Extremal Subgraphs of Random Graphs

László Babai
EÖTVÖS LORÁND UNIVERSITY BUDAPEST, HUNGARY
Miklós Simonovits
MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, HUNGARY
Joel Spencer
SUNY AT STONY BROOK
STONY BROOK, NEW YORK, USA

ABSTRACT

We shall prove that if L is a 3 -chromatic (so called "forbidden") graph, and
$-R^{n}$ is a random graph on n vertices, whose edges are chosen independently, with probability p, and
$-B^{n}$ is a bipartite subgraph of R^{n} of maximum size,
$-F^{n}$ is an L-free subgraph of R^{n} of maximum size.
then (in some sense) F^{n} and B^{n} are very near to each other: almost surely they have almost the same number of edges, and one can delete $O_{\rho}(1)$ edges from F^{n} to obtain a bipartite graph. Moreover, with $p=\frac{1}{2}$ and L any odd cycle, F^{n} is almost surely bipartite.

Notation. Below we restrict our consideration to simple graphs: loops and multiple edges are excluded. We shall denote the number of edges of a graph G by $e(G)$, the number of vertices by $v(G)$, but superscripts will also denote the number of vertices; $G^{n}, R^{n}, T^{n, d}$ will always be graphs on n vertices. The set of vertices of a graph G is denoted by $V(G)$. The subgraph of a graph F spanned by a subset A will be denoted by $G_{F}(A)$, or simply by $G(A)$. The chromatic number of a graph G will be denoted by $\chi(G)$. The number of edges of a graph will be called "the size of the graph." If X and Y are disjoint vertex sets in a graph G, then $e_{G}(X, Y)$ denotes the number of edges joining X to Y, and $d_{G}(X, Y)$ denotes the edge-density between them:

$$
d_{G}(X, Y)=\frac{e_{G}(X, Y)}{|X| \cdot|Y|} .
$$

Journal of Graph Theory, Vol. 14, No. 5, 599-622 (1990)
© 1990 John Wiley \& Sons, Inc. CCC 0364-9024/90/050599-24\$04.00

In the case when X is just $\{x\}$, we shall write simply $e(x, Y)$. The number of edges in a subgraph spanned by a set X of vertices of G will be denoted by $e_{G}(X)$. We shall say that X is "completely joined" to Y if every vertex of X is joined to every vertex of Y. The set of neighbors of a vertex x will be denoted by $N_{G}(x)$. Sometimes we omit the subscript G.

Special Graphs. $\quad K_{q}$ will denote the complete graph on q vertices, $T^{n, d}$ is the so-called Turán graph with n vertices and d classes: n vertices are partitioned into d classes as uniformly as possible and two vertices are joined iff they belong to different classes. $K\left(n_{1}, \ldots, n_{d}\right)$ denotes the complete d-partite graph with n_{i} vertices in its i th class, $i=1,2, \ldots, d$.

INTRODUCTION

Given a "forbidden graph" L, the corresponding Turán type extremal graph problem asks for determining the maximum number of edges a graph G^{n} can have without containing L (as a not necessarily induced subgraph). The maximum will be denoted by $\operatorname{ext}(n, L)$. A fairly extensive theory developed around extremal graph problems of this type (see [3], [24]).

The main problems we shall discuss in this paper will concern analogous problems for random graphs. This means that instead of trying to find a maximum size L-free subgraph of K_{n} we pick a random graph R^{n} and try to find a maximum size L-free subgraph F^{n} of this R^{n}. In the classical theory it turns out [15], that if $\chi(L)=q+1$, then asymptotically the best graph is the q-chromatic Turán graph $T^{n . q}$:

$$
\operatorname{ext}(n, L)=e\left(T^{n, q}\right)+o\left(n^{2}\right)
$$

In case L is 3 -chromatic, taking the bipartite subgraph of K_{n} of maximum size (i.e., the Turán graph $T^{n, 2}$ with $\left[\frac{1}{4} n^{2}\right]$ edges) we get an asymptotically extremal graph (which is often not only asymptotically but exactly) extremal.

Motivated by this, for any fixed 3-chromatic "forbidden subgraph" L, we will determine the maximum number of edges an L-free subgraph of the random graph R^{n} can have. Our solution will be as follows. Take a random graph R^{n}, a maximum size bipartite subgraph B^{n} in it, a maximum size L-free subgraph $F^{n} \subseteq R^{n}$. We will show that they are very near to each other: one can delete a few edges of F^{n} to obtain a bipartite graph. This will give us the maximum number of edges the L-free subgraphs of R^{n} can have, and also will give a sufficiently good description of the structure of a "random extremal graph" F^{n}.

What is the connection between these two subgraphs? B^{n} is L-free, since $\chi\left(B^{n}\right)=2$, and $\chi(L)=3$. Thus $e\left(B^{n}\right) \leq e\left(F^{n}\right)$. However, F^{n} could have many more edges. Our main results will show that this is not the case.

Above we have given one interpretation of our theorems to be formulated below. There is another natural interpretation. Many results of ran-
dom graph theory suggest that if a random graph does not contain triangles, then we may be almost sure that it is bipartite. One such result is the Erdös-Kleitman-Rothschild theorem [12], asserting that the number of K_{q} free graphs on n vertices and the number of $q-1$-chromatic graphs on n vertices are in logarithm asymptotically equal.
Our results also suggest that for random graphs being triangle-free is almost the same as being bipartite, and the same holds for any forbidden 3 -chromatic L. (Moreover, analogous results hold for higher chromatic numbers.) Still, these results are not obvious: we shall give some examples of similar situations, where either the analogous theorem does not hold, or where we cannot prove it.

Random Graphs. In this paper we shall always use the binomial model for random graphs. We shall always fix a probability $p \in(0,1)$, independent of n and denote by $R^{n} \in \mathbf{G}(p)$ the fact that R^{n} is a random graph generated in "binomial way," that is, each edge is chosen with probability p and independently. The expected number of edges of R^{n} is $p\left(_{2}^{n}\right)$, the variance is $p(1-p)\binom{n}{2}$ and for any fixed graph H^{n} the probability that $R^{n}=H^{n}$ depends only on $E=e\left(H^{n}\right)$: it is

$$
p^{E}(1-p)^{(2)-E} .
$$

We shall say "almost surely". if we mean that "with probability tending to 1 , as $n \rightarrow \infty$."

Lower Bounds. If H is an arbitrary fixed graph on n vertices, then the expected number of edges common to H and R^{n} is $p \cdot e(H)$. Further, the standard deviation of this event is $O(\sqrt{p} \cdot n)$. Therefore for an arbitrary $\omega(n) \rightarrow \infty$ the number of edges common to H and R^{n} is between $p \cdot e(H)+$ $\omega(n) \cdot n$ and $p \cdot e(H)-\omega(n)$, almost surely.

Let $\chi(L)=3$. If we take an arbitrary random graph $R^{n} \in \mathbf{G}(p)$, and B^{n} is a bipartite subgraph of it, then it contains no L. So, if F^{n} is an L-free subgraph of maximum size, then $e\left(B^{n}\right) \leq e\left(F^{n}\right)$. Since R^{n} almost surely contains a bipartite B^{n} of $\frac{1}{4} p n^{2}+o\left(n^{2}\right)$ edges, we have

$$
\begin{equation*}
e\left(F^{n}\right)>\frac{1}{4} p n^{2}-o\left(n^{2}\right), \tag{1}
\end{equation*}
$$

almost surely. (We shall see that almost surely,

$$
\begin{equation*}
e\left(F^{n}\right)>\frac{1}{4} p n^{2}+c n^{3 / 2} \tag{2}
\end{equation*}
$$

For "most" forbidden L's (where for the sake of simplicity assume that $\chi(L)=3$), we can get a lower bound better than (1):

$$
\begin{equation*}
e\left(F^{n}\right) \geq p \cdot \operatorname{ext}(n, L)-\omega(n) \cdot n \tag{3}
\end{equation*}
$$

almost surely. Indeed, we may fix an arbitrary extremal graph S^{n} for L and, clearly, R^{n} will have $p \cdot \operatorname{ext}(n, L)-\omega(n) \cdot n$ edges in common with the fixed S^{n}, almost surely, proving (3). In most cases $\operatorname{ext}(n, L)>\frac{1}{4} n^{2}+c_{L} n^{1+c}$, with positive constant c. Then (3) is really sharper than (1). Often $\operatorname{ext}(n, L)>\frac{1}{4} n^{2}+c n^{1+c}$ with some $c>\frac{1}{2}$. Then (3) is better even than (2). Some details can be found in later parts of this paper and a more detailed description of the corresponding extremal results in [24].

