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Abstract

Given a family L of graphs, set p ¼ pðLÞ ¼ minLAL wðLÞ � 1 and, for nX1; denote by
Pðn;LÞ the set of graphs with vertex set ½n� containing no member of L as a subgraph, and

write exðn;LÞ for the maximal size of a member of Pðn;LÞ: Extending a result of Erd +os,
Frankl and Rödl (Graphs Combin. 2 (1986) 113), we prove that

jPðn;LÞjp2
1
2
1�1

p

� �
n2þOðn2�gÞ

for some constant g ¼ gðLÞ40; and characterize g in terms of some related extremal graph
problems. In fact, if exðn;LÞ ¼ Oðn2�dÞ; then any god will do. Our proof is based on
Szemerédi’s Regularity Lemma and the stability theorem of Erd +os and Simonovits. The bound

above is essentially best possible.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Notation

Our notation in this paper is standard but for the sake of completeness, we review
it briefly. Readers familiar with extremal graph theory may skip this section.
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In this paper we restrict our attention to undirected graphs without loops and
multiple edges. Given a graph G and a subset XDVðGÞ; we write G½X � for the
subgraph of G induced by X : For XDVðGÞ; we mostly shorten eðG½X �Þ to eðXÞ:We
write Gn for a graph of order n; in fact much of the time, the first suffix in our
notation is the order of the graph, like in Kp;Tn;p andHk: The chromatic number of a

graph L will be denoted by wðLÞ:We write GðxÞ for the set of neighbors of a vertex x;
dðxÞ ¼ jGðxÞj is the degree of x and dðx;AÞ ¼ jGðxÞ-Aj is the degree of x into a set
ADVðGÞ:
As usual, we write Kp for the complete graph on p vertices, and Tn;p for the p-class

Turán graph. Thus in Tn;p the n vertices are partitioned into p classes so that their

sizes are as equal as possible, and two vertices in the graph are joined iff they belong
to different classes. It is easy to see that if n 	 r ðmod pÞ; 0prop; then

eðTn;pÞ ¼
1

2
1� 1

p

� �
ðn2 � r2Þ þ

r

2

� �
:

We shall often make use of the facts that

eðTn;pÞE 1� 1
p

� �
n

2

2

and3

1� 1
p

� �
n

2

� �
peðTn;pÞp 1� 1

p

� �
n

2

2

:

Furthermore, we shall use the abbreviation

AðnÞ :¼ 2
1
2
1�1

p

� �
n2

:

Many of our inequalities hold only for n4n0 and occasionally we shall remind the
reader of this. (Further, the value of n0 will vary from place to place.)
We say that a pair of vertex sets ðA;BÞ is completely joined in a graph Gn if

A;BCVðGnÞ;A-B ¼ |; and for all xAA; yAB we have xyAEðGnÞ: If we have two
vertex-disjoint graphs M and Q; we denote by M#Q the graph obtained by joining
each vertex of M to each vertex of Q:

1.2. Turán-type extremal problems

Given a family L of graphs, we say that G is L-free if LD/ G for every LAL;
where LDG denotes the not necessarily induced containment. We call L the family
of forbidden graphs; to avoid trivialities, we shall always assume thatL is non-trivial,
i.e., eðLÞ40 for LAL: We write Pðn;LÞ for the class ofL-free graphs with vertex
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3Clearly, eðTn;2Þ ¼ In
4
2m: As Füredi observed, this extends to pp7:

eðTn;pÞ ¼ 1� 1
p

� �
n

2

2
� �

:
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set ½n� :¼ f1;y; ng:4 We shall use the customary notation
exðn;LÞ ¼ maxfeðGÞ : GAPðn;LÞg:

When L consists of a single graph L; we use the shorthand exðn;LÞ instead of the
pedantic notation exðn; fLgÞ: The basic Turán-type extremal problem is as follows:

For a given family L; determine or estimate exðn;LÞ; and describe the
(asymptotic) structure of extremal graphs, as n-N:

The theory started with Turán’s classical theorem [30], see also [31,32]. For a more
detailed description of this field, see the book of Bollobás [5] or the surveys of
Simonovits [26,27], or Füredi [14].

1.3. Erd +os–Kleitman–Rothschild-type results

Since all subgraphs of an L-free graph are L-free, we have

jPðn;LÞjX2exðn;LÞ: ð1Þ

Erd +os [9] conjectured that (1) is essentially best possible, namely for ‘most’ graphs L

we have

jPðn;LÞj ¼ 2ð1þoð1ÞÞexðn;LÞ: ð2Þ

If L is a tree then (2) fails, and if L is bipartite containing a cycle, then proving (2)
seems to be difficult, even for L ¼ C4 (see [16]). Erd +os, Kleitman and Rothschild [13]
were the first to study the function jPðn;LÞj in detail, by proving Erd +os’ conjecture
for L ¼ Kpþ1:

Theorem 1.1.

jPðn;Kpþ1Þjp2
1�1

p

� �
n
2ð Þþoðn2Þ

:

In the case wðLÞX3; the conjecture was proved by Erd +os, Frankl and Rödl [12].

Theorem 1.2. Let L be a graph with wðLÞX3: Then5

jPðn;LÞj ¼ 2ð1þoð1ÞÞexðn;LÞ ¼ 2
1� 1

wðLÞ�1

� �
n
2ð Þþoðn2Þ

:

Kolaitis, Prömel and Rothschild [17] sharpened Theorem 1.1: they proved that, in
fact, almost every Kpþ1-free graph is p-colorable.
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4The vertices of our graphs are fixed, labeled and, for the sake of simplicity, we shall assume that

VðGnÞ ¼ f1;y; ng:

5Mostly it is irrelevant if we use 2
1�1

p

� �
n
2ð Þ or 2

1�1
p

� �
n
2
2

; because of the additional error terms in the

exponent.
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Theorem 1.3. Let CnðpÞ be the set of labeled p-colorable graphs on ½n�: Then

jPðn;Kpþ1Þj
jCnðpÞj

-1 as n-N:

Later, Prömel and Steger [21] extended Theorem 1.3 to graphs with critical edges,
where an edge e of L color-critical if wðL � eÞowðLÞ: Results in a similar vein have
been proved by Hundack, Prömel and Steger [15] for a larger family of graphs.

2. New results

There are many beautiful theorems generalizing the results mentioned above.
Unless L ¼ fKpþ1g; we have two distinct problems: estimating the number of

n-vertex graphs not containing

* induced subgraphs isomorphic to any LAL;
* or not necessarily induced subgraphs.

