontal edges in one class is large and in the other is small

We need a result of Füredi [14].

Lemma 22. For T � 2n4/3(log n)2 the number of C4-free graphs Gn with e(Gn) = T is at most

(
4n3/T 2)T

. (13)

Note that (4n3/T 2)T is monotone increasing for 1 � T < 0.01n3/2. This is used to prove the crucial
step in the main result of this subsection.
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Corollary 23. The number of L-free graphs Gn having a partition (U1, U2) with e(G[U1]) + e(G[U2]) �
n3/2/10000 is o(|P (n, L)|).

Proof. Indeed, the number of optimal partitions of Gn is at most 2n , the number of ways to add
the vertical (cross-edges) is at most 2n2/4, the number of ways to choose the at most h vertices of
high horizontal degree and the adjacent edges is smaller than nh2hn . The number of ways to add
T � 10−4n3/2 edges avoiding a C4 to the rest of the graph is, by Lemma 22, at most

∑
T �2n4/3 log2 n

(
n2

T

)
+

∑
T �10−4n3/2

(
4n3

T 2

)T

< n2[(4 × 108)1/10000]n3/2

< 1.005n3/2
< 2n3/2/100,

where the first sum compensates that for small values of T we do not have Lemma 22, the second
one estimates the number of ways to choose G[Ui]. So the number of graphs that we are counting,
upper estimated by 2n2/4+n3/2/100+O (n) , is much smaller than the number of L-free graphs, which is
at least 2n2/4+((1/4)+o(1))(n/2)3/2

. Here we used the lower bound of (5) of Theorem 9, due to Eszter
Klein and Erdős, see [9]. �

From now on we may and shall assume that an optimal partition (U1, U2) of a Gn ∈ P ∗(n, L)

satisfies

e
(
G[U1]

)
� e

(
Gn[U2]

)
, thus e

(
Gn[U1]

)
� 1

20000
n3/2. (14)

Lemma 24. Let Gm be a C4-free graph with e > 20m edges. Then Gm contains at least e2/4m2 vertex disjoint
P3 ’s, for m sufficiently large.

Proof. Assume that the maximum number of vertex disjoint P3’s in Gm is t . Fix t vertex disjoint P3’s
in Gm . The rest of the vertices spans no P3. So the 3t vertices of these P3’s cover all but at most
(m − 3t)/2 edges. Since Gm is C4-free, hence the total number of P3’s in Gm is at most

(m
2

)
. On the

other hand, the degree sum of these 3t vertices is at least e − m, so the number of P3’s in Gm is at
least 3t

(e−m/3t
2

)
, hence we have

3t

( e−m
3t

2

)
�

(
m

2

)
.

Using m < e/20 and t � m/3 this implies

t � (e − m)(e − m − 3t)

3m(m − 1)
>

19e · 18e

20 · 20 · 3m2
>

e2

4m2
. �

Now we eliminate the case when in an optimal partition of Gn both classes span at least 2n(log n)2

edges. The idea is that in this case there are many vertex-disjoint P3’s in both classes, hence there
are many pairs of P3’s, yielding restrictions for the cross-edges between P3’s in U1 and P3’s in U2.
Indeed a P3 ⊗ P3 has 13 edges and contains an octahedron.

Lemma 25. Let (U1, U2) be an optimal partition of a Gn ∈ P ∗(n, L), with

e
(
Gn[U1]

)
>

1

20000
n3/2 (15)

and n large enough.
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(i) The number of graphs Gn ∈ P ∗(n, L) with

e
(
Gn[U2]

)
> 2n(log n)2 (16)

is at most 2−n log3 n|P ∗(n, L)|.
(ii) The number of graphs Gn ∈ P ∗(n, L) violating (16) but for which G[U2] contains at least log4 n vertex

disjoint P3 ’s is at most 2−n log3 n|P ∗(n, L)|.

Proof. (i) Consider a graph Gn ∈ P ∗(n, L). Fix an optimal partition (U1, U2) of Gn satisfying (15), and
(16) and a graph H := G[U1 − W ] that is C4-free in case of the octahedron case and {C3, C4}-free for
the (6,12)-case.

In the proof we compare the sizes of the following two families of graphs:
The first family, P I (n, L; H, U1, W ) ⊂ P ∗(n, L), is the collection of L-free graphs Gn , where Gn

has an optimal partition (U1, U2) with one class spanning8 H on U1 − W and |U1 ∩ W | is a set
of isolated vertices, the other class, U2 spans an independent set, and, besides conditions (ii) and
(iv) of Definition 17, there is no restriction on the cross-edges. The number of such graphs is at
least (1 − o(1))2|U1||U2| , as standard application of Chernoff’s inequality implies that only o(1)2|U1||U2|
graphs violate these two conditions. (Here W ⊂ V (Gn) with O (1) elements.)