MAIN RESULTS

Below we formulate four theorems. Theorem 1 deals with the simplest case, namely, when $p=\frac{1}{2}$ and K_{3} is excluded. Theorem 2 generalizes Theorem 1 to arbitrary 3-chromatic excluded graphs with "critical edges" (see the definition below). Theorem 4 describes the asymptotically extremal structure in the general case, i.e., when a 3-chromatic L is fixed, and though $L \subseteq F^{n}$ is not completely excluded, the graph F^{n} contains only a small number of copies of L. Theorem 3 yields a more accurate description of the exact extremal graphs, and may be needed for future applications.

Theorem 1. Let $p=\frac{1}{2}$. If R^{n} is a p-random graph and F^{n} is a K_{3}-free subgraph of R^{n} containing the maximum number of edges, and B^{n} is a bipartite subgraph of R^{n} having maximum number of edges, then

$$
e\left(B^{n}\right)=e\left(F^{n}\right)
$$

Moreover, F^{n} is almost surely bipartite.
Definition 1. (Critical edge) Given a k-chromatic graph L and an edge e in it, e is called critical if $L-e$ is $(k-1)$-chromatic.

All the edges of a K_{k} and of any odd cycle are critical. Many theorems valid for complete graphs were generalized to arbitrary L having critical edges (see, e.g., [23]). Theorem 1 also generalizes to every k-chromatic L containing a critical edge e and to every probability $p>0$.

Theorem 2. Let L be a fixed 3-chromatic graph with a critical edge e (i.e., $\chi(L-e)=2)$. There exists a function $f(p)$ such that if $p \in(0,1)$ is given, $R^{n} \in \mathbf{G}(p)$, and if B^{n} is a bipartite subgraph of R^{n} of maximum size and F^{n} is an L-free subgraph of the maximum size, then

$$
\begin{equation*}
e\left(B^{n}\right) \leq e\left(F^{n}\right) \leq e\left(B^{n}\right)+f(p) \tag{4}
\end{equation*}
$$

almost surely, and we can delete $f(p)$ edges of F^{n} so that the resulting graph is already bipartite, almost surely. Furthermore, there exists a $p_{0}<\frac{1}{2}$ such that if $p>p_{0}$, then F^{n} is almost surely bipartite: $e\left(F^{n}\right)=e\left(B^{n}\right)$.

The second part of Theorem 2 immediately implies Theorem 1 . In connection with the first part one could ask, How large is $f(p)$ as $p \rightarrow 0$? We do not know the precise answer, just that Theorem 2 holds with $f(p)=$ $O\left(p^{-4}\right)$ or even $f(p)=O\left(p^{-3} \log p\right)$. As to the lower bound on $f(p)$, we do not know if

$$
e\left(F^{n}\right)-e\left(B^{n}\right) \longrightarrow \infty \quad \text { as } p \longrightarrow 0
$$

In the second part of Theorem 2 we are not concerned with the exact value of the threshold probability p_{0}. Our main point is that the observed phenomenon is valid not just for $p=\frac{1}{2}$, but for some smaller (and for all the greater) values of p as well.

If $\chi(L)=3$ but we do not assume that L has a critical edge, then we get similar results, having slightly more complicated forms. To formulate them we have to introduce the notion of the "decomposition family" of L [23].

Definition 2 (Decomposition family). Let $\chi(L)=3$. The family \mathbf{M} of all the spanned subgraphs $M \subseteq L$ such that $L-M$ is an independent set will be called the decomposition family of L.

Describing a decomposition family, it is enough to describe the minimal graphs in it.

Examples. If $L=K_{3}$, then $M=K_{2}$ is a minimum decomposition graph, and more generally, the same holds if L has a critical edge. Obviously, there are no other minimum decomposition graphs. If $L=K(t, t, t)$, then $M=K(t, t)$ is the only minimum decomposition graph. If L is the dodecahedron graph (on 20 vertices), then the graph consisting of 6 independent edges will be in the decomposition family. However, there are other minimum decomposition graphs too, e.g., if M is the union of two pentagons and 5 edges hanging from one of these pentagons, then M is also a minimum decomposition graph. We have mentioned that mostly $\operatorname{ext}(n, L)>$ $\frac{1}{4} n^{2}+c_{L} n^{1+c}$, with some constants $c_{L}, \dot{c}>0$. Now we can tell that this occurs exactly if each decomposition graph contains a cycle.

We shall use-to simplify the form of our results-that for $\alpha>1$,

$$
\operatorname{ext}(n, \mathbf{M}) \leq \operatorname{ext}(\alpha n, \mathbf{M}) \leq\left(\alpha^{2}+o(1)\right) \cdot \operatorname{ext}(n, \mathbf{M})
$$

(The left inequality is trivial, the right one follows from [20], whereusing a simple averaging argument - the authors showed that $\operatorname{ext}(n, \mathscr{L}) /\binom{n}{2}$ is decreasing.) It is known in extremal graph theory ($[8],[22]$) that if
$x(L)=3$, then

$$
\begin{equation*}
\operatorname{ext}(n, L)=\frac{1}{4} n^{2}+O(\operatorname{ext}(n, \mathbf{M}))+O(n) \tag{5}
\end{equation*}
$$

Below we shall neglect the "ceiling signs." (In some sense (5) is sharp: putting an extremal graph $H^{n / 2}$ into one class of a $T^{n, 2}$ we get a graph G^{n} with

$$
e\left(G^{n}\right) \geq \frac{1}{4} n^{2}+\operatorname{ext}\left(\frac{1}{2} n, \mathbf{M}\right)
$$

and not containing any L.) Now, taking a random R^{n} with edge probability p, we get almost surely

$$
\geq p \cdot\left(\frac{1}{4} n^{2}+\operatorname{ext}\left(\frac{1}{2} n, \mathbf{M}\right)\right)-O(n \log n)
$$

edges common to R^{n} and G^{n}. Hence F^{n} must have at least this many edges. The next theorem asserts that it does not have essentially more edges.

Theorem 3. Let L be a given 3-chromatic graph. Let $p \in(0,1)$ be fixed and let $R^{n} \in \mathbf{G}(p)$. If B^{n} is a bipartite subgraph of R^{n} of maximum size and F^{n} is an L-free subgraph of maximum size, then almost surely

$$
e\left(B^{n}\right) \leq e\left(F^{n}\right) \leq e\left(B^{n}\right)+2 \operatorname{ext}(n, \mathbf{M})+O(n)
$$

and we can delete $O(\operatorname{ext}(n, \mathbf{M}))+O(n)$ edges of F^{n} so that the resulting graph is already bipartite, almost surely.

Examples. In the proof of Theorem 2 we shall use the Kövári-T. SósTurán theorem [21] according to which (for $r \leq s$)

$$
\begin{equation*}
\operatorname{ext}(n, K(r, s)) \leq \frac{1}{2} \sqrt[r]{s-1} n^{2-1 / r}+O(n) \tag{6}
\end{equation*}
$$

Equation (6) is sharp for $r=2,3$ (see [14], [5]). For $L=K(r, r, r)$ this yields $\operatorname{ext}(n, \mathbf{M})<c_{2} n^{2-l / r}$. If L is the dodecahedron graph, then $\operatorname{ext}(n, \mathbf{M})=5 n+O(1)$.

Theorem 3 is meant to be "applied" primarily when $\frac{1}{n} \operatorname{ext}(n, \mathbf{M}) \rightarrow \infty$. The extreme case ext $(n, \mathbf{M})=0$ is described by Theorem 2 .

In many cases (a) excluding some L, or (b) assuming that there are only few copies of L in the considered G^{n} (or now in F^{n}), has the same effect in the results. This is the case e.g. in the Erdös-Kleitman-Rothschild
theorem, or in the case of the Erdös-Simonovits theorem, or of the Aitai-Erdös-Komlós-Szemerédi results [1]. And this is the case in our theorems, too.

Theorem 4. Let L be a fixed 3-chromatic graph. Let R^{n} be a p-random graph, B^{n} a maximum size bipartite subgraph of it, and F^{n} a subgraph of R^{n} with $o\left(n^{v(L)}\right)$ subgraphs isomorphic to L and with

$$
e\left(F^{n}\right)>e\left(B^{n}\right)-o\left(n^{2}\right)
$$

edges. Then with probability tending to 1 , there exists a partition $[A / B]$ of $V\left(G^{n}\right)$ into two sets A and B with $|A|=\frac{n}{2}+o(n)$ and $|B|=\frac{n}{2}+o(n)$ such that

$$
e_{F}(A)=o\left(n^{2}\right), \quad e_{F}(B)=o\left(n^{2}\right), \quad \text { and } \quad e_{F}(A, B)=\frac{1}{4} p n^{2}+o\left(n^{2}\right) .
$$

All the results of this paper generalize to r-chromatic graphs as well. The formulation and proofs of the theorems are almost the same, though the results for $r>3$ have more complicated forms. Hence we restrict our considerations to the case $r=3$.