Here we refer the reader to the papers of Alekseev [1], Prömel and Steger [20,22],
Bollobás and Thomason [7,8], Scheinerman and Zito [24] and Balogh, Bollobás and
Weinreich [2–4], and restrict ourselves to the not necessarily induced case. Our
starting point is Theorem 1.2, due to Erd +os, Frankl and Rödl [12]. It is trivial to
rephrase Theorem 1.2 for a family L of forbidden graphs:

jPðn;LÞj ¼ 2ð1þoð1ÞÞexðn;LÞ ¼ 2
1
2
1�1

p

� �
n2þoðn2Þ

; ð3Þ
where

p :¼ min
LAL

wðLÞ � 1: ð4Þ

The problem we study in this paper is how much the ‘error term’ oðn2Þ in the
exponent in (3) can be improved. Our main result is that oðn2Þ can be replaced by
Oðn2�gÞ for some g ¼ gðLÞ40:

Theorem 2.1. For every non-trivial family L of graphs there exists a constant g ¼
gL40 such that

jPðn;LÞjp2
1
2
1�1

p

� �
n2þOðn2�g log nÞ

; ð5Þ
for p ¼ minLAL wðLÞ � 1:6

In fact, we shall prove a considerably sharper result: we shall determine the
exact order of the error term in the exponent. To this end, we define a new family
M ¼ MðLÞ of graphs.
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6Of course, log n can be deleted by slightly decreasing g; but we shall see that (5) is a better form.
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Definition 2.2 (Decomposition). Given a familyL; letM :¼ MðLÞ be the family of
graphs M for which there exist an LAL and a t ¼ tðLÞ such that
LDM#Kp�1ðt;y; tÞ: We call M the decomposition family of L:

Thus, a graph M belongs to M if whenever M is placed into a class of Tn;p for n

sufficiently large, then the new graph contains a forbidden LAL:
If L is finite, then M is also finite but the converse is not necessarily true. For

example, if L is the family of all odd cycles, then M ¼ fK2g:
We would be in a strong position to give a precise estimate for jPðn;LÞj if we

could prove the following conjecture about the structure of most L-free graphs. In
fact, a good description of a typical L-free graph should be even more interesting
than a good estimate of the function jPðn;LÞj:

Conjecture 2.3 (Sharp form). Assume that L is finite. Then for almost all L-free

graphs Gn we can delete h ¼ OLð1Þ vertices of Gn and partition the remaining vertices

into p classes U1;y;Up such that each G½Ui� is M-free, i ¼ 1;y; p:

Remark 2.4. We shall see that if we take an optimal p-partition ðU1;y;UpÞ of a
typical Gn; where ‘‘optimal’’ means that

P
eðUiÞ is as small as possible, then the

number of vertices which are joined to each Ui by more than en edges is bounded; we
believe that these are the vertices that should be deleted to make the remaining parts
of G½Ui� to be M-free. This would imply

2
1
2
1�1

p

� �
n2þexðIn

p
m;MÞ

pjPðn;LÞjp2
1
2
1�1

p

� �
n2þexðn;MÞ

:

The lower bound is trivial.

The problem in proving Conjecture 2.3 is that we do not know in general whether
Pðn;MÞ is a ‘‘smooth’’ function or it oscillates wildly. Although we cannot prove
that Pðn;MÞ is smooth, we have the following result.

Theorem 2.5. For every L; if M is the decomposition family, M is finite, then

jPðn;LÞjpnexðn;MÞþc�n2
1
2
1�1

p

� �
n2

; ð6Þ

for some appropriate constant c40:

Applying the theorem we obtain that the g of Theorem 2.1 is essentially the lim sup
of those a for which exðn;MÞ ¼ Oðn2�aÞ:

2.1. The case p ¼ 1

The crucial step in our proofs of Theorems 2.1 and 2.5 is the reduction of the
general case to the case p ¼ 1: For this we shall need a lemma asserting that the
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number of graphs from which we can delete C ¼ oðn2Þ edges to get p-chromatic

graphs is not much larger than 2exðn;LÞ:

Lemma 2.6. Let CCðnÞ denote the class of graphs for which there is a partition

ðU1;y;UpÞ with
P

i eðUiÞpC; where C4e � pn: Then

jCCðnÞjpnC � 2
1
2
1�1

p

� �
n2

¼ nCAðnÞ: ð7Þ

Proof. We shall use the simple inequality a
b

� 	
p e�a

b

� 	b
: There are at most pn partitions

of VðGnÞ into p distinguishable sets ðU1;y;UpÞ: Given a partition, there are at most
AðnÞ choices for the cross-edges between the classes and at most

n

2

� �
C

0
@

1
Ap

en2

2C

� �C

p
nC

ð2pÞn ð8Þ

choices for the edges within the sets Ui: These prove the lemma. &

In proving Theorem 2.5, we may and shall assume that pX2: Indeed, for p ¼ 1 we
haveM ¼ L and Theorem 2.5 becomes trivial. To get Theorem 2.1 for p ¼ 1; we use
that, by the K +ovári–T. Sós–Turán theorem [18], for the complete bipartite graph
Kðp; qÞ we have

exðn;Kðp; qÞÞp1
2

ffiffiffiffiffiffiffiffiffiffiffi
q � 1p

p
n2�1=p þ 1

2
pn: ð9Þ

Hence exðn;Kðt; tÞÞpn2�1=t; for n4n0ðtÞ: Since L contains some bipartite L0;

exðn;LÞpexðn;Kðt; tÞÞpn2�ð1=tÞ

for some t: So Theorems 2.5 and 2.1 are trivial for p ¼ 1; by the above
lemma and (9).
Theorem 2.5 easily implies Theorem 2.1 since for every L we can find a ðp þ 1Þ-

chromatic L0AL and a Kpþ1ðt;y; tÞ+L0: with this t we have Kðt; tÞAM:

Remark 2.7. In our proofs, in most cases we do not have to consider all of L but
one L0AL; as above. We fix now such an L0 and a Kpþ1ðt;y; tÞ+L0 (and refer to

this t) we shall need all of L and M only in the last step of our proof.

3. Almost-Turán graphs

LetL and p be fixed. From now on, we shall frequently suppress the dependence
of various functions on p and L:
We plan to prove Theorem 2.5 in the following way. We shall try to prove

in various ways that a typical L-free Gn looks like a random subgraph of an
L-extremal graph. Furthermore, we think of an L-extremal graph as one obtained
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from a Tn;p by putting M-extremal graphs into some of its classes. Let us describe

this plan in more details.