The second set, P I I (n, L; H, U1, W ), is the family of L-free graphs Gn , where in the optimal par-
tition (U1, U2) of Gn , U1 − W spans H , and there is no restriction on the edges incident to W , and
U2 spans any C4-free graph on U2 − W with e(G[U2]) > 2n(log n)2.

We give an upper bound on the number of graphs in the second family: the number of ways to
choose the horizontal edges adjacent to W is at most 2|W |n , the number of ways to add e edges to

U2 − W is at most
(n2

e

)
. We estimate the number of possible ways to put edges between U1 − W

and U2 − W more precisely. By Lemma 24, there are at least (n3/2/20000)2/(4n2) vertex disjoint P3’s
in U1, and e2/(4n2) in U2. This gives

(n3/2/20000)2

4n2
× e2

4n2
= e2

64 · 108n

pairs of edge-disjoint P3’s. Between each pair, to avoid an O 6, instead of the 29 = 512 ways of adding
the edges, there are only 511 ways (actually fewer). So the number of ways to add the cross edges is
at most

2|U1||U2|
(

511

512

)e2/(64·108n)

.

This gives

|PI I (n, L, H, U1, W ) ∩ P ∗(n, L)|
|PI (n, L, H, U1, W )| � |PI I (n, L, H, U1, W )|

|PI (n, L, H, U1, W )|

�
(
1 + o(1)

)
2|W |n

(
n2

e

)(
511

512

)e2/(64·108n)

� 2O (n)+e(O (logn)−c log2 n) � 2−e log n, (17)

for some positive constant c, where we used that e > n(log n)2 and |W | = O (1).
Note that P I (n, L, H, U1, W ) is not a partition of P ∗(n, L), otherwise we would be done, but

sufficiently “close”. As for any Gn ∈ P ∗(n, L) a partition (U1, U2) and a set W determines H spanned
by U1 − W , Gn is in at most 2nnh sets of P I (n, L, H, U1, W ). The number of ways to choose e is less
than n2, therefore we proved that for given graph spanned by U1 there are many more L-free graphs
with U2 spanning an independent set than graphs with e(U2) > 2n(log n)2.

8 Here we really mean that H is spanned, not only the graph spanned is isomorphic to H .
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The proof of (ii) is exactly the same, the only difference is that in the computation in (17) we have
to use that e(G[U2]) < n log2 n and that the graph spanned by U2 contains at least log4 n independent
P3’s. �
5.2. Elimination of vertices with large horizontal degrees

We shall use the following well-known lemma on the maximum number of edges of a C4-free
bipartite graph.

Lemma 26. Let G be a bipartite C4-free graph with bipartition X, Y . Then

e(G) � |X |√|Y | + |X | + |Y |. (18)

Denote by W ∗(n, L) the family of graphs Gn ∈ P∗(n, L) with an optimal partition (U1, U2), satis-
fying (15) but violating (16), also assuming that W , the set of vertices with high horizontal vertices
is non-empty. We shall estimate |W ∗(n, L)|.

Lemma 27. For n sufficiently large we have

∣∣W ∗(n, L)
∣∣ �

∣∣P ∗(n, L)
∣∣ · 2−(εn)3/2/10.

Proof. For a Gn ∈ P∗(n, L) fix a vertex x ∈ W and denote Ai := Γ (x)∩Ui − W and B1 := U1 − A1 − W .
(Note that we do not care in which class is x located.) Let v yz be a P3 in U1 − W with v, z ∈ A1 and
v y, yz edges. The key observation is that if |Γ ∗({v, y, z}) ∩ A2| > 1 then O 6 is a subgraph in G: x, y,
z, v form a C4 and the considered two points, a,b ∈ A2 are completely joined to this C4. Therefore the
number of ways to place edges between {v, y, z} and A2 is at most n7|A2| , instead of 8|A2|: there is a
‘gain’ of n(7/8)|A2|−1 < (7/8)(ε−o(1))n . Similarly to the proof of Lemma 25, this argument gives that at
most |P ∗(n, L)| · 2−(n)3/2

graphs contain more than
√

n log2 n vertex independent P3’s like v yz.