Remark. (A Third Interpretation). An alternative interpretation of the above theorems is that if $\chi(L) \geq 3$, then taking first a random graph R^{n} and then a maximal L-free subgraph $F^{n} \subseteq R^{n}$ is almost the same as taking first an extremal graph S^{n} and then taking the edges of S^{n} with probability p.

SOME RELATED EXAMPLES

One could think for a moment that theorems stating that " B^{n} and F^{n} are very near to each other" must have some deeper reason, and therefore there must be a much more general and more precise theorem in this field. The following three observations are to convince the reader that this is not quite so.

The first construction shows that there are random graphs of specific structure in which the maximum size triangle-free subgraphs and the maximum size bipartite subgraphs are far from each other.

Construction. Let us divide n vertices into 5 (almost) equal groups C_{1}, \ldots, C_{5}. For $i=1, \ldots, 5$ join a vertex x in C_{i} to a vertex y in C_{i+1} with probability p. (By definition, $C_{6}=C_{1}$.) Denote the resulting graph by Q^{n}. Now, for all the other pairs (x, y) join them with probability $q=\frac{p}{20}$. then we obtain a random graph R^{n}, in which we have to delete at least $\frac{1}{25} p n^{2}+o\left(n^{2}\right)$
edges to make it bipartite (because we need at least that many edge deletion to turn Q^{n} into a bipartite graph). On the other hand, Q^{n} is trianglefree; therefore deleting all the other edges of R^{n} we can turn R^{n} into a triangle-free graph by just deleting $\leq q\binom{n}{2}+o\left(n^{2}\right)$ edges: in this case the maximum size triangle-free subgraph has definitely more edges than the maximum size bipartite subgraph.

The Path Theorem. By a theorem of Erdös and Gallai [11], if G^{n} contains no path P^{m}, then

$$
e\left(G^{n}\right)<\frac{m-2}{2} n,
$$

and the union of $n /(m-1)$ vertex disjoint K_{m-1} is asymptotically optimal. As Erdös pointed out, R^{n} contains at least $n /(m-1)-o(n /(m-1))$ vertex disjoint copies of K_{m-1}. Hence for $L=P^{m}, e\left(F^{n}\right)$ is asymptotically equal to $\operatorname{ext}(n, L)$ (instead of being around $p \cdot \operatorname{ext}(n, L)$).

This shows that in general the "third interpretation"-given at the end of the last paragraph-does not necessarily hold.

The C_{4} Problem. Let $L=C_{4}$. Take an arbitrary fixed $p \in(0,1)$ and a p-random graph R^{n}. Let F^{n} be a C_{4}-free subgraph of maximum size. Clearly,

$$
e\left(F^{n}\right)<\operatorname{ext}\left(n, C_{4}\right)
$$

On the other hand, if S^{n} is a C_{4}-extremal graph on n vertices, then a p-random graph will contain at least

$$
(p+o(1)) \cdot \operatorname{ext}\left(n, C_{4}\right)
$$

edges of this S^{n}, showing that

$$
e\left(F^{n}\right) \geq(p+o(1)) \cdot \operatorname{ext}\left(n, C^{4}\right)
$$

Here we have a big gap (a factor of p) between the lower and upper bounds on $e\left(F^{n}\right)$ and "finding the truth" seems to be difficult.

LEMMATA

Our strategy is to get "self-improving information" on the structure of F^{n} : prove some estimates and then use them to obtain better estimates. Partly this is why we prove the theorems in reverse order. In the proofs we shall often delete the phrase "almost surely."

We shall estimate the "tail of the binomial distribution" by Chernoff's bounds [6].

Chernoff Bound. Let p be a probability and $\varepsilon_{i}=1,0$ with probabilities p and $q=1-p$, independently $(i=1, \ldots, h)$. Let $c>p$ be a constant and $d=1-c$. Define the Chernoff function as

$$
I(p, c)=c \log \frac{c}{p}+d \log \frac{d}{q} .
$$

Then

$$
P\left(\sum_{1}^{h} \varepsilon_{i}>c h\right)<e^{-\mu(p, c h} .
$$

Analogously, if $c<p$, then

$$
P\left(\sum_{1}^{h} \varepsilon_{i}<c h\right)<e^{-\mu(p, c) h} .
$$

Corollary (Folklore). For fixed p, if R^{n} is a binomial p-random graph and for some constant $c>\frac{1}{2}, X, Y$ are two disjoint vertex sets of size $>n^{c}$, then almost surely

$$
e_{R}(X, Y)=(p+o(1))|X||Y|
$$

The proof is trivial. The proof of Theorem 3 will consist of two parts.
-First we prove that the F^{n} of Theorem 3 is almost bipartite. Namely, its vertices can be partitioned into two classes A and B of roughly equal size, with $e_{F}(A)=o\left(n^{2}\right), e_{F}(B)=o\left(n^{2}\right)$. This is the content of the main lemma. Actually, the main lemma is an obvious weakening of Theorem 4. The content of the Randomness lemma is that the edges joining A and B behave in a "pseudorandom way."
-In the second part we apply a finer argument to F^{n}, and show that if A and B are chosen in the "best" way, then the edges in A (and in B) form a graph of bounded degree, and can be represented by a bounded number of vertices. This will imply that the number of edges in A and in B is $O_{p}(1)$, and will immediately imply Theorem 3.

Main Lemma. Let L be a fixed 3-chromatic graph. Let R^{n} be a p-random graph and F^{n} an L-free subgraph of R^{n} with

$$
e\left(F^{n}\right)>\frac{1}{4} p n^{2}-o\left(n^{2}\right)
$$

edges. Then with probability tending to 1 , there exists a partition $[A / B]$ of $V\left(G^{n}\right)$ into two sets A and B with $|A|=\frac{n}{2}+o(n)$ and $|B|=\frac{n}{2}+o(n)$ such that

$$
e_{F}(A)=o\left(n^{2}\right), \quad e_{F}(B)=o\left(n^{2}\right)
$$

To prove this lemma we need the regularization lemma of Szemerédi [25].
Regularity Condition. Given a graph G^{n} and two disjoint vertex sets in it, X and Y, we shall call the pair $(X, Y) \eta$-regular if for every subset $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ satisfying $\left|X^{\prime}\right|>\eta|X|$ and $\left|Y^{\prime}\right|>\eta|Y|$,

$$
\left|d\left(X^{\prime}, Y^{\prime}\right)-d(X, Y)\right|<\eta .
$$

The next lemma asserts that given an $\eta>0$, the vertex-set of every G^{n} can be partitioned into a bounded number of classes so that almost all the pairs of classes will be η-regular.

Regularization Lemma [25]. For every $\eta>0$, and integer k_{0} there exists a k_{η} such that for every $G^{n} V\left(G^{n}\right)$ can be partitioned into sets $V_{0}, V_{1}, \ldots, V_{k}$-for some $k_{0}<k<k_{\eta}$-so that each $\left|V_{i}\right|<\eta n,\left|V_{i}\right|=m$ (is the same) for every $i>0$, and for all but at most $\eta \cdot\binom{k}{2}$ pairs (i, j) for every $X \subseteq V_{i}$ and $Y \subseteq V_{j}$, satisfying $|X|,|Y|>\eta m$, we have

$$
\left|d(X, Y)-d\left(V_{i}, V_{j}\right)\right|<\eta .
$$

(One interpretation of this lemma is that all the graphs of positive edge density can be approximated by random graphs. The role of V_{0} is to make possible that all the other classes be exactly of the same size, and the role of k_{0} is to make the classes V_{i} sufficiently small, so that we could forget about the edges inside those classes.)

To prove the main lemma we shall also use the following theorem of Erdös and Simonovits, (formulated in [7,8] and [22] in a much more general way):

Stability Lemma [7,22]. For every $\varepsilon>0$ there exists a $\delta>0$ such that if $e\left(F^{k}\right)>\left(\frac{1}{4}-\delta\right) k^{2}$ and $K_{3} \nsubseteq F^{k}$, then F^{k} can be obtained from the Turán graph $T^{k, 2}$ by changing $<_{\varepsilon} k^{2}$ edges in it.