1. ðU1;y;UpÞ is an optimal partition if
P

eðUiÞ is as small as possible. We assign to
each Gn an optimal partition, denoted by PðGnÞ:7

2. First, with the aid of Szemerédi’s Regularity Lemma (see Section 4.1), using some
variants of previous techniques (primarily of Erd +os, Frankl and Rödl [12] and of
Bollobás and Thomason [7]) we show that an optimal partition ðU1;y;UpÞ of
VðGnÞ satisfiesX

i

eðUiÞpWn2; ð10Þ

for almost all graphs in Pðn;LÞ; for any fixed W40 and n4n0ðWÞ: The graphs
having such partitions will be called W-Turán graphs and the class of L-free W-
Turán graphs will be denoted by PWðn;LÞ:

3. We define Pd
UNIFðn;LÞDPWðn;LÞ; as follows.

Let hðxÞ denote the so called entropy function:

hðxÞ :¼ x log2
1

x
þ ð1� xÞlog2

1

ð1� xÞ:

Given a graph Gn; call a pair ðA;BÞ of disjoint sets of vertices with jAj ¼ jBj sparse

if eðA;BÞo1
4
jAj � jBj: Let Pd

UNIFðn;LÞ denote the set of graphs in PWðn;LÞ
containing no sparse pairs ðA;BÞ with ACUi;BCUj; jAj ¼ jBj ¼ Idnm for iaj;

where

d ¼ 10
ffiffiffiffiffiffiffiffiffi
hðWÞ

p
ð11Þ

and ðU1;y;UpÞ is an optimal partition of Gn:

We shall show that almost all graphs of PWðn;LÞ belong to Pd
UNIF:

4. Next we fix two constants, c and m; and definePc
GOODðn;LÞ as the family of those

GnAPWðn;LÞ for which we can delete m vertices such that in the remaining graph
Gn�m; if we choose c vertices in one class, then each other class contains

Jn=ðp2cþ2Þn vertices completely joined to these c vertices. Then we show that, for
a properly chosen W40; almost all graphs in Pc

GOODðn;LÞ satisfy

eðUiÞpexðjUij;MÞ þ OðnÞ: ð12Þ

More precisely, for each i ¼ 1;y; p; there are only Oeð1Þ vertices in G½Ui� of
degreeXen (i.e., joined to their own class Ui by more than en edges) and deleting
them from G½Ui� we get an M-free graph.
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7We shall enumerate the graphs according to their optimal partitions. If we took an arbitrary optimal

partition instead of a fixed one, then we would count the same graph several times. An upper bound

obtained that way would be equally good: so this assignment is not too important but may make the proof

more transparent. We can take, e.g., the lexicographically first partition.
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Remark 3.1. The last class, Pc
GOOD; differs from the previous ones in that it is given

by a local definition: the previous classes are not really influenced by changing oðn2Þ
edges in Gn; but this is.

4. Tools

In the proof of Theorem 2.5 we shall have a complicated system of constants and

several families of graphs on ½n�: We assume only that 0oWoðepÞ�12 is an arbitrary
small, fixed constant. Later we shall take W-0:
Our ‘‘Main Lemma’’ below asserts that almost all graphs to be considered are

W-Turán graphs.

Main Lemma. Given W40; there is an integer n0ðWÞ such that if n4n0ðWÞ then

jPðn;LÞ �PWðn;LÞjp2
1�1

p

� �
n
2
2�n

¼ AðnÞ=2n: ð13Þ

In fact, this lemma claims more than we need in its applications: it would suffice to

have oð2
1�1

p

� �
n
2
2

Þ on the right hand side. Also, as the lemma holds for all W40; it can
be reformulated as follows.

Main Lemma0. One can delete from each Pðn;LÞ at most 2
1�1

p

� �
n
2
2�n

graphs so that

for each remaining graph Gn; for its optimal partition ðU1;y;UpÞ;
P

eðUiÞ ¼ oðn2Þ as

n-N:

4.1. Regularity lemma

Given a graph G and two disjoint vertex sets X ;YCVðGÞ; the edge-density

between X and Y is defined as

dðX ;Y Þ ¼ eðX ;YÞ
jX jjY j ;

where eðX ;Y Þ ¼ eGðX ;Y Þ is the number of edges of G between X and Y :We call the
pair ðX ;Y Þ e-regular if, for all X �CX and Y �CY with jX �j4ejX j and jY �j4ejY j;
we have

jdðX �;Y �Þ � dðX ;YÞjoe:

Furthermore, we say that a partition VðGÞ ¼ V1,?,Vk is e-regular if

jjVij � n=kjo1; for every i; and all but at most ek2 pairs ðVi;VjÞ are e-regular. The
sets Vi are the clusters of this partition. In this terminology, Szemerédi’s Lemma [28]
can be stated as follows.

ARTICLE IN PRESS
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Regularity Lemma. For every e40 and integer k there exist integers n0 ¼ n0ðe; kÞ and

k0 ¼ k0ðe; kÞ such that every graph of order at least n0 has an e-regular partition with

more than k and fewer than k0 clusters.

4.2. The cluster graph, the estimate

In order to capture the global structure of a graph, we introduce the notion of
cluster graphs.

Definition 4.1 (Cluster graph). Given Z40 and an e-regular partition of a graph Gn

with k clusters V1;y;Vk; let Hk be the graph with vertex set V1;y;Vk in which ViVj

is an edge iff ðVi;VjÞ in Gn is an e-regular pair of density at least Z: We call Hk an

ðe; ZÞ-cluster graph of Gn:

With a slight abuse of notation, we write Hk ¼ HkðGnÞ for an ðe; ZÞ-cluster graph
of Gn with k clusters, where k ¼ 1=eokok0ðe; kÞ and n4n0ðe; kÞ: (In principle there
are several appropriate partitions and we should also indicate the partition.) In
addition to Szemerédi’s Regularity Lemma, we shall need the following Stability
Theorem of Erd +os and Simonovits [10,11,37].

Stability Theorem. For any given l40; there is an o ¼ oðp; lÞ40 such that if Gk does

not contain Kpþ1 and

eðGkÞ4eðTk;pÞ � ok2;

then we can change Gk into Tk;p by changing at most lk2 edges.

Here ‘‘changing’’ means deleting or adding. Clearly, opl:8

Szemerédi’s Regularity Lemma is frequently used to guarantee the existence of
small subgraphs, see, e.g., [6,8,29] for applications nearest to ours, or the survey [19].

Lemma 4.2. Let L be a fixed graph with wðLÞ ¼ p þ 1; and let Z40: If e40 is

sufficiently small, n is sufficiently large and an ðe; ZÞ-cluster graph Hk of Gn contains

Kpþ1; then LCGn:

In [8] it was shown that in Lemma 4.2 it suffices to take eoZ=2jLj:

Lemma 4.3. Using the notation of the Regularity lemma, let CZ;e;oðnÞ be the class of

graphs on ½n� such that, for some ðZ; eÞ-cluster-graph Hk; we have

eðHkÞpeðTk;pÞ � ok2:

If

hðZÞoo
4
; eo

o
8

and k ¼ 1

e
; ð14Þ
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8Deleting ok2 edges from Tk;p we get a graph to which we have to add at least ok2 edges to get Tk;p:
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where hðxÞ is the entropy function, then for n4n0ðZ; e;oÞ;

jCZ;e;oðnÞjo2
1
2
1�1

p

� �
n2�1

2
on2

oAðnÞ=2n:

Proof. When using the Regularity lemma, we tend to ignore the fact that
n is mostly not divisible by k: our estimates are too robust to be influenced
by this.
The number of pk-partitions is at most kn: We fix a partition ðV1;y;VkÞ: Then

we select the edges of the cluster graph Hk in at most 2
k
2

� 	
ways. If the cluster-size is

m ¼ n=k and the edges of Hk are already fixed, then we have at most

2eðHkÞm2p2
1
2
1�1

p

� �
n2�on2

choices for the edges along the cluster-graph edges, at most

2n2=ð2kÞ choices within the partition classes Vi and 2
ek2m2 ¼ 2en

2
options along the (at

most ek2Þ non-e-regular connections of clusters. Finally, the most significant ‘‘loss’’
in our estimates comes from the low-density pairs: ðVi;VjÞ with dðVi;VjÞoZ; where

we have at most m2

Zm2

� �
p2hðZÞm2

choices for the edges, for each of these pairs. We shall

use that

a

xa

� �
p2hðxÞa;

and therefore

X
ipxa�1

a

i

� �
p

a

xa

� �
o2hðxÞa:

One can see that x log 1
x
phðxÞpx log 1

x
þ 3x

2
if xp1

2
: Also, if moa

4
then

X
iom

a

i

� �
p

a

m

� �
:

This is why Zp1
4
will always be assumed.