As A1 spans a C4-free graph with at most
√

n log2 n independent P3’s, by Lemma 24, we have that
e(A1) � 2n5/4 log n. Let t denote the maximum number of independent P3’s with endpoints in A1 and
middle vertices in B1. Fix a maximal collection of independent P3’s of this type, denote by A3 the set
of the endpoints of the paths, and by B3 the set of middle vertices. Note that A3 ⊂ A1 and B3 ⊂ B1.
Using Lemma 26, and e(A1 − A3, B1 − B3) � 2|B1| � 2n, |A3| = 2t, |B3| = t �

√
n log2 n, we have that

e(A1, B1) � e(A3, B3) + e(A1 − A3, B3) + e(A3, B1 − B3) + e(A1 − A3, B1 − B3)

�
√

n3t + 4n � 5n log2 n.

The conclusion is that there are only relatively few horizontal edges with at least one of the
endpoints in A1. This helps us to complete the proof. Indeed, the number of ways to choose an
optimal partition, and x, A1, A2, W , and placing the horizontal edges incident to W , or inside U2 or
A1 or between A1 and B1 is upper bounded by 2n5/4 log3 n .
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Let f (m, M) denote the number of M-free graphs on [m]. Recall that when L = {O 6} then M =
{C4} and when L = P (6,12) then M = {C3, C4}. Trivially,

f (εn/2, M) � 2((ε/2+o(1))n)3/2/(2
√

2) � 2(εn)3/2/9.

Using |U1| < n/2 + o(n) < (1 + ε)n/2, |B1| � |U1| − εn < (1 − ε)n/2, we have

f
(|B1|, M

)
f (εn/2, M) � f

(|B1| + εn/2, M
)
� f (n/2, M).

Putting together, we have that

∣∣W ∗(n, L)
∣∣ � f

(|B1|, M
)
2n2/4+n5/4 log3 n � 2n2/4+n5/4 log3 n f (n/2, M)

f (εn/2, M)

�
(
1 + o(1)

)∣∣P ∗(n, L)
∣∣2n5/4 log3 n−(εn)3/2/9 �

∣∣P ∗(n, L)
∣∣2−(εn)3/2/10. �

5.3. Completing the proof of the (6,12)-theorem

Now it is time to separate the proofs of Theorems 4 and 5. First we prove Theorem 5. For a par-
tition (U1, U2) of [n] and a graph H on U1 we let P ∗(n;6,12; U1, H) ⊂ P ∗(n;6,12) be the family of
graphs Gn , admitting an optimal partition (U1, U2), with U1 spanning H and U2 being an indepen-
dent set, and not having vertices with high horizontal degree. Using Lemmas 25 and 27, we know
that in an optimal partition (U1, U2) of a typical (6,12)-free graph Gn we have e(U1) > n3/2/20000
and e(U2) < n(log n)2, and every vertex of Gn has horizontal degree at most εn, U1 spans an M-free
graph, and in U2 there are no log4 n independent P3’s.

Assume that the maximum number of independent edges in U2 is t . By Lemma 24 there are
at least (n3/2/20000)2/(4n2) > n/(2 · 109) independent P3s in U1. If between any pair of vertices
spanning an edge in U2 and a triplet of vertices spanning a P3 in U1 there are 6 edges, then, as the
triplet is a good 3-tuple in U1, taking an extra vertex from their common neighborhood, we obtain 6
vertices spanning at least 12 edges. So not all the 6 cross-edges can be present at the same time, i.e.,
out of the 64 possibilities there are at most 63 realizable. Therefore we gain on the number of ways
of putting the cross-edges a multiplicative factor at least

(
63

64

)tn/(2·109)

=
[(

63

64

)10−9/2]nt

. (19)

However the number of ways to have a graph in U2 with maximum t independent edges and at most
n(log n)2 edges is much fewer:

Clearly, if t >
√

n log2 n then (19) is smaller than 2−n−3/2 logn and we are done, as the gain beats
the number of choices for the graph spanned by U1 and U2.

Let us count the number of possible graphs Gn spanned by U2, given the graph spanned by U1
and t: there are 2t vertices covering all edges in U2, each having horizontal degrees at most εn. For
each, the number of ways choosing the neighborhood is at most

∑
i�εn

(
n

i

)
� 2

(
n

εn

)
�

(
3

ε

)εn

.

Hence the number of the graphs spanned by U2 is at most

(
n

2t

)(
3

ε

)2tεn

�
(

2O (log n/n)

(
9

ε2

)ε)tn

.

Using that for ε sufficiently small (63/64)10−9/2(9/ε2)ε < 1 − 10−12, we see that for each fixed graph
H spanned by U1 and t , the number of (6,12)-free graphs is at most (1−10−12)n|P ∗(n;6,12; U1, H)|.
The number of choices for t is o(n), and more importantly, by Lemma 19 no Gn ∈ P ∗(n;6,12) has
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more than 24H(4δp)n optimal partitions. So for each Gn , U1 and H can be chosen in at most 24H(4δp)n

ways, yielding that

∑
U1,H

∣∣P ∗(n;6,12; U1, H)
∣∣ � 24H(4δp)n(1 + o(1)

)∣∣P ∗(n;6,12)
∣∣.