Proof of the Main Lemma. Let $v=v(L)$. Let $\varepsilon>0$ be fixed and apply the Szemerédi Regularization lemma to F^{n}, with $\eta=\varepsilon^{v}$, obtaining a partition $V_{0}, V_{1}, \ldots, V_{k}$ of the vertices as described above. Now we define a new graph H^{k}, called the "reduced graph," in which the vertices are the classes $V_{i}, i=1,2, \ldots, k$, and two classes V_{i} and V_{j} are joined by a "reduced edge" if $\left(V_{i}, V_{j}\right)$ is a regular pair and

$$
d\left(V_{i}, V_{j}\right)>2 \varepsilon .
$$

Let $m=\left|V_{i}\right|,(i>0)$. In (a) we shall show that $K_{3} \nsubseteq H^{k}$. In (b) we shall show that all but $4 \varepsilon n^{2}$ of the edges of F^{n} correspond to edges of H^{k}, i.e., join vertices of classes that are joined in the reduced graph. This will imply that

$$
\begin{equation*}
e\left(F^{n}\right)<p \cdot e\left(H^{k}\right) m^{2}+5 \varepsilon n^{2} . \tag{7}
\end{equation*}
$$

(a) First we show that if H^{k} contained a K_{3}, then F^{n} would contain a $K(v, v, v)$. Indeed, assume that the vertices of this K_{3} are the classes W_{1}, W_{2}, and W_{3}. We choose recursively the vertices $x_{1}, \ldots, x_{j} \in W_{1}$ and the sequence of nested subsets $W_{j, 2} \subseteq W_{j-1,2} \subseteq W_{2}, W_{j, 3} \subseteq W_{j-1,3} \subseteq W_{3}$ so that $\left|W_{j, 2}\right|,\left|W_{j, 3}\right|>\varepsilon^{\prime} m$ and each of the vertices x_{1}, \ldots, x_{j} is joined to each $y \in W_{j, 2} \cup W_{j, 3}$. By the assertion of the Szemerédi lemma, this can be done: for $j<v$,

$$
d\left(W_{1}-\left\{x_{1}, \ldots, x_{j}\right\}, W_{j, 2}\right)>\varepsilon \text { and }\left|W_{j, 2}\right|>\varepsilon^{y} m .
$$

Let $W_{j}^{*} \subseteq W_{1}$ be the set of those vertices that are joined to at least $\varepsilon^{j+1} m$ vertices of $\left|W_{j, 2}\right|$. By the regularity, $\left|W_{j}^{*}\right|>\frac{1}{2} m$. By the same argument, there is an $x_{j+1} \in W_{1}-\left\{x_{1}, \ldots, x_{j}\right\}$ joined also to $W_{j, 3}$ by $>\varepsilon^{j+1} m$ edges. Let

$$
W_{j+1,2}=N_{F}\left(x_{j+1}\right) \cap W_{j, 2} \quad \text { and } \quad W_{j+1,3}=N_{F}\left(x_{j+1}\right) \cap W_{j, 3} .
$$

So we can fix the nested sequence of subsets in W_{2} and W_{3} as stated above. Further,

$$
d\left(W_{u, 2}, W_{u, 3}\right)>\varepsilon .
$$

Hence, if n is sufficiently large, then (by the Kövári-T. Sós-Turán theorem) we can find a $K(v, v)$ between $W_{v, 2}$ and $W_{v, 3}$. They and $\left\{x_{1}, \ldots, x_{v}\right\}$ form a $K(v, v, v) \subseteq F^{n}$. This contradiction proves that H^{k} contains no triangles.
(More generally, let L be an arbitrary fixed graph of v vertices and t be a positive integer. If one applies Szemerédi's regularization lemma to an arbitrary graph F^{n} with $\eta=\varepsilon^{v t}$ and constructs H^{k} as above, then the following "blowing up" principle holds. Let $L \circ I^{\prime}$ be the graph obtained by replacing each vertex of L by a t-tuple and joining every vertex of a t-tuple to every one of an other t-tuple iff the original vertices of L were joined. Now, if n is large and $L \subseteq H^{k}$, then $L \circ I^{t} \subseteq F^{n}$. The proof goes by induction on $v t$, see, e.g., [18].)
(b) Since $K_{3} \nsubseteq H^{k}$, we can apply Turán's theorem:

$$
\begin{equation*}
e\left(H^{k}\right) \leq \frac{1}{4} k^{2} \tag{8}
\end{equation*}
$$

By the corollary, each "reduced edge" of H^{k} corresponds to at most $p m^{2}+o\left(m^{2}\right)$ edges of F^{n}. This yields

$$
\frac{1}{4} p m^{2} k^{2}+o\left(n^{2}\right)=\frac{1}{4} p n^{2}+o\left(n^{2}\right)
$$

edges. The remaining edges

- either join vertices of the same V_{i},
-or a vertex of V_{0} to some other vertex,
- or correspond to a low-density $d\left(V_{i}, V_{j}\right)$,
- or to a non-regular pair (V_{i}, V_{j}).

We can estimate the number of edges joining vertices of the same classes by

$$
\frac{n}{m}\binom{m}{2} \leq \frac{1}{2} n m \leq \frac{1}{2} \varepsilon n^{2} .
$$

The number of edges represented by V_{0} is $\leq\left|V_{0}\right| n \leq(\varepsilon n) n=\varepsilon n^{2}$. Clearly, the low-density pairs $\left(V_{i}, V_{j}\right)$ contribute $<2 \varepsilon\binom{n}{2} \leq \varepsilon n^{2}$ edges. Finally, the nonregular pairs give at most $\varepsilon\binom{k}{2} m^{2} \leq \frac{1}{2} \varepsilon n^{2}$ edges. This proves (7).

Comparing (1) and (7) we get that in (8) we must have almost equality:

$$
e\left(H^{k}\right)>\left[\frac{1}{4} k^{2}\right]-\frac{8}{p} \varepsilon k^{2}
$$

Since $K_{3} \nsubseteq H^{k}$, we can apply the stability lemma to H^{k} : there is a function $\gamma \rightarrow 0$ (if $\varepsilon \rightarrow 0$) such that $V\left(H^{k}\right)$ can be partitioned into two classes A_{R} and B_{R}, with $\left|A_{R}\right|,\left|B_{R}\right| \leq \frac{k}{2}+\gamma k$; further, $e_{H}\left(A_{R}\right)<\gamma k^{2}, e_{H}\left(B_{R}\right)<\gamma k^{2}$. Define A as the union of the sets V_{i} in A_{R}, and B as the union of the V_{i} 's in B_{R}. If we delete all the edges of F^{n} joining sets V_{i} in A_{R} and the edges joining vertices of the same V_{i} for some $i=1, \ldots, k$, and the edges not corresponding to reduced edges and the edges represented by V_{0}, then we deleted all the edges in A, by deleting $<(5 \varepsilon+\gamma) n^{2}$ edges. Similarly, we can delete $<(5 \varepsilon+\gamma) n^{2}$ edges to turn B into an independent set. This proves the main lemma, if $\varepsilon \rightarrow 0$.

PROOFS OF THE THEOREMS

Proof of Theorem 4 (Sketched). The proof of Theorem 4 is almost word by word the same as the proof of the main lemma. The only change is that now we have to show that
(*) if the reduced graph contained a K_{3}, then F^{n} would contain $c n^{e(L)}$ forbidden subgraphs L.

This would be almost trivial if the edges were picked at random, with some fixed probability $p>0$, to join three classes V_{i}, V_{j}, and V_{h}. The proof is slightly more complicated but still just a standard argument if we know that three classes V_{i}, V_{j}, and V_{h} of H^{k} form a triangle in the reduced graph. One could easily give a-somewhat longer-self-contained proof of (*), using only the Szemerédi lemma, however, below we shall provide a proof based on the "theory of supersaturated graphs."

First we settle the simplest case, when $L=K_{3}$ (leaving some details to the reader). We can argue as follows. We call a vertex $x \in V_{i}$ typical, if it is joined to V_{j} by at least $\left(d\left(V_{i}, V_{h}\right)-\varepsilon^{v}\right) m$ edges and the analogous statement for V_{h} also holds. By the regularity, all but $2 \varepsilon^{v} m$ points of V_{i} are "typical." For a "typical" vertex $x \in V_{i}$

$$
\left|N_{F}(x) \cap V_{j}\right|>\frac{1}{2} p m \quad \text { and } \quad\left|N_{F}(x) \cap V_{h}\right|>\frac{1}{2} p m .
$$

By the regularity,

$$
e\left(N_{F}(x) \cap V_{j}, N_{F}(x) \cap V_{h}\right)>2 \varepsilon\left(\frac{1}{2} p m\right)^{2}-\varepsilon^{\prime} m^{2}
$$

Hence a "typical" x is contained in at least $\frac{1}{4} \varepsilon p^{2} m^{2}>c_{1} n^{2}$ triangles: there are at least $c_{2} n^{3}$ copies of K_{3} in F^{n}.
We shall apply the following Corollary 2 of [16].
Theorem on Supersaturated Hypergraphs. Let $K_{h}^{h}(t, \ldots, t)$ be the h uniform hypergraph obtained by taking h disjoint t-tuples X_{1}, \ldots, X_{h} and all those h-tuples that contain one vertex from each X_{i}. For every $c>0$ there exists a $c^{\prime}>0$ such that if an h-uniform hypergraph contains at least $c n^{h}$ hyperedges, then it contains at least $c^{\prime} n^{h t}$ copies of $K_{h}^{h}(t, \ldots, t)$.