Thus, using the above estimates and (14), we have

jCZ;e;oðnÞjp
X

kokok0ðk;eÞ
kn � 2

k
2

� 	
� 2eðHkÞm2 � 2

n2

2k � 2en2 � 2hðZÞn2 ;

p 2
n log k0ðk;eÞþOð1Þþ1

2
1�1

p

� �
n2�on2þn2

2kþen2þhðZÞn2

oAðnÞ � 2�on2þen2þen2þo
4

n2oAðnÞ=2n:

In the formula above, the Oð1Þ term in the exponent depends on k0ðZ; eÞ and
‘‘represents’’ the number of possible Hk graphs. &
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5. Proof of the Main Lemma

Let e40 be as small as required in Lemma 4.2. By Lemma 4.2

if GnAPðn;LÞ then Kpþ1D/ Hk: ð15Þ

Hence

eðHkÞpexðk;Kpþ1Þp 1� 1
p

� �
k2

2
: ð16Þ

We could use (16) and the above argument to deduce the Erd +os–Frankl–Rödl
theorem and then improve it to get our results but we rather go directly to the proof.
Let us embark on our estimate of jPðn;LÞj:

5.1. Weak partition

The expressions ‘weak’ and ‘strong’ partitions will be used only informally, to aid
the reader. A partition ðU1;y;UpÞ is ‘‘stronger’’ if

P
eðUiÞ is smaller. We call a

partition weak if we know only (10) or
P

eðUiÞ ¼ oðn2Þ; and we call it strong ifP
eðUiÞ ¼ Oðexðn;MÞÞ:
Let

WA 0;
1

4p

� �
be fixed; set l :¼ W

4
; and let o ¼ oðp; lÞ

be the constant whose existence is guaranteed by Stability Theorem.
Then fix Z and e as described in (14) and Lemma 4.2.

Lemma 5.1.

Pðn;LÞ � CZ;e;oðnÞDPWðn;LÞ:

Proof. Let GnAPðn;LÞ � CZ;e;oðnÞ: Let Hk be a cluster graph of Gn; and m ¼ n=k:

Since GneCZ;e;oðnÞ; eðHkÞXeðTk;pÞ � ok2; see Lemma 4.3. By Lemma 4.2,

Kpþ1D/ Hk: So, by Stability Theorem, we can change Hk into Tk;p by changing at

most lk2 ‘‘cluster-edges’’.
This yields a p-partition ðU1;y;UpÞ of VðGnÞ: write Cc for the cth class of this

Tk;p and put Uc ¼
S

VjACc
Vj: We show that

P
eðUiÞpWn2 and the class-sizes are

roughly the same:

jUcj �
n

p

����
����p2en for c ¼ 1;y; p:

Indeed, to change Gn into a Tn;p we ‘‘move’’ plk2 ‘‘cluster-edges’’ of Hk

corresponding toplk2m2 ¼ ln2 edges in Gn; next we delete the edges corresponding
to ‘‘low-density’’ pairs ðVi;VjÞ with Vi and Vj in the same partition class Ch of Tk;p

and dðVi;VjÞoZ: This yields 1
2
Zn2: Our no more than ek2 ‘‘irregular pairs’’ means en2
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edges in Gn: Finally, we have to delete the edges within the clusters Vj: this is
1
2

km2 ¼ 1
2

n2=ko1
2
en2: Recalling that l ¼ 1

4
W and eo1

8
oo1

8
l; ZohðZÞo1

4
o; we getX

eðUiÞpln2 þ 1
2
Zn2 þ en2 þ 1

2
km2o4ln2 ¼ Wn2: &

6. Typical optimal partitions

Take an optimal partition of a graph GnAPWðn;LÞ into p classes, (U1;y;Up).

The optimality of the partition implies that

dðx;UiÞpdðx;UcÞ

whenever xAUi; since otherwise moving x into Uc would decrease
P

i eðUiÞ:We shall
call the edge ðx; yÞ of Gn horizontal if x; y are in the same Ui:

9 The horizontal degree

of a vertex xAUi is dðx;UiÞ ¼ jGðxÞ-Uij: Clearly, these definitions depend on the
partition. Mostly we may forget to indicate this dependence, but there will be a point
where this dependence will become crucial.
Here we shall prove the following assertions:

* Lemma 6.1: The edges are uniformly distributed between the partition classes.
* Lemma 6.3: All small, i.e. of bounded size, p-chromatic subgraphs occur in Gn if
the edges in the partition are uniformly distributed.

* Lemma 6.10: Stability of optimal partitions; and its consequence: by Lemma
6.11, there are only few optimal partitions.

* Lemma 6.6: The vertices are uniformly distributed in partition classes.

6.1. Super-regularity

Having a fixed partition, the edges ðx; yÞ joining different classes will be called
vertical. In a typical graph the vertical edges behave as random edges with

probability 1
2
: This motivates the following easy lemma.

Lemma 6.1. For all but AðnÞ=2n L-free graphs Gn; if ðU1;y;UpÞ is an optimal

partition, d40 and n4n0ðL; dÞ; then if ACUi;BCVðGnÞ � Ui with jAj ¼ jBj ¼
Idnm; then eðA;BÞ41

4
jAj � jBj:

Remark 6.2. (a) Here X
1
4
jAjjBj means that the number of edges is at least half of

what it is expected to be.
(b) In our proof it suffices to consider only graphs from PWðn;LÞ; since the two

sets differ in no more than AðnÞ=2n graphs and it does not matter if we get twice the
error term.
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(c) To assure more symmetry, we could write that ADUi; BDUj for some iaj:

From our point of view the two forms are equivalent but this form is easier to use.
There is a symmetric, and stronger form of Lemma 6.1: with the conclusion that if

AD
S

iAI Ui; BD
S

jAJ Uj for some partition of ½1;y; p� into I and J; I-J ¼ |; then

eðA;BÞ41
4
jAj � jBj:

Proof of Lemma 6.1. We estimate the number of ‘‘bad graphs’’: graphs Gn for which
there is an optimal partition ðU1;y;UpÞ and two sets, ADUi and BDUj with

eðA;BÞp1
4
jAjjBj: The number of partitions is at most pn; the number of possibilities

for ðA;BÞ is at most

n

dn

� �2
o22hðdÞn;

the number of choices for the edges between distinct classes is at most

AðnÞ � 2�ð1�hð1=4ÞÞd2n2

(since the number of possible ‘‘connections’’ between ðA;BÞ is only at most

2hð1=4ÞðdnÞ2 ; instead of 2ðdnÞ2 ), and the number of choices for edges within the classes is

at most 2hðWÞn2 : Since, by (11), hðWÞo1
3
d2 and, further, n4n0; the number of ‘‘bad

graphs’’ is at most

AðnÞ � pn � 22hðdÞn � 2hðWÞn2 � 2�ð1�hð1=4ÞÞd2n2oAðnÞ=2n;

proving the lemma. Note that hð1=4Þ is about 0.3177. &

Lemma 6.1 will be used in combination with Lemma 6.3.

Lemma 6.3 (Weak-regularity). For d40; pX1 and tX1 there is an integer n0ðd; p; tÞ
such that the following assertion holds. Suppose that n4n0ðd; p; tÞ; 1pqpp; and

U1;y;Uq are q disjoint vertex-sets in VðGnÞ with jUij4 n
2p

and

eðA;BÞX1
4
jAjjBj ð17Þ

whenever

ACUi; BCUj; iaj and jAj; jBjXdn

p
: ð18Þ

Then Kqðt;y; tÞDGn:

The key case above is q ¼ p; when ðU1;y;UpÞ is a slight modification of the
optimal partition of Gn:
We could refer to conditions (17) and (18) as the d-super-regularity conditions.

Similar conditions occurred in several works of Erd +os and T. Sós, Rödl, Komlós,
and others.
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Remark 6.4. There are several results closely related to this lemma. One of these
(which, in some sense, is much stronger) is that of Rödl [23].

Proof of Lemma 6.3. We apply induction on q; although a direct proof could be
given as well. We shall make use of Lemma 7.2, whose proof does not depend on this
lemma. For q ¼ 2 this immediately follows from the K +ovári–T. Sós–Turán theorem,
or from Lemma 7.2.
Assume that the assertion of the lemma holds for q � 1: Applying Lemma 7.2

recursively, t � 1 times, we can choose t vertices in Uq completely joined to an

vertices of Ui (i ¼ 1;y; q � 1). Then applying induction to the first q � 1 classes with
a slightly different d40; the assertion follows. &

6.2. Uniform class-sizes

Definition 6.5 (Well-partitioning). Gn is W-well partitioned if all its optimal partitions

ðU1;y;UpÞ satisfy jUij � n
p

��� ���o ffiffiffi
W

p
log 1W

� �
n for all i: We denote by PW

WPðn;LÞ the
family of graphs from PWðn;LÞ which are W-well-partitioned.

Lemma 6.6. Let 0oWoðepÞ�12: Then

PWðn;LÞ �PW
WPðn;LÞ

�� ��o212 1�1
p

� �
n2�n

:

Remark 6.7. We do not really need the fine notion of ‘‘uniform partition’’: to prove

our theorems it would be enough to assume, e.g., that jUij4 1
100p

n for all i: From the

optimality we need only that an xAUi cannot send many edges to its own class and
few edges to the others. Yet, it is interesting to have these estimates which give
profound information on the structure of typical L-free graphs.

Proof of Lemma 6.6. The idea of the proof is almost the same as that of the Main

Lemma. Let GnePW
WPðn;LÞ: Then Gn has an optimal partition ðU1;y;UpÞ withP

i eðUiÞoWn2; and there is an index i0 such that

jUi0 j �
n

p

����
����4 ffiffiffi

W
p

log
1

W

� �
n:

We need the following weak variant of a lemma on uneven vertex-distributions from
[25, p. 290]. Let Gn be a p-partite graph with p-partition (U1;y;Up). Then

eðGnÞpeðTn;pÞ �
Xp

i¼1

si

2

� �
;
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where si ¼ Ijn=p � jUijjm for i ¼ 1;y; p: Using this, with si0 ¼ Ið
ffiffiffi
W

p
log 1WÞnm we

have

X
ioj

eðUi;UjÞpeðTn;pÞ �
si0

2

� �
oeðTn;pÞ �

W
3
log

1

W

� �2
n2:

Since hðxÞEx log 1
x
; we find that

n
2

� 	
Wn2

� �
o22W log

1
W

� 	
n2 ;

and therefore, if log2
1
W412;

jPWðn;LÞ �PW
WPðn;LÞjp pnAðnÞ � 2�

W
3
log

1
W

� 	2
n2

n
2

� 	
Wn2

� �

p pnAðnÞ � 2�
W
3 log

1
W

� 	2
n2þ2W log

1
W

� 	
n2

p pnAðnÞ � 2�
W
6
log

1
W

� 	2
n2oAðnÞ=22Wn2oAðnÞ=2n:

These inequalities hold since WoðepÞ�12 and n is large enough. &

6.3. Stability of optimal partitions

In most graphs any two optimal partitions may differ in at most Oð1Þ vertices:
when large parts ŨiDUi ði ¼ 1;y; pÞ are already ‘‘found’’, the remaining vertices are
classified according to their connection to the vertices already classified. We say that
a vertex x has low-degree if dðx;UiÞo n

10p
for at least two values of i:10 If the vertices

of low-degree were already eliminated, then only the high horizontal degree vertices
would create trouble.
The problem is that using this would be a ‘‘vicious circle’’: we wish to use that

‘‘typically there are not too many optimal partitions’’ to prove that ‘‘typically there
are no low degrees’’.

Remark 6.8 (cN-Distances between partitions). If we have two p-partitions of a set
S; say, V1;y;Vp and W1;y;Wp; then we can define their distance as the minimum

of the maxi jViDWpðpÞj taken over all the p! permutations p of the indices.

Now, the stability of the optimal partitions means that any two optimal partitions
are near to each other.
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Definition 6.9 (Pseudo-optimal partition). Let an integer c be fixed. Given a graph
GnAPWðn;LÞ with an optimal partition ðU1;y;UpÞ and a vertex set X ; with jX jpc;
we see that ðU1 � X ;y;Up � XÞ is a partition of Gn � X ; we shall call this a pseudo-

optimal partition of Gn � X :

In Section 3, paragraph 3 we have defined Pd
UNIF and in Lemma 6.1 we proved

that the typical L-free graphs are in Pd
UNIFðn;LÞ:

Given a40; we say that a graph Gn is a-stable if for any two optimal partitions
(U1;y;Up) and ðV1;y;VpÞ; there is a permutation p of f1;y; pg such that

jViDUjj4an if and only if j ¼ pðiÞ: 11 As we shall see, for a ¼ 2pd; the graphs in
Pd

UNIFðn;LÞ are a-stable.
Recall that WoðepÞ�12: By opl ¼ W=4 and WA 0; 1

4p

� �
; we have poo 1

16
:

Lemma 6.10. Let cX0 and l; W40; and set d ¼ 10
ffiffiffiffiffiffiffiffiffi
hðWÞ

p
; as before. If n is sufficiently

large, the following assertion holds. Let ðU1;y;UpÞ be an optimal partition of

GnAPd
UNIFðn;LÞ-PWðn;LÞ; and ðV1;y;VpÞ a pseudo-optimal partition of Gn � W

for a vertex set with jW jpc:
Then for every i; 1pipp; there is a unique j; 1pjpp; such that jUiDVjjp2dn: In

particular, all graphs GnAPd
UNIFðn;LÞ are 2d-stable.

