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AbstractWe extend the notion of perfect secret sharing scheme for access structures with in�nitelymany participants. In particular we investigate cases when the participants are the vertices ofan (in�nite) graph, and the minimal quali�ed sets are the edges. The (worst case) informationratio of an access structure is the largest lower bound on the amount of information someparticipant must remember for each bit in the secret { just the inverse of the information rate.We determine this value for several in�nite graphs: in�nite path, two-dimensional square andhoneycomb lattices; and give upper and lower bounds on the ratio for the triangular lattice.It is also shown that the information ratio is not necessarily local, i.e. all �nite spannedsubgraphs have strictly smaller ratio than the whole graph. We conclude the paper by posingseveral open problems.Key words. Secret sharing scheme, information theory, in�nite graph, lattice.

1 Introduction
Secret sharing scheme is a method of distributing a secret data among a set of participants so thatonly quali�ed subsets are able to recover the secret. If, in addition, unquali�ed subsets have noextra information, i.e. their joint shares is statistically independent of the secret, then the schemeis called perfect. The description of the quali�ed subsets among all possible subsets of participantsis the access structure. In this paper only perfect secret sharing schemes are considered; when wespeak about a secret sharing scheme, it is assumed to be perfect.The most frequently investigated property is the e�ciency of the system: how many bits ofinformation the participants must remember for each bit of the secret in the worst case. Thisamount is the (worst case) information ratio of the system, which is just the inverse of the mostcommonly used information rate. (The name comes from the analogy to noisy channels.) Next tothe the worst case, the average is also a good measure of the e�ciency; in this paper by informationratio we mean the worst case one.Determining the (worst case or average) information ratio, even in special cases, turned out tobe extremely hard, both theoretically and technically. Several particular classes of access structureswere investigated separately: access structures on four or �ve element sets [15, 19], access structureswith three or four minimal sets [16], but most importantly access structures where the minimalquali�ed subsets are of size two | the so-called graph access structures [2, 3, 4, 7, 11, 12, 20].Here we start the research in a new direction: we consider access structures with in�nitely manyparticipants. In the exposition we restrict ourselves to graph access structures. Our de�nitions,and some of the results, generalize easily for arbitrary access structures. [5] investigated secretsharing systems on in�nite domain with �nite access structures.We determine the exact value of the (worst case) information ratio for a couple of in�nitegraphs. This part uses a new result on the exact information ratio for a particular family ofgraphs (Theorem 4.2). We also show that the information ratio is not necessarily local, i.e. thereare cases when this number for the whole graph is larger than that of any of its �nite subgraph(Corollary 4.6).
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The paper is organized as follows. In the next session we recall the de�nition of a perfect secretsharing system, de�ne the worst case and average information ratio, and introduce the so-calledentropy method [3, 4, 6, 19]. Section 3 de�nes secret sharing systems on in�nite structures. Weintroduce a generalizations of the decomposition technique for the in�nite case (Theorem 3.6),and show that Stinson's celebrated bound works in the in�nite case as well (Corollary 3.9). Insection 4 we determine the exact information ratio of a particular family of graphs. It is used toprove the optimality of several constructions in section 5. Finally section 6 concludes the paper,and list some problems. For unde�ned notions and for an introduction to secret sharing schemessee [2] or [7]; for those in information theory consult [10].All logarithms in this paper are of base 2.

2 De�nitions
This section de�nes some of the most important notions which are used in the paper. First werecall some graph properties, then give a formal de�nition of a (�nite) perfect secret sharingscheme based on graphs. Finally we connect perfect secret sharing schemes to certain submodularfunctions.Let G = hV;Ei be a (�nite or in�nite) graph with vertex set V and edge set E. A subsetA of V is independent if there is no edge between vertices in A. A covering of the graph G isa collection of subgraphs of G such that every edge is contained on one of the (not necessarilyspanned) subgraphs in the collection. The collection is k-covering if every edge of G is coveredexactly k times. For subsets of vertices we usually omit the [ sign, and write AB for A[B. Also,it v 2 V is a vertex then Av denotes A [ fvg.A perfect secret sharing scheme S for a �nite graph G is a collection of random variables �vfor each v 2 V and a �s (the secret) with a joint distribution so that
(i) if vw is an edge in G, then �v and �w together determine the value of �s;
(ii) if A is an independent set, then �s and the collection f�v : v 2 Ag are statistically indepen-dent.

The size of the discrete random variable � is measured by its entropy, or information content,and is denoted by H(�), see [10]. This amount has to be well de�ned and �nite, consequentlyall random variables in this paper are assumed to be �nite, i.e. they can take only �nitely manydi�erent values with positive probability. This is the main obstacle one has to overcome whende�ning a secret scheme on in�nite domain.The information ratio for a vertex (or participant) v 2 G is H(�v)=H(�s). This value tells howmany bits of information v must remember for each bit in the secret. The worst case (or average)information ratio of S is the highest (resp. average) information ratio among all participants.Given a graph G its information ratio is the in�mum of the corresponding value for all perfectsecret sharing schemes S de�ned on G.
De�nition 2.1 The information ratio of the (�nite) graph G, denoted as R(G), is de�ned as

R(G) = infS maxv2V
H(�v)
H(�) :

The widely used information rate is the inverse of this value. While the \information rate"is the customary measure in the literature, we found its inverse, the ratio, to be more intuitive,furthermore certain expressions are easier to write and understand using the ratio.As it has been pointed out in [1], it is not evident that the \in�mum" in De�nition 2.1 shouldactually be taken by some scheme S, i.e. whether the in�mum is always a minimum. [1] presentsa general access structure where the in�mum is not taken by any scheme. For access structuresbased on graphs the question whether inf = min is an open problem.
Let S be a perfect secret sharing scheme based on the (�nite) graph G with the random variableacting �s as secret, and �v for v 2 V acting as shares. For each subset A of the vertices one can
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de�ne the real-valued function f as
f(A) def= H(f�v : v 2 Ag)

H(�) : (1)
Clearly, the information ratio of S is the maximal value in ff(v) : v 2 V g, while the averageinformation ratio is the average of these values. Using standard properties of the entropy function,cf. [10], following inequalities hold for all subsets A, B of the participants:
(a) f(;) = 0, and in general f(A) � 0 (positivity);
(b) if A � B � V then f(A) � f(B) (monotonicity);
(c) f(A) + f(B) � f(A \B) + f(A [B) (submodularity).

It is well known that for two (�nite) random variables � and �, the value of � determines the valueof � i� H(��) = H(�), moreover � and � are (statistically) independent i� H(��) = H(�) +H(�).Using these facts and the de�nition of the perfect secret sharing scheme, we also have
(d) if A � B, A is an independent set and B is not, then f(A)+1 � f(B) (strong monotonicity);
(e) if neither A nor B is independent but A\B is so, then f(A)+f(B) � 1+f(A\B)+f(A[B)(strong submodularity).

The celebrated entropy method, see, e.g., [2], can be rephrased as follows. Prove that for anyreal-valued function f satisfying properties (a){(e), for some vertex v 2 G, f(v) � r. Then, asfunctions coming from secret sharing schemes also satis�es these properties, conclude, that the(worst case) information ratio of G is also at least r.Note that this method is not necessarily universal, as properties (a){(e) are too weak to captureexactly the functions coming from entropy see [17]. However, for graphs all existing lower boundproofs use the entropy method, and no example is known where the entropy method would notwork.

3 The case of in�nite graphs
Trying to de�ne secret sharing on an in�nite object one faces several problems. As there arein�nitely many participants, one has to de�ne in�nitely many random variables with a jointdistribution. But in�nitely many pairwise random bits (probably needed for any construction)require huge event space, where the standard entropy function does not exist. We used entropy asa tool to de�ne the relative size of a share compared to the secret, but even �nding such a weakernotion is problematic; see Problem 6.1Rather than de�ning the information ratio directly, we choose an indirect way. In case of graphsthe set of participant might be in�nite, but the minimal quali�ed subsets are �nite, namely pairs.Thus it seems quite natural to consider �nite restrictions. Our starting point is the following easy,but very useful fact about secret sharing schemes on �nite graphs. The fact generalizes easily toother access structures as well.
Fact 3.1 Suppose G0 is a spanned subgraph of G. The information ratio of G0 is at most as largeas the information ratio of G, i.e. R(G0) � R(G).
In general, this claim is not true for arbitrary subgraphs. By Shamir's result in [18], R(Kn) = 1where Kn is the complete graph on n vertices, while by [7], there is a graph G0 � Kn whereR(G0) � 0:25 logn.Looking at an in�nite graph as the \limit" of its �nite spanned subgraphs, Fact 3.1 suggeststhe following de�nition:
De�nition 3.2 The information ratio R(G) for the in�nite graph G is

R(G) = supfR(G0) : G0 is a �nite, spanned subgraph of G g:
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By fact 3.1 this is a sound de�nition, and applying to a �nite G gives back the original value.
If the (�nite) graph G is the disjoint union of G1 and G2, i.e. there are no cross edges betweenG1 and G2, then any secret sharing scheme on G is simply a composition of a secret sharing schemeon G1, and another one on G2.Claim 3.3 If G has several connected components, then

R(G) = supfR(G0) : G0 is a connected component of G g:
Consequently, in de�nition 3.2 it is enough to consider connected �nite subgraphs of G only.We have de�ned the information ratio of an in�nite graph as a supremum. It is a naturalquestion whether this value is actually taken, or is it a proper one.
De�nition 3.4 The graph G is local if there is a �nite spanned subgraph G0 of G such thatR(G) = R(G0). Otherwise G is not local.