Put $h=3$ and take a t for which $K(t, t, t) \supseteq L$. Apply the above theorem to the 3 -uniform hypergraph of the triangles of F^{n}. We have at least $c_{2} n^{3}$ triangles, therefore at least $c_{3} n^{3 t}$ copies of $K_{3}^{3}(t, t, t)$. Therefore we have at least $c_{3} n^{3 t}$ copies of $K(t, t, t)$ in F^{n}. Each L is contained in at most $c_{4} n^{3 t-u(L)}$ copies of $K(t, t, t)$. Thus we must have at least $c_{5} n^{2(L)}$ copies of L in F^{n}. (These type of arguments are standard in papers on supersaturated graphs, see, e.g., [16], [5]).

This contradicts the assumption of Theorem 4. Hence $K_{3} \nsubseteq H^{k}$. From here the proof is the same as above.

Randomness Lemma. Let us fix a probability $p \in(0,1)$, a constant $c \in(0,1)$, and an integer k. Then a random binomial graph R^{n} with edgeprobability p (and vertex set V) has the following property almost surely:

Let $m>c n$ and

$$
t=2 \log \frac{e n}{m} / I\left(p^{k}, c p^{k}\right)=O(1)
$$

For every subset $U \subseteq V$ of m vertices there exists a set $Q=Q_{U} \subset V$ of at most $t k=O(1)$ vertices such that every k-tuple of $V-Q-U$ is completely joined to at least $c p^{k}|U|$ vertices of U.

The meaning of this lemma is that in R^{n}, fixing a large set U and k vertices $x_{1}, \ldots, x_{k} \in V-U$, the expected number of common neighbors of the x_{i} 's in U is $p^{k}|U|$. The lemma says that though there are many sets U and k-tuples outside, still large deviations from $p^{k}|U|$ are highly improbable.

The constant c in the lower bound on m and in $c p^{k}$ do not have to be the same.

Proof of the Randomness Lemma. Assume that R^{n} is a p-random graph, $c \in(0,1)$ and k are fixed. Given a set U of m elements, a k-tuple $\left\{x_{1}, \ldots, x_{k}\right\}$ will be called "violating" if U contains fewer than $c p^{k} m$ common neighbors of these x_{i} 's. The expected number of common neighbors of x_{1}, \ldots, x_{k} in U is $p^{k} m$. By Chernoff inequality, the probability that for a given $U,\left\{x_{1}, \ldots, x_{k}\right\}$ is "violating" is $\left\langle e^{-l\left(p^{k}, c p^{k}\right) m}\right.$. Since the probabilities of the violations for disjoint sets are independent, the probability that for a fixed U, t given vertex disjoint k-tuples are "violating" is $\left\langle e^{-t \cdot /\left(p^{k}, c p^{k}\right) m}\right.$. Since t k-tuples can be chosen in $<n^{t k}$ ways, therefore the probability there are t vertex disjoint violating k-tuples, is $\left.<n^{t k} e^{-t /\left(p^{k} . c p^{k}\right.}\right) m$. The m-element subset U can be chosen in

$$
\binom{n}{m}<\left(\frac{n e}{m}\right)^{m}
$$

ways, hence the probability of the existence of a U and t disjoint violating k-tuples is

$$
<e^{\left.i k \log n+m\left(\log (e n / m)-t \cdot l p^{k}, c p^{k}\right)\right)} .
$$

If $t<c \log n$, then the $n^{t k}$ term is negligible: for

$$
t=2 \log \frac{e n}{m} / I\left(p^{k}, c p^{k}\right)
$$

the above probability is $o(1)$. (And therefore for $t>\log n$ it is also $o(1)$.)
Hence for each U we can find a set Q_{U} of size $t k$ so that in $V\left(F^{n}\right)-Q_{U}-U$ there are no violating k-tuples.

Proof of Theorem 3. (A) We start with some general remarks. If every $M \in \mathbf{M}$ contains a cycle, then there exists a $\gamma>1$ such that $\operatorname{ext}(n, \mathbf{M})>$
n^{γ} if n is sufficiently large. (See e.g., [24].) In this case the $O(n)$ terms are negligible. If \mathbf{M} contains a tree or a forest, then $\operatorname{ext}(n, \mathbf{M})=c n+o(n)$, where in some cases $c>0$, in some others $c=0$. In this second case one can easily see that for some α and β the decomposition family contains both a $K(1, \alpha)$ and a graph of β independent edges. One can easily see that in these cases $\operatorname{ext}(n, \mathbf{M})=O(1)$. Below the "linear" and "sublinear" cases shall also be covered; however, the reader should primarily concentrate on the "superlinear" cases.

By the main lemma, there exists a partition $[A / B]$, such that

$$
e_{F}(A)=o\left(n^{2}\right) \text { and } e_{F}(B)=o\left(n^{2}\right)
$$

We shall call a partition $[A / B]$ optimal if $e_{F}(A, B)$ attains its maximum. Fix an optimal partition $[A / B]$. By the optimality, for each $x \in A$,

$$
e_{F}(x, A) \leq e_{F}(x, B)
$$

An edge will be called "horizontal" if it joins two vertices of the same class, and we shall call an edge of R^{n} "missing" if it joins A and B and is not in F^{n}.

Let $v=v(L)$. We fix an $\varepsilon<\frac{1}{50 u} p^{v}$ and choose n so large that the $o(n), o\left(n^{2}\right)$ terms below are "negligible" compared to $\varepsilon n, \varepsilon n^{2}$. (Later $\varepsilon \rightarrow 0$.)

Exceptional Vertices. We apply the randomness lemma first to $U=A$, $c=\frac{1}{2}$, and to the v-tuples in B, thus obtaining that there exists a subset X_{B} of size $O(1)$, such that all the v-tuples of $B-X_{B}$ have at least $\frac{1}{4} p^{\nu} n$ common neighbors in A. Next we apply the lemma to B and the v-tuples in A, obtaining an $X_{A} \subset A$. The vertices in $X_{a} \cup X_{B}$ will be called exceptional.

Now we show that if t is the number of vertices in A, joined-in F^{n} - to A by more than εn edges, then $t=O_{e}(1)$. More specifically, $t<2 v / \varepsilon^{2}$, if n is sufficiently large.
To prove this we shall assume that $x_{1}, \ldots, x_{\text {t }}$ are these vertices, and we shall define some configurations called "flowers" and count them in two different ways. Consider the triangles in F^{n} one vertex of which is an x_{i}, and the opposite edge joins A to B. A flower is an edge $e=(a, b)$ with v such triangles ($a b x_{i}$) on it ($a \in A, b \in B$). The edge e will be called "center-edge," the v other vertices of the triangles form the "blossoms." So first let us count the triangles $\left(a b x_{i}\right)$ in $F^{n}, a \in A, b \in B$. Each of the t vertices x_{1}, \ldots, x_{1} is joined to both A and B by at least εn edges. If all the edges of R^{n} were present in F^{n}, then each x_{i} would be roughly in $\varepsilon^{2} p n^{2}$ triangles. At most $o\left(n^{2}\right)$ edges are missing, hence we have at least $\frac{2}{3} t \varepsilon^{2} p n^{2}$ triangles. Now we count the \boldsymbol{v}-flowers. If $\sigma(e)$ denotes the number of triangles on the edge e, then

$$
\sum_{e} \sigma(e)>\frac{2}{3} t \varepsilon^{2} p n^{2}
$$

Clearly, e yields $\binom{\sigma(e)}{\nu}$ flowers. Thus the total number of flowers is

$$
N=\sum_{e}\binom{\sigma(e)}{v}
$$

Since $e\left(F^{n}\right)<\frac{2}{3} p n^{2}$, on the average we have $>\varepsilon^{2} t$ triangles per edge. We extend the definition of $\binom{x}{v}$ to all the reals:

$$
\binom{x}{v}= \begin{cases}x(x-1) \ldots(x-v+1) / v! & \text { if } x>v-1 \\ 0, & \text { otherwise }\end{cases}
$$

One can easily see that this function is convex. This yields that the number of flowers is

$$
N=\sum\binom{\sigma(e)}{v} \geq c_{1} n^{2}\binom{\varepsilon^{2} t}{v}
$$

On the other hand,

$$
N<c_{2} n^{2-1 / v}\binom{t}{v}
$$

since the blossoms of a flower can be chosen only in $\left(\begin{array}{l}\binom{d}{v}\end{array}\right.$ ways, and for each choice we have at most $c_{3} n^{2-1 / v}$ center-edges: otherwise, by [21], we could find a fixed v-tuple $\left\{x_{1}, \ldots, x_{v}\right\}$ and a $K(v, v)$ outside, so that all the edges of $K(v, v)$ would be center-edges of a flower with that very v-tuple (as "blossoms"). This would yield a $K(v, v, v) \subseteq F^{n}$, a contradiction.