Proof. The second assertion is just the case W ¼ |; so it suffices to prove the first

claim. Assume that Wo 1
16p4

: Since GnAPd
UNIFðn;LÞDPWðn;LÞ; we haveP

eðUiÞpWn2 and
P

eðViÞpWn2: Let 1pkpp:
Each Vi is partitioned into p parts: Vi-Uj; j ¼ 1;y; p: Let V �

i be the largest of

these parts so that jV�
i j4 n

2p2
; and let Uf ðiÞ be the set containing V �

i :We show that f ðiÞ
is a permutation.
All we have to check is that f ðiÞaf ð jÞ if iaj: This holds since otherwise

eðUf ðiÞÞXeðV �
i ;V �

j ÞX
1

4
� n

2p2

� �2
XWn24

X
t

eðUtÞ;

a contradiction. So f ðiÞ is a permutation and we may assume that f ðiÞ ¼ i; i.e.,
V �

i DUi: But now the same argument yields that jVi � Uijpdn; otherwise, for
sufficiently small W40;

eðViÞXeðV�
i ;Vi � UiÞX

1

4
� n

2p2

� �
� ðdnÞXWn24

X
t

eðVtÞ

would hold which is a contradiction, since W ¼ oðdÞ:
Now, ðU1;y;UpÞ and ðV1;y;VpÞ are almost interchangeable, so one can

immediately copy the above proof to get that jUi � Vijpdn; i.e. jUiDVijp2dn: This
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completes the proof. W was unimportant, negligible, in the proof because jW j is
bounded. &

Lemma 6.11 (Near-partitions). (a) The number of partitions of ½n� into p classes

whose distance from a given partition U1;y;Up of ½n� is smaller than on is at most

X
koon

n

k

� � !p

p2phðoÞn: ð19Þ

(b) For almost all L-free graphs Gn there are 2oðnÞ optimal (or pseudo-optimal)
partitions.

Proof. We shall need only (a): (b) is interesting on its own and follows from (a). The
number of partitions ðU 0

1;y;U 0
pÞ having distance oon from ðU1;y;UpÞ is at most

n
on

� 	p
:We assume here that o is very small: 2poo1

2
: So (19) immediately follows. &

7. Strong partitions

7.1. Large horizontal degrees

Our next lemma extends some well known facts of extremal graph theory (see e.g.
[11,25]) to our ‘‘typical graphs’’.

Lemma 7.1 (Large horizontal degrees). Given L; let p and t be defined in the usual

way, and let e40: Then there exists a d0ðeÞ such that if dod0ðeÞ; then there are integers

h0 and n0 so that if GnAPd
UNIFðn;LÞ; with n4n0; and (U1,?,Up) is an optimal

partition of Gn; then

jfxAU1 : dðx;U1ÞXengjph0:

The proof of this lemma is basically the same as that of a corresponding assertion
in the extremal graph theory: assuming that there are too many vertices of high
horizontal degrees, we have to build a Kpþ1ðt;y; tÞDGn step by step, by finding sets

in U1;y;Up completely joined to each other, see e.g. [25]. To prove Lemma 7.1, we

start with a generalization of a lemma of Erd +os and Simonovits [25].
Although similar generalizations are implicit in [15,17,21], for the sake of clarity

and completeness we shall prove Lemma 7.2 here.
Here we shall ‘‘reuse’’ e40 (which until now was used in the Regularity Lemma)

but from now on its meaning is a constant e ¼ eL depending on L but not on W:

Lemma 7.2. For every cAN and e40; there exist two integers, k;m0AN and a c40
such that if m4m0 and G ¼ GðC;DÞ is a bipartite graph with bipartition ðC;DÞ where

jCj ¼ k and jDj ¼ m and eðGÞXekm; then there are two vertex sets ACC;BCD with

jAj ¼ c; jBj ¼ Jcmn such that ðA;BÞ is completely joined in GðC;DÞ:
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Proof. The lemma we need is a version of the K +ovári–T. Sós–Turán Theorem [18].

We extend x
c

� 	
to ð�N;NÞ by

x

c

� �
:¼

xðx�1Þ?ðx�cþ1Þ
c! for xXc� 1;

0 for xpc� 1:

(

We claim that

k ¼ 2c

e

� �
; m0 ¼ 2k; and c ¼

ek

c

� �
k

c

� ��

will do. Suppose that GðC;DÞ satisfies the conditions. Call a pair ðX ; yÞ consisting of
an c-subset XDC and a vertex yAD a cap if GðyÞ+X : Let us count the caps in our

graph. If dðyÞ is the degree of yAD then, by the convexity of x
c

� 	
; there areX

yAD

dðyÞ
c

� �
Xm

ek

c

� �

caps ðX ; yÞ: Hence, some c-subset X0DC is in at least

m
ek

c

� ��
k

c

� �
¼ cm

caps, yielding the desired complete subgraph GðX0;Y Þ; jY jXcm: &

Remark 7.3. In Lemma 7.2 we took c ¼ ce;k;c :¼ ek
c

� 	
= k

c

� 	
which is larger than 1

2
ec if k

is sufficiently large.

Proof of Lemma 7.1. We shall prove the lemma in a stronger form, replacing the
condition that ðU1;y;UpÞ is an optimal partition by the condition that jUijX n

2p
:

We may assume that 0oeop�2:We have already fixed t and p: (See Remark 2.7.)

Let GnAPd
UNIFðn;LÞ; with n sufficiently large. We know the d-super-regularity

(17)+(18):

eðA;BÞX1
4
jAj jBj if ACUi; BCUj ; iaj and jAj; jBjXdn

p
:

Define a sequence of integers hp; hp�1;y; h0; by a backward recursion, as follows.