Here the (1 + o(1)) factor is needed, as the gain is with respect to all possible ways of placing the
cross-edges, but only 1 − o(1) fractions of them satisfy the conditions of Definition 17(ii) and (iv). As
δ was chosen in Definition 14 to satisfy (10), it is small enough to satisfy

(
1 − 10−12)24H(4δp) < 1, (20)

implying the theorem.

5.4. Completing the proof of the octahedron theorem

The proof of Theorem 4 goes along the lines of the previous subsection. For a (U1, U2) partition of
[n] and a graph H spanned by U1 let P ∗(n, O 6; U1, H) ⊂ P ∗(n, O 6) be the family of graphs Gn with
optimal partition (U1, U2), where U1 spans H and U2 spans a graph with maximum degree at most 1,
and having no high horizontal degree. Using Lemmas 25 and 27, we may assume that in an optimal
partition (U1, U2) of a typical O 6-free graph Gn we have e(U1) > n3/2/20000 and e(U2) < n(log n)2,
and every vertex of Gn has horizontal degree at most εn, U1 spans a C4-free graph, and in U2 there
are no more than log4 n independent paths P3’s. Now we fix the maximum number of independent
P3’s in U2, and then the rest of the graph spanned by U2 is P3-free.

Let D(k) denote the number of labelled P3-free graphs on [k]. Trivially, D(k) is a monotone in-
creasing function. Let t be the maximum number of independent P3s in U2. Like in the (6,12)-case
in the previous subsection we gain a factor

(
511

512

)tn/(2·109)

on the number of ways of choosing the cross-edges. Now we count the number of ways of choosing
the graph spanned by U2, given the vertex set U2, and t . There are at most

(n
3t

)
ways of choosing 3t

vertices spanning t paths P3; there are at most D(|U2| − 3t) ways of choosing the edges in U2 not
incident to these paths; finally, the number of ways of adding the horizontal edges to a vertex of a
path is at most

∑
i�εn

(
n

i

)
� 2

(
n

εn

)
�

(
3

ε

)εn

.

To summarize, for given H , U1 and t , the number of graphs spanned by U2 is at most

(
3

ε

)3εtn( n

3t

)
D

(|U2| − 3t
)
�

[
2O (log n/n)

(
33

ε3

)ε]tn

D
(|U2|

)
.

Using that the ε chosen in Definition 14 is sufficiently small to satisfy

(511/512)10−9/2(27/ε3)ε < 1 − 10−14,

so for each fixed graph spanned by U1 and t , the number of O 6-free graphs is at most (1 −
10−14)n(1 + o(1))|P ∗(n; O 6; U1, H)|. Here the (1 + o(1)) factor is needed, as the gain is with re-
spect to all possible ways of placing the cross-edges, but only 1 − o(1) fraction of them satisfy the
conditions of Definition 17(ii) and (iv). The number of choices for t is o(n) and, more importantly, by
Lemma 19, no Gn ∈ P ∗(n, O 6) has more than 24H(4δp)n optimal partitions (so for each Gn there are at
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most 24H(4δp)n choices of U1 and H), yielding∑
U1,H

∣∣P ∗(n; O 6; U1, H)
∣∣ � 24H(4δp)n

∣∣P ∗(n, O 6)
∣∣.

As δ has been chosen small enough to satisfy (10) our theorem follows.

6. Comments

Our main motivation in this paper was to investigate to what extent Theorem 2 is sharp.
(i) For many families L, for almost all L-free graphs Gn the vertex set [n] can be partitioned into

p M-free classes, i.e. to achieve this we do not have to delete vertices.
In principle it could happen that for all L the deletion is unnecessary. Example 12 disproves this,

showing that there exist families L for which this vertex deletion is necessary.
(ii) There can also be another problem with the sharpness, namely, that the conclusion of the

theorem is too weak. E.g., in Theorem 4 we do not have to delete vertices and only one G[Ui] should
be C4-free, about the other we know a much stronger assertion that it is P3-free. We are looking for
structural descriptions that are almost necessary and sufficient, in the sense that we wish to have a
property Q for which all the graphs of property Q are L-free and almost all L-free graphs have the
property Q. Our theorems are such statements.