Assume (indirectly) that $t \geq 2 v / \varepsilon^{2}$. Then (9) and (10) imply

$$
\begin{equation*}
c_{4} n^{-1 / v} \geq\binom{\varepsilon^{2} t}{v} /\binom{t}{v} \geq \frac{\left(\varepsilon^{2} t-v\right)^{v}}{t^{v}} \geq\left(\varepsilon^{2}-\frac{1}{2} \varepsilon^{2}\right)^{\nu}=\frac{\varepsilon^{2 v}}{2^{v}} \tag{11}
\end{equation*}
$$

The left-hand side of (11) converges to 0 as $n \rightarrow \infty$. Therefore for $n>n_{0}$ we get $t \leq 2 v / \varepsilon^{2}$.
(B) Denote by Y_{A} (and respectively, by Y_{B}) the set of vertices that are either in X_{A} (in X_{B}) or are joined to at least εn vertices of their own class. We wish to prove that the subgraphs $M \subseteq G\left(A-Y_{A}\right)$ and $M \subseteq G\left(B-Y_{B}\right)$ (where $M \in \mathbf{M}$) can be represented by $q<O\left(\frac{1}{n} \operatorname{ext}(n, \mathbf{M})\right)+O(1)$ vertices.

Assume that, e.g., $A-Y_{A}$ contains some M 's. Fix in $A-Y_{A}$ a maximum vertex-independent set of subgraphs $M_{1}, \ldots, M_{a} \in \mathbf{M}$. We shall prove that if a is large then the number e_{M} of edges joining A and B in R^{n} but missing from F^{n} is so large that F^{n} cannot be maximal. Denote by S_{A} the number of
horizontal edges incident with the vertices of these subgraphs. By the randomness lemma, for evèry M_{i} there are $\geq \frac{1}{4} p^{v} n$ vertices in B joined to M_{i} completely (in $\left.R^{n}\right)$. Denote this set by B_{i}. ($B_{i}=B \cap\left(\cap N_{R}\left(x_{i}\right)\right.$).) Any v vertices $z_{1}, \ldots, z_{v} \in B_{i}$, form an L with M_{i}. Hence for any $z_{1}, \ldots, z_{v} \in B_{i}$, at least one edge joining them in R^{n} to M_{i} is missing from F^{n}. In other words, all but at most $v-1$ vertices $z \in B_{i}$ are joined to M_{i} (in R^{n}) by at least one "missing edge." Thus each M is incident with at least $\left|B_{i}\right|-v>\frac{1}{5} p^{v} n$ "missing edges." Therefore $\varepsilon_{M} \geqslant a \cdot \frac{1}{5} p^{v} n$. At the same time, each M is incident with at most $\varepsilon u n$ horizontal edges, since it does not intersect Y_{A}. Hence, if the vertices of these $a_{\text {, disjoint }} M$'s represent S_{A} horizontal edges, then $a>S_{A} /(\varepsilon v n)$. Therefore $e_{M} \geq a \cdot \frac{1}{5} p^{v} n \geq S_{A} /(\varepsilon v n) \cdot \frac{1}{5} p^{v} n \geq 5 S_{A}$ missing edges are incident with these vertices, since $\varepsilon<\frac{1}{25_{0}} p^{v}$.

If we fix a maximum family of M 's in $B-Y_{B}$ and S_{B} denotes the number of horizontal edges incident with them, then-by symmetry-we may assume that $S_{A} \geq S_{B}$.

Deleting all the edges of $G(A)$ and $G(B)$ and adding all the e_{M} missing edges, we get a bipartite Z^{n} not containing L. Therefore $e\left(Z^{n}\right) \leq e\left(F^{n}\right)$. Here $e(G(A)) \leq S_{A}+c_{6} n+\operatorname{ext}(n, \mathbf{M})$, since deleting all the $\leq S_{A}+\left|Y_{A}\right| n$ edges incident to the M_{i} 's and the vertices in Y_{A} we get a graph not containing any $M \in \mathbf{M}$. Similarly, $e(G(B)) \leq S_{B}+c_{6} n+\operatorname{ext}(n, M)$. On the other hand, $e_{M}>5 S_{A}$. Hence

$$
\begin{align*}
0 \leq e\left(F^{n}\right)-e\left(Z^{n}\right)= & e(G(A))+e(G(B))-e_{M} \leq 2 S_{A}+2 c_{6} n \\
& +2 \operatorname{ext}(n, \mathbf{M})-5 S_{A} \tag{12}
\end{align*}
$$

Therefore

$$
S_{B} \leq S_{A}<\operatorname{ext}(n, \mathbf{M})+c_{6} n,
$$

and

$$
e_{M} \leq e(G(A))+e(G(B)) \leq 4 \operatorname{ext}(n, \mathbf{M})+4 c_{6} n .
$$

Consequently,

$$
q<v a=O\left(e_{M} / p^{v} n\right)<O\left(\frac{1}{n} \operatorname{ext}(n, \mathbf{M})\right)+O(1) .
$$

Proof of Theorem 2. We start with some obvious inequalities, valid for any random graph R^{n}. Clearly, for every vertex the degree $d_{R}(x)=p n-$ $o(n)$, almost surely. Further, for every pair of vertices x and y, almost surely $\left|N_{R}(x) \cap N_{R}(y)\right|=p^{2} n+o(n)$. Define

$$
\Delta(x, y)=\left(N_{R}(x)-N_{R}(y)\right) \cup\left(N_{R}(y)-N_{R}(x)\right)
$$

We know that in a random R^{n},

$$
\begin{equation*}
|\Delta(x, y)|=2\left(p-p^{2}\right) n+o(n) . \tag{13}
\end{equation*}
$$

Let $v=v(L)$. Let $T^{q v, q, 1}$ be the graph obtained from $K_{q}(v, \ldots, v)$ by adding one edge to it. In case when L has a critical edge, clearly, $L \subset T^{2 \nu, 2,1}$. Thus F^{n} contains no $T^{2 v, 2,1}$ either. (As a matter of fact, a ($q+1$)-chromatic L has a critical edge iff it is contained in a $T^{q u, q, 1}$.)
(A) Again, fix an $\varepsilon>0$ and let n be so large that the $o(\ldots)$ terms be negligible. We shall prove that the maximum degree $d_{F}(G(A))=o(n)$. This will imply that $X_{A}=Y_{A}$ in the previous proof: in any "optimal" partition, if $x \in A$, then $\left|N_{F}(x) \cap A\right| \leq \varepsilon n$. (Later we shall see that $\left.d_{F}(G(A))=O(1).\right)$

Assume that $x \in A, A^{\prime}=A \cap N_{F}(x), B^{\prime}=B \cap N_{F}(x)$, and $\left|A^{\prime}\right| \geq \varepsilon n$. By the optimality of the partition, $\left|B^{\prime}\right| \geq\left|A^{\prime}\right| \geq \varepsilon n$. Clearly, $e_{R}\left(A^{\prime}, B^{\prime}\right) \geq$ $p(\varepsilon n)^{2}+o\left(n^{2}\right)$. If F^{n} contained a $K(v, v)$ with one class in A^{\prime} and the other in B^{\prime}, then x and this $K(v, v)$ would yield a $T^{2 v+1,2,1} \subseteq F^{n}$. Thus $e_{F}\left(A^{\prime}, B^{\prime}\right)=O\left(n^{2-1 / v}\right)=o\left(n^{2}\right)$, by [21]: almost all of these edges are missing from F^{n}.