Set hp ¼ t; having defined hiþ1; let hi ¼ k be the integer whose existence is guaranteed

by Lemma 7.2, when we take e=3 instead of e and c ¼ hiþ1:We may assume that n is

large enough so that we can take mA n
p
; n

h i
:

Let n4n0 ¼ 3h0=e: Let C� be the set of those vertices of U1 which are joined to
each Ui by at least en edges. We show that jC�joh0: Assume the contrary, and fix h0
vertices in C�; forming a set CDU1: For D ¼ U1 � C we have dðx;DÞXen �
h0X

1
2
en:

Then by Lemma 7.2 there are sets H1CC and F1CD with jH1j ¼ h1 and jF1j ¼ cn

such that H1 is completely joined to F1 in Gn: By the optimality of partition, each
vertex xAH1 sends at least en edges to U2: Therefore, Lemma 7.2 implies that there
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are sets H2CH1 and F2CU2 with jH2j ¼ h2 and jF2j ¼ Icnm such that H2 is
completely connected to F2 in Gn: Proceeding in this way, we find a nested sequence
of sets HpCHp�1C?CH2CH1; and FiCUi with jHij ¼ hi and jFij ¼ Icnm for all
1pipp such that Hi is completely joined to FiDUi in Gn: A fortiori, Hp is completely

joined to F1;y;Fp in Gn: As jHpj ¼ t; it is sufficient to find a Kpðt;y; tÞ in the p-

partite subgraph of Gn spanned by the sets F1;y;Fp: The existence of this

immediately follows from Lemma 6.3, which is now applied to class-sizes Ecn: To
enable us to apply Lemma 6.3, d must be much smaller here than there. Thus
Kpþ1ðt;y; tÞDGn; a contradiction. &

7.2. Elimination of ‘‘low’’ degrees and ‘‘bad’’ subsets

We have assigned to each graph GnAPWðn;LÞ an optimal partition PðGnÞ ¼
ðU1;y;UpÞ:We have defined (Section 6.3) a vertex x of a graph GnAPd

UNIFðn;LÞ to
have low degree if Gn has an optimal partition ðU1;y;UpÞ such that jGðxÞ-Uj jo n

10p
;

where 1pjpp and xeUj: Note that if xAUi is of low degree then by the optimality

of the partition, jGðxÞ-Uijo n
10p
holds as well.

Lemma 7.4. In the notation of Theorem 2.5, at most nexðn;MÞþc̃�nAðnÞ graphs in

Pd
UNIFðn;LÞ contain vertices of low degree.

Needless to say, we could write oðnexðn;MÞþc̃�nAðNÞÞ in our estimate as well, but
that would not make any difference here, since increasing c immediately provides the
same (seemingly stronger) result. Note that we chose c̃ here and in Lemma 7.6 large
enough to be able to start the induction, and at least h0:
We skip the proof since this lemma is in some sense a special case of the next one. To

formulate the next lemma, we need a definition. The motivation of this definition is that
in a random subgraph of Tn;p with classes ðU1;y;UpÞ; if an c-tuple XDUi is fixed, a

vertex yAUj ð jaiÞ can be joined to X in 2c patterns, where a pattern means that

GðyÞ-X is fixed. The ‘‘expected number’’ of vertices of any fixed pattern is jUj j=2c:We
denote a connection pattern by ½X1=X2� where X1 :¼ X-GðyÞ and X2 :¼ X � GðyÞ:

Definition 7.5. Assume that e40 is fixed. Given a set XDUi of size c; having no
vertices of horizontal degreeXen; if for some jai the number of vertices yAUj with a

fixed X1 ¼ GðyÞ-X is smaller than jUjj=2cþ1; then we call X a bad c-tuple. Denote

by Pc
GOODðn;LÞ the family of those graphs which have no bad c-tuples.

Lemma 7.6 (Bad c-tuples). Let L be a forbidden family and c an integer. Then there

are e ¼ eL40 and d ¼ dðe;LÞ40 such that

jPd
UNIFðn;LÞ �Pc

GOODðn;LÞjpnexðn;MÞþc̃�nAðnÞ;

for some constant c̃40:
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Proof of Lemma 7.6. We shall prove that if the assertion of Lemma 7.6 holds for
n4n1 and some sufficiently large c̃; then the assertion also holds for n þ c: Then we
choose a c̃40 so large that Lemma 7.6 holds for npn1 þ c and that will imply the
assertion.

We can fix X in n
c

� 	
ways in ½n�:Deleting X we get a Gn�c: The graph Gn generates a

partition ðU1 � X ;U2;y;UpÞ of VðGn�cÞ ¼ ½n� � X : Call this partition the pseudo-

optimal partition of Gn�c:

Let PX ðn � c;LÞ be the set of L-free graphs on ½n� � X ; and let

fX : Pd
UNIFðn;LÞ-PX ðn � c;LÞ

be the map given by fX ðGnÞ ¼ Gn � X : Clearly,

jPd
UNIFðn;LÞ �Pc

GOODðn;LÞj

p
X

X

X
Gn�c

jf�1ðGn�cÞjp
n

c

� �
p2jPðn � c;LÞj �max

Gn�c

jf�1ðGn�cÞj: ð20Þ

We assumed that jPðn � c;LÞjpðn � cÞexðn�c;MÞþc̃�ðn�cÞ
Aðn � cÞ: The problem is to

estimate jf�1ðGn�cÞj: We shall estimate this by

jf�1ðGn�cÞjpN1ðnÞ �N2ðnÞ; ð21Þ

where
(a) N1ðnÞ is the number of pseudo-optimal partitions generated on a fixed Gn�c by

those Gn for which Gn � X ¼ Gn�c;
(b) N2ðnÞ bounds the number of extensions between X and Gn � X ; assumed that

the induced partition is already fixed: this is the product of the number of
connections of X to Gn � X ; multiplied by the number of G½X �’s which can be
estimated by 2

c
2

� 	
:

In order to make use of (20), we shall bound N1ðnÞ and N2ðnÞ separately. Clearly,

N1ðnÞp2phð6pdÞnE26p2hðdÞn; ð22Þ

since the optimal partitions of the graphs G0
n which lead to Gn�c are at most at

distance 5pdn from ðU1;y;UpÞ:12

To bound N2ðnÞ; we have to work a little harder. Let Pd;½X �
UNIFðn;LÞ denote the

family of the graphs GnAPd
UNIFðn;LÞ for which XDUi; and another class, say Uj ;

(iaj) has fewer than jUjj=2cþ1 vertices completely joined to X :

Suppose that XDU1 is a bad c-tuple for an optimal partition PðGnÞ ¼
ðU1;y;UpÞ for a GnAP

d;½X �
UNIFðn;LÞ:
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Let us fix a GnAP
d;½X �
UNIFðn;LÞ: An optimal partition PðGnÞ ¼ ðU1;y;UpÞ was

already fixed. We may assume that XDU1 and j ¼ 2: Let n :¼ jU2j: We defined a
connection pattern ½X1=X2� by fixing X1 :¼ X-GðyÞ: Then the number of connection-
patterns between X and a yAU2 is 2

c; the number of possible connections is 2nc: The

number of those connections (i.e., graphs GðX ;U2Þ) where fewer than n=2cþ1 vertices
yAU2 are joined to X according to the fixed ½X1=X2� is at most

2cn�acn

for some constant ac40: Indeed, this estimate is equivalent to showing that joining
the two classes in a random way, with edge-probability 1

2
; the probability that one

fixed connection pattern occurs at most n=2cþ1 times is at most 2�acn: The expected

number of vertices of a given connection is n=2c: The probability that we get less than
half of these connections, by Chernoff’s Inequality, is smaller than 2�acn: Therefore

N2ðnÞp2cðn�jU1jÞ�acnþchðeÞn: ð23Þ

Here 2hðeÞcn reflects the fact that each xAX may be joined in at most 2hðeÞn ways to its

own class. (This includes 2
c
2

� 	
as well.)