Asserting that each G[Ui] is M-free is not sufficient: there are classes L where, if we take M-
free graphs G(i) , the product G(1) ⊗· · ·⊗ G(p) is not necessarily L-free. For example, for L = {O 6} the
decomposition family is M = {C4}, but if for i = 1,2 G(i) is C4-free and contains P3, then G(1) ⊗ G(2)

contains O 6. On the other hand if G(1) is C4-free and G(2) is P3-free, then G(1) ⊗ G(2) is O 6-free. We
proved that for almost all O 6-free graphs Gn , V (Gn) can be partitioned into U1 and U2 so that G[U1]
is C4-free and G[U2] has a more restricted structure, it is P3-free.

Remark 28. Generally we wish to prove that almost all graphs not containing the considered L are
very similar to subgraphs of the extremal graphs. In many cases, where the extremal graph for L is
H(n, p, s), we wish to prove that from almost all L-free graphs on n vertices belong to A(n, p, s).

To get some insight into this phenomenon, it would be useful to resolve some special cases of
Conjecture 11, e.g., when L is the dodecahedron graph, D12.

Observe that D12 ⊆ Q (n,2,6), but one cannot delete 5 vertices from
D12 to get a bipartite graph. Thus the graphs in A(n,2,6) do not con-
tain D12. In 1974 Simonovits [22] proved that there is an n0 = n0(D12)

such that if n > n0, then H(n,2,6) is the unique extremal graph
for D12.

Problem 29. Is it true that in almost all D12-free graphs we can delete 5 appropriate vertices to get a
bipartite graph?

The previous problem is a special case of the next one.

Problem 30. Let L be fixed, K3 � L. Is it true that if M(L) contains s independent edges and H(n, p, s)
is an extremal graph for L, then almost all L-free graphs are in property A(n, p, s)?

Clearly, O 6 = K (2,2,2). One could ask that what can be said about the structure of almost all
K (a0,a1, . . . ,ap)-free graphs. It was proved by Erdős and Simonovits [12] that if a0 � a1 � · · · � ap ,
and a0 = 2,3, and n is large enough, then every extremal graph Gn of the (p + 1)-chromatic
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K (a0,a1,a2, . . . ,ap) has the following structure: V (Gn) can be p-partitioned so that one of the classes
spans a K (a0,a1)-free graph, and the others span graphs with maximum degree a1 − 1. It can easily
be checked that no graph with such a structure contains a K (a0,a1,a2, . . . ,ap). This motivates the
following conjecture.

Conjecture 31. Let p and 2 � a0 � · · · � ap be fixed integers. Then for L = K (a0,a1, . . . ,ap), almost every L-
free graph Gn has a partition (U1, . . . , U p) where G[U1] is K (a0,a1)-free, and G[Ui] is a graph with maximum
degree less than a1 for i > 1.

What are the main obstacles to proving Conjecture 31? The first one is that the order of magnitude
of the number of edges of the extremal graph of K (a0,a1) is known only if a0 = 2,3 or a0 � a1. Here,
probably it would be sufficient to start our proof if we knew only that

ex
(
n, K (a0 − 1,a1)

) = o
(
ex

(
n, K (a0,a1)

))
.

There is another, more important step missing from our proof. We would need the following state-
ment.

Conjecture 32. If χ(L) = 2 and L contains a cycle, then there is a c = c(L) > 0 such that almost all L-free
graphs of order n have at least c · ex(n, L) edges.

This was known only for L = C4 by Kleitman and Winston [17] and C6 by Kleitman and Wil-
son [16]. We expect that one could prove results for L = C6 ⊗ K (a2, . . . ,ap) that are similar to what
we are aiming for in Conjecture 31.

After our work was submitted, Balogh and Samotij [6] obtained the following result, partially prov-
ing Conjecture 32.

Theorem 33. Let s and t be integers satisfying s ∈ {2,3} and t � s, or s > 3 and t > (s − 1)!. There exists a
positive constant cs,t such that almost all K (s, t)-free graphs of order n have at least cs,t ex(n, K (s, t)) edges.
Moreover, if t � 2, then we may choose c2,t = 1/12.

We checked carefully, an argument identical to the proof of Theorem 4 gives the following: if the
pair (s, t) satisfies the conditions in Theorem 33, then Conjecture 31 is true for with a0 = s, a1 = t
and any p,a2, . . . ,ap .

Finally, we conjecture the following variant of Conjecture 32.

Conjecture 34. If χ(L) = 2 and L contains a cycle, then there is a c = c(L) > 0 such that almost all L-free
graphs of order n have at most (1 − c) · ex(n, L) edges.

This conjecture was recently resolved by Balogh and Samotij in [5] for L = C4 and in [6] for L =
K (2, t) for t � 2.
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