Let Z^{n} be the graph obtained from F^{n} by deleting all the horizontal edges and then adding the $p(\varepsilon n)^{2}+o\left(n^{2}\right)$ missing edges of R^{n} (joining A^{\prime} to B^{\prime}). Since $e_{F}(A)=o\left(n^{2}\right), e_{F}(B)=o\left(n^{2}\right)$ and $Z^{n} \subseteq R^{n}$ is also L-free, therefore

$$
0 \leq e\left(F^{n}\right)-e\left(Z^{n}\right)=e_{F}(A)+e_{F}(B)-e_{F}\left(A^{\prime}, B^{\prime}\right)<-\frac{1}{2} p(\varepsilon n)^{2},
$$

a contradiction. This proves that $d_{F}(G(A))=o(n)$ and $Y_{A}=X_{A}$.
(B) What does the argument (B) of the previous proof yield now? Let M_{0} be the graph with $\boldsymbol{v}\left(M_{0}\right)=v$ and $e\left(M_{0}\right)=1$. If \mathbf{M} is the decomposition class of L, then $M_{0} \in \mathbf{M}$. Therefore $\operatorname{ext}(n, \mathbf{M})=0$ (if $n \geq v$). As we saw in the previous proof, the edges in $A-X_{A}$ can be represented by $O(1)$ vertices. Putting these $O(1)$ vertices into X_{A}, and into X_{B} on the other side, we achieve that $A-X_{A}$ (and $B-X_{B}$) contain no edges.
(C) Let us count the number of edges in A. We know that these edges are incident with the $O_{p}(1)$ vertices in $X_{A} \cup X_{B}$. To prove (4) it is enough to show that the horizontal degree $\left|N_{F}(x) \cap A\right|=O_{p}(1)$ for each $x \in X_{A}$. Assume that we have an $x \in X_{A}$ and $y_{1}, \ldots, y_{t} \in A \cap N_{F}(x)$. We apply the randomness lemma to the set $U=B \cap N_{F}(x)$ and the vertices (i.e., 1-tuples) y_{i}. Clearly, $|U|=\frac{p}{2} n+o(n)$. If t is large enough, at least one y_{i} is joined in R^{n} to $>\frac{1}{4} p^{2} n$ vertices of U. Since $e_{M} \leq e(G(A))+e(G(B))<$ $\left(\left|X_{A}\right|+\left|X_{B}\right|\right) \varepsilon n<\frac{1}{8} p^{2} n$, assumed that ε is small enough, hence

$$
\left|N_{F}\left(y_{i}\right) \cap U\right|>\frac{1}{8} p^{2} n=c_{7} n .
$$

We pick v such vertices: $z_{1}, \ldots, z_{v} \in N_{F}(x) \cap N_{F}\left(y_{i}\right)-X_{B}$. They are joined to (x, y_{i}) completely in F^{n} and are outside X_{B}. Hence we can apply the randomness lemma again, to this v-tuple and $U^{\prime}=A-X_{A}$, obtaining $v-2$ further vertices $w_{1}, \ldots, w_{v-2} \in A$, completely joined to $\left\{z_{1}, \ldots, z_{v}\right\}$. They yield a $T^{2 v, 2,1} \subseteq F^{n}$, a contradiction. Hence (4) is proved. Now, by (12), we know that deleting $O_{p}(1)$ appropriate edges we get a bipartite graph, and also we know that $e_{M}=O_{p}(1)$.
(D) Now we prove that there exists a $\frac{2}{5}<p_{0}<\frac{1}{2}$ such that for every $p>p_{0}$, almost surely F^{n} is bipartite. Here we have to use a finer argument. First we sketch the proof, carried out in (i)-(iv).

On the one hand, we shall show that for an optimal partition $[A / B]$

$$
\begin{equation*}
e_{R}(A, B)>\frac{p}{4} n^{2}+c_{8} n^{3 / 2}, \tag{14}
\end{equation*}
$$

that is, we have noticeably more edges across, than expected. (This is again a property of every random R^{n}.)

On the other hand, using that $T^{2 v, 2,1} \nsubseteq F^{n}$, we shall show that unless this partition is a 2-coloring of F^{n}, there must exist two vertices x and y so that, say, apart from a small error (of δn vertices), $B=\Delta(x, y)$ and $A=$ $V\left(R^{n}\right)-\Delta(x, y)$. More precisely, for every $\delta>0$, if $p>p(\delta)=\frac{1}{2}-\frac{\delta}{10}$, then

$$
\begin{equation*}
|\Delta(x, y)-B|+|B-\Delta(x, y)|<\delta n . \tag{15}
\end{equation*}
$$

The probability of (14) for any fixed partition is exponentially small and the existence of partitions satisfying (14) is highly probable only because there are exponentially many partitions. However, the number of partitions satisfying (15) is much smaller; therefore the probability of a partition satisfying both (14) and (15) will be negligible. Hence the optimal partition will give a 2 -coloring, almost surely.
(i) First we show that for the optimal partition $[A / B]$ (14) holds with some appropriate constant $c_{8}>0$. To prove this we shall make use of the following purely probability theoretical assertion.

If we fix two numbers α and β with $\alpha+\beta=1$, and set out with $X=\varnothing$, $Y=\varnothing$, and put an element e_{i} with probability $p \alpha$ into the set X, and with probability $p \beta$ into Y, and into none of them with probability $1-p$, for $i=1,2, \ldots, m$, then there is a constant $c(p)>0$ such that the probability $\operatorname{Prob}(\|X|-| Y\|>c(p) \sqrt{m})>c(p)$. The reason for this is that the standard deviation of the binomial distribution of m events is $\sqrt{p(1-p) m}$. The details are left to the reader.

Let the vertices of our random graph be $x_{1}, x_{2}, \ldots, x_{n}$. We may regard R^{n} as a random graph, generated in $n-1$ passes, where in the i th pass we de-
cide for $j=1, \ldots, i-1$ if $\left(x_{i}, x_{j}\right)$ is an edge or not. We build up the sets $\left(A_{i}, B_{i}\right)$ as follows: $A_{1}=B_{1}=\varnothing$. In the i th step $(i \geq 2)$ we check whether $e_{R}\left(x_{i}, B_{i-1}\right)<e_{R}\left(x_{i}, A_{i-1}\right)$ or not. According to the result we put x_{i} into B_{i} or A_{i}, respectively: either

$$
B_{i}=B_{i-1} \cup\{x\} \text { and } A_{i}=A_{i-1}
$$

or

$$
A_{i}=A_{i-1} \cup\{x\} \quad \text { and } \quad B_{i}=B_{i-1} .
$$

Let $d_{i}=e_{R}\left(x, A_{i-1} \cup B_{i-1}\right)$, and δ_{i} be the number of edges joining x_{i} to the "other" class. Then $\delta_{i} \geq \frac{1}{2} d_{i}$, and for $i>\frac{n}{2}$, with some fixed positive probability p_{1} we have $\delta_{i}>\frac{1}{2} d_{i}+c^{\prime} \sqrt{n}$. These events are independent for $i=2, \ldots, n$. Hence, apart from an exponentially unlikely event, we get

$$
e_{R}\left(A_{n}, B_{n}\right)=\sum \delta_{i}>\sum \frac{1}{2}\left(d_{i}+\frac{1}{2} p_{1} \cdot c^{\prime} \sqrt{i}\right)>\frac{1}{4} p n^{2}+c_{8} n^{3 / 2} .
$$

(ii) We show that for every x the degree

$$
\begin{equation*}
d_{F}(x) \geq \frac{1}{2} p n-o(n) . \tag{16}
\end{equation*}
$$

Delete the $O(1)$ horizontal edges in $F^{n}-x$, and put x into $A-x$ or $B-x$, according to whether $e_{R}(x, B-x)$ or $e_{R}(x, A-x)$ is the larger. Thus we deleted $\leq d_{F}(x)$ edges but added at least $\frac{1}{2} p n-o(n)$ edges, getting a bipartite Z^{n} with $0 \leq e\left(F^{n}\right)-e\left(Z^{n}\right) \leq d_{F}(x)-\frac{1}{2} p n+o(n)$.
(iii) We show that if (x, y) is a horizontal edge in A, then all but $O_{p}(1)$ of the vertices in $N_{R}(x) \cap N_{R}(y)$ belong to A. Indeed, if v of them, $\left\{z_{1}, \ldots, z_{v}\right\}$ belonged to $B-X_{B}$ and none of the edges $\left(x z_{i}\right),\left(y z_{i}\right)(i=1, \ldots, v)$ were among the $O_{p}(1)$ missing edges (i.e., all they belonged to F^{n}), then we could find $w_{1}, \ldots, w_{v-2} \in A-X_{A}$ completely joined to $\left\{z_{1}, \ldots, z_{v}\right\}$. Thus $x, y, w_{1}, \ldots, w_{v-2}$ and $\left\{z_{1}, \ldots, z_{v}\right\}$ would span a $T^{2 v, 2,1} \subseteq F^{n}$, a contradiction. Thus all but $O_{p}(1)$ vertices of $N_{R}(x) \cap N_{R}(y)$ belong to A.