We have arrived to the last stage of the proof of Lemma 7.6. Let t ¼ maxLAL vðLÞ:
This maximum exists since L is finite. Fix e ¼ eL so that

hðeÞ ¼ 1

4t
min
cpt

ac: ð24Þ

Then fix W and d appropriately. This way, to estimate jPd;½X �
UNIFðn;LÞj we gain 2acn

because of the missing ‘‘connection pattern’’ and lose 2hðeÞcn because of the possible
horizontal edges.
In the ‘‘induction step’’ below we shall use that

ðn � cÞexðn�c;MÞþc̃�ðn�cÞ
Aðn � cÞ

nexðn;MÞþc̃�nAðnÞ p2
� 1�1

p

� �
nc
: ð25Þ

Here we used that nexðn;MÞþc̃�n is monotone increasing. Hence, using that by the

‘‘induction hypothesis’’ jPðn � c;LÞjpAðn � cÞðn � cÞexðn�c;MÞþc̃�ðn�cÞ; and succes-
sively applying (20)–(23) and (25) we find that

jPd
UNIFðn;LÞ �Pc

GOODðn;LÞj

p
n

c

� �
p2jPðn � c;LÞj �max

Gn�c

jf�1ðGn�cÞj

p
n

c

� �
p2jPðn � c;LÞj �N1ðnÞ �N2ðnÞ

pncp2 � ðn � cÞexðn�c;MÞþc̃�ðn�cÞ
Aðn � cÞ � 26p2hðdÞn � 2cðn�jU1jÞ�acnþchðeÞn

pncp2 � nexðn;MÞþc̃�nAðnÞ2
� 1�1

p

� �
nc
� 26p2hðdÞn � 2cðn�jU1Þ�acnþchðeÞn:
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All that remains is to estimate the factor of AðnÞ � nexðn;MÞþc̃�n above. This is

ncp2 � 2
� 1�1

p

� �
nc
� 26p2hðdÞn � 2cðn�jU1jÞ�acncþchðeÞn:

Here ncp2 is negligible. Using that jcðn � jU1jÞ � 1� 1
p

� �
ncjp

ffiffiffi
W

p
log 1W nc ¼ oðnÞ;

and d and e are such that 6p2hðdÞnpacn4 and chðeÞnpacn4; see (24),

ncp2 � 2
ffiffi
W

p
logð1=WÞnc � 26p2hðdÞn � 2�acnþchðeÞnpoð2�acn=4Þ:

This yields the desired result. &

8. Proof of Theorem 2.5

After all this preparation, we can easily prove Theorem 2.5: all we have to do is to
apply the lemmas in appropriate order.
Until now we have fixed an L ¼ Kpþ1ðt;y; tÞ; where p; tX2; as described in

Remark 2.7. Now we may slightly increase this t: It is important to emphasize here
that until now we used only one graph, Kpþ1ðt;y; tÞ as a forbidden graph containing
some LAL: Now we use that M is finite: we fix for each MAM a Kp�1ðt;y; tÞ; so
that M#Kp�1ðt;y; tÞ contains some LMAL: We may fix t as the maximum of

these t’s and of vðMÞ’s. We may replace the originalL by the finiteL� which is the
set of the corresponding LM ’s. Let W; d; Z be sufficiently small positive constants
satisfying the ‘‘corresponding’’ restrictions: we shall use below lemmas where we
needed to build up some forbidden graphs, for which we needed that the number of
vertices in our forbidden graphs were bounded. Therefore we could fix the constants
appropriately.
1. We wish to estimate jPðn;L�ÞjXjPðn;LÞj: (From now we shall not mention

this difference between L and L�:) By the Main Lemma, we may restrict ourselves
to estimating jPWðn;LÞj; i.e., the family of L-free graphs on ½n� for which, for the
optimal partition ðU1,?,UpÞ;

P
eðUiÞoWn2: Moreover, by Lemmas 6.1 and 6.6,

we may restrict ourselves to Pd
UNIFðn;LÞ-PW

WPðn;LÞ:
2. By Lemma 7.1 there is a h0 such that every GnAPd

UNIFðn;LÞ has at most h0
vertices of horizontal degree Xen:
3. By Lemmas 7.4 and 7.6, we may discard at most 2t � nexðn;MÞþc̃�n �AðnÞ graphs to

get a part ofPd
UNIFðn;LÞ-PW

WPðn;LÞ in which there are no low degrees, neither bad

c-tuples. Pc
GOODðn;LÞ is the set of graphs GnAPd

UNIFðn;LÞ that contain no vertices
of low degree and no bad c-tuples.
Take any of the remaining graphs, Gn with PðGnÞ ¼ ðU1;y;UpÞ:
We assert that G½Ui� becomes M-free, after the deletion of the vertices having

horizontal degree4en: This will show that the deletion of h0n edges provides a graph

in Cðn;MÞ; where Cðn;MÞ is the set of graphs fromPc
GOODðn;LÞ; that after deletion

of at most h0 vertices, the rest of the vertices can be partitioned into p M-free classes.

ARTICLE IN PRESS
J. Balogh et al. / Journal of Combinatorial Theory, Series B 91 (2004) 1–2422



We know that

jCðn;MÞjon
P

i
exðjUi j;MÞAðnÞonexðn;MÞþc�nAðnÞ;

and that will complete the proof. Note that first c̃ is chosen large enough, at least h0;
to enable us to start the induction, then cXc̃ is chosen large enough to enable us to
start the induction. So assume that Z is the set of vertices of U1 of horizontal degrees
Xen: If G½U1 � Z� contains an MAM; then we can build up an
M#Kp�1ðt;y; tÞDGn; first fixing an MDG½U1 � Z�; using Lemma 7.6: we first
fix p � 1 sets of bn points, ViDUi ði41Þ: Then, using Lemma 6.3 we find a
Kp�1ðt;y; tÞ in Gn � U1; and therefore an M#Kpðt;y; tÞ+LAL a contradiction.

This completes the proof. &
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[23] V. Rödl, On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986)

125–134.

[24] E.R. Scheinerman, J. Zito, On the size of hereditary classes of graphs, J. Combin. Theory Ser. B 61 (1)

(1994) 16–39.

[25] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in:

P. Erd +os, G. Katona (Eds.), Theory of Graphs (Proceedings of the Colloquium, Tihany, 1966),

Academic Press, New York, Akad. Kiadó, Budapest, 1968, pp. 279–319.
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