Of course, when R(G) is in�nite then G cannot be local as no �nite graph has in�nite infor-mation ratio. Locality is interesting only when R(G) is �nite.
When constructing secret sharing schemes the most frequently used tool is Stinson's decom-position technique from [20]. For our case it can be worded as

Theorem 3.5 (Stinson) Let Gi � G be arbitrary subgraphs of G, and assume that each edge ofG is in at least k of the subgraphs. Let Si be a perfect secret sharing scheme on Gi such that Siassigns Si(v) bits to v 2 G for each bit in the secret (Si(v) = 0 if v =2 Gi). Then there is a schemeS on G which assigns
S(v) = 1

k
XSi(v)

bits to v for each bit in the secret.
This theorem is meaningful for �nite graphs only. The following generalization, however, holdsfor in�nite graphs as well.

Theorem 3.6 Let Gi � G be arbitrary (�nite or in�nite) subgraphs of G, and assume that eachedge of G is in at least k of the subgraphs. For a vertex v 2 G de�ne ri(v) = 0 if v =2 Gi, andri(v) = R(Gi), i.e. the information ratio of Gi otherwise. Then
R(G) � supv2G

P ri(v)
k :

Proof Let us denote the value of the sup on the right hand side by r; we may assume that ris �nite otherwise there is nothing to prove. Let G0 � G be a �nite spanned subgraph of G.According to De�nition 3.2, we need to check that there is a perfect secret sharing scheme S onG0 which assigns at most r bits to each vertex of G0 for each bit in the secret.As G0 has �nitely many edges, we can choose a �nite set I of the indices of the subgraphs Gisuch that each edge of G0 is in at least k of the subgraphs in the family fGi : i 2 Ig. For i 2 Ilet G0i be the spanned subgraph of Gi restricted to the vertices of G0. As R(Gi) = ri and G0i is aspanned subgraph of Gi, by Fact 3.1 there is a secret sharing scheme Si on G0i which assigns atmost ri bits to all v 2 G0i for each bit in the secret. By Theorem 3.5 then there is a scheme Swhich assigns
S(v) = 1

k
X
i2I Si(v) �

1
k
X
i2I ri(v) �

P ri(v)
k � r

bits to v 2 G0, which was wanted.
We close this section by a generalization of Stinson's celebrated result [20]. For the proof weneed some well-known facts. The �rst statement is a folklore, the proof is an easy application ofthe entropy method, see, e.g. [2], or the results in section 4.
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Figure 1: Secret sharing on a star

Claim 3.7 If G is empty (independent), then R(G) = 0. Otherwise R(G) � 1.
The complete graph on (countably) in�nitely many points is denoted by K1, and the (in�nite)graph where one point is connected to an in�nite independent set is denoted as Star1.

Claim 3.8 R(K1) = R(Star1) = 1.
Proof All �nite spanned subgraph of K1 is the complete graph. By Shamir's result in [18] all ofthem have ratio 1, thus their sup is also 1.As for the other graph, R(Star1) � 1 by Claim 3.7. We show that this value is also � 1.Each �nite, connected spanned subgraph of Star1 is a (�nite) star. Let the secret be the randombit s 2 f0; 1g, and let r 2 f0; 1g be selected randomly and independently from s. The center ofthe star will get s � r, and all other vertices get r. This is a perfect secret sharing scheme; allparticipants get 1 bit, and the secret is 1 bit as well (see �gure 1). Thus the ratio in this case is 1as well.
Corollary 3.9 If the maximal degree of G is d, then R(G) � (d+ 1)=2.
Proof For each vertex v in G consider the star Gv with center v and all edges outgoing from vas rays. These subgraphs Gv cover all edges twice, and each vertex is in at most d + 1 of thesesubgraphs (once as center, and d times as endpoint of a ray). Now R(Gv) = 1 by Claim 3.8, andapply Theorem 3.6.

4 Lower bounds: the comb
Almost all lower bounds use the celebrated entropy method, see [3, 4, 6, 19] which has beenoutlined at the end of section 2. We shall use this method for a particular family of graphs, whichwill then be used to determine the exact ratio of several in�nite graphs as well.

� � � �
� � � �

. . . � �
� �

1 2 k�1 k � �
� �

1 2Figure 2: The graphs Combk and Comb2
De�nition 4.1 For k � 2 Combk is the graph on 2k vertices as indicated on �gure 2, in particularComb2 is the path of length 3. Comb1 is the in�nite comb with no 2-degree vertex.

The main result of this section is
Theorem 4.2 For k � 2, R(Combk) = 2� 1=k.
Proof By using Stinson's decomposition method we show that the ratio is � 2 � 1=k. Figure 3indicates the �rst two of the k di�erent covers of Combk; each component in a cover is a star ontwo, three or four vertices, thus has information ratio 1. The numbers below the vertices indicatehow many bits that vertex receives. Putting together all k covers, each edge is covered k times,the bottom vertices receive a total of 2k � 1 bits, while the top vertices receive k bits. UsingTheorem 3.5 we conclude that R(Combk) � (2k � 1)=k.

5



�
�

� �
�

� �
�

�1 2 2 2 . . . �
�

� �
�

� �
�

2 2 2  bits received

. . . �
�

� �
�

� �
�

�
�

� �
�

�
�
� � 2 2 22 22 1Figure 3: Two out of k covering of Combk with stars

For the other direction we use the entropy method. Label the bottom vertices of Combk fromleft to right as A1, A2