At this point for $p>\frac{1}{2}$ it is trivial that F^{n} is bipartite: if (x, y) were an edge in A, then

$$
\begin{aligned}
d_{F}(x) & \leq\left|N_{R}(x) \cap B\right|+O_{p}(1) \leq d_{R}(x)-\left|N_{R}(x) \cap A\right|+O_{p}(1) \\
& \leq d_{R}(x)-\left|N_{R}(x) \cap N_{R}(y)\right|+O_{p}(1) \leq\left(p-p^{2}\right) n+o(n),
\end{aligned}
$$

and $p-p^{2}<\frac{1}{2} p$, contradicting (16).
In the other case we need a more involved argument.
(iv) Let now $\frac{2}{5}<p<\frac{1}{2}$. We shall prove that if there is a horizontal edge (x, y) in the optimal partition $[A / B]$,

$$
\begin{equation*}
x \in A, \quad y \in A, \quad(x, y) \in F^{n} \tag{17}
\end{equation*}
$$

then

$$
e_{F}(A, B)<\frac{p}{4} n^{2}+c_{\delta} n^{3 / 2}
$$

where $c_{\delta} \rightarrow 0$ as $\delta \rightarrow 0$. Obviously, this will prove that $e(A)=e(B)=0$. Our aim is to prove that (x, y) determines the partition $[A / B]$ up to δn vertices: for every $\delta>0$, if $p>p_{0}=\frac{1}{2}-\frac{\delta}{10}$, then (15) holds. Since $N_{R}(x) \cap$ $N_{R}(y)$ is almost completely in A, and

$$
B \cap\left(N_{R}(x)-N_{R}(y)\right)=\left(B \cap N_{R}(x)\right)-\left(N_{R}(x) \cap N_{R}(y)\right),
$$

therefore

$$
\left|B \cap\left(N_{R}(x)-N_{R}(y)\right)\right| \geq p \frac{n}{2}-o(n) \geq \frac{n}{4}-\frac{\delta n}{8}
$$

Similarly,

$$
\left|B \cap\left(N_{R}(y)-N_{R}(x)\right)\right| \geq \frac{n}{4}-\frac{\delta n}{8}
$$

Thus

$$
\begin{equation*}
|B \cap \Delta(x, y)| \geq \frac{n}{2}-\frac{\delta n}{4} \tag{18}
\end{equation*}
$$

By (13),

$$
\frac{n}{2}+o(n)>|\Delta(x, y)|=2\left(p-p^{2}\right) n-o(n)>\frac{n}{2}-\frac{\delta n}{25}
$$

This, (18), and $|B|=\frac{n}{2}+o(n)$, imply (15).
(v) Now we are going to estimate the probability that for a random graph R^{n} there exists an edge (x, y) and a partition $[A / B]$ satisfying both (14) and (15).

For any fixed pair (x, y) we may regard R^{n} in the following way: first we select the edges incident with x or y, with probability p, independently, then we select the other edges. If we have already the neighbors of x and y, then
we have also $\Delta(x, y) . B$ differs from $\Delta(x, y)$ only in $\leq \delta n$ vertices; thus we can fix the symmetric difference D of $\Delta(x, y)$ and B in at most $\binom{n}{\delta_{n}}$ ways. For each D we can choose $[A / B]$ in at most $2^{\delta n}$ ways. Hence, given the neighbors of x, y in R^{n}, we can choose the optimal partition $[A / B]$ in fewer than $4^{\delta n}$ ways. Now we select the edges of $R^{n}-\{x, y\}$. For fixed $[A / B]$, the probability of

$$
e_{R}(A, B)>\frac{p}{4} n^{2}+c_{8} \frac{n^{3 / 2}}{2}
$$

is exponentially small, by the Chernoff inequality. More precisely, there exists a $\lambda=\lambda_{p}>0$ independent of δ (and n), such that this probability is at most $(1-\lambda)^{n}$.

The edge in (17) can be chosen in at most $\binom{n}{2}$ ways. Thus the probability that there is an edge (x, y) joining vertices of the same class in an optimal partition is

$$
<n^{2}(1-\lambda)^{n} 4^{\delta n} \rightarrow 0,
$$

if δ is sufficiently small. This completes the proof. (Observe that (iv)-(v) also covered the case $p=\frac{1}{2}$.)

OPEN PROBLEMS

1. We have already mentioned that perhaps the most intriguing problem we could not settle here was the problem of C_{4} :

What is the maximum of $e\left(F^{n}\right)$ if we exclude C_{4} instead of a 3-chromatic L ?
2. What happens if $p \rightarrow 0$ as $n \rightarrow \infty$? Obviously, if $p \rightarrow 0$ very slowly, then our theorems will still hold. However, if, e.g., R^{n} is a random graph with roughly n^{2-c} edges for some small $c>0$, the proofs completely break down and the theorems still may hold.
3. Erdös and the authors asked the following problem. Assume that G^{n} contains no K_{3} and for any two nonadjacent vertices x and y there exist $\frac{n}{4}$ common neighbors. What is the maximum number of edges this graph can have? This problem was settled by P. Frankl and J. Pach in a more general form [FP].

References

[1] M. Ajtai, P. Erdös, J. Komlós, and E. Szemerédi, On Turán's theorem for sparse graphs. Combinatorica 1 (1981) 313-317.
[2] B. Bollobás, Extremal Graph Theory. Academic Press, London, (1978).
[3] B. Bollobás, Random Graphs. Academic Press, New York, (1985).
[4] W.G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9, (1966), 281-285.
[5] W. G. Brown and M. Simonovits, Diagraph extremal problems, hypergraph extremal problems, and densities of graph structures. Discrete Math. 48 (1984) 147-162.
[6] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23 (1952) 493-509.
[7] P. Erdös, Some recent results on extremal problems in graph theory (Results). Theory of Graphs (International Symposium, Rome, 1966), Gordon Breach, New York and Dunod, Paris (1967) 118-123.
[8] P. Erdös, On Some New Inequalities Concerning Extremal Properties of Graphs. Academic Press, New York (1968) 77-81.
[9] P. Erdös, On some extremal problems on r-graphs. Discrete Math. 1 (1971) 1-6.
[10] P. Erdös, Art of Counting, (Selected Writings of Paul Erdös, Edited by J. Spencer), MIT Press (1973).
[11] P. Erdös and T. Gallai, On the maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356 [reprinted in the Art of Counting.]
[12] P. Erdös, D. J. Kleitman, and B. L. Rothschild, Asymptotic enumeration of K_{n}-free graphs. Theorie Combinatorie, Proceedings of the Conference Held at Rome, 1973, Vol. II, Acad. Nazionale dei Lincei, Roma (1976) 19-27.
[13] Erdös and A. Rényi, On the evolution of random graphs. Magyar Tud. Akad. Mat. Kut. Int. Közl. 5 (1960) 17-65 [reprinted in [17] and in the Art of Counting.]
[14] Erdös, A. Rényi, and Vera T. Sós, On a problem of graph theory. Stud. Sci. Math. Hung. 1 (1966) 215-235 [reprinted in the Art of Counting.]
[15] P. Erdös and M. Simonovits, A limit theorem in graph theory. Studia Sci. Math. Hungar. 1 (1966) 51-57 [reprinted in the Art of Counting.]
[16] P. Erdös and M. Simonovits, Supersaturated graphs and hypergraphs. Combinatorica 3 (1983) 181-192.
[17] P. Erdös and J. Spencer, Probabilistic Methods in Combinatorics. Academic Press, New York (1974).
[18] Frankl, J. Pach, An extremal problem on K_{r}-free graphs. J. Graph Theory 12 519-523.
[19] J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph. Discrete Math. 43 (1983) 55-63.
[20] G. Katona, T. Nemetz, and M. Simonovits, A new proof of a theorem of P. Turán and some remarks on a generalization of it [in Hungarian]. Mat. Lapok XV 1-3 (1964) 228-238.
[21] T. Kövári, V.T. Sós, and P. Turán, On a problem of Zarankiewicz. Colloq. Math. 3 (1954) 50-57.
[22] M. Simonovits, A Method for Solving Extremal Problems in Graph Theory, Theory of Graphs. Academic Press, New York, (1968) 279-319.
[23] M. Simonovits, Extremal graph problems with symmetrical extremal graphs, additional chromatic conditions. Discrete Math. 7 (1974) 349-376.
[24] M. Simonovits, Extremal Graph Theory, Selected Topics in Graph Theory. Academic Press, London, New York, San Francisco, 161-200.
[25] E. Szemerédi, Problemes Combinatoires et Théorie des Graphes. CNRS, Paris (1978) 399-401.
[26] P. Turán, On the theory of graphs. Colloq. Math. 3 (1954) 19-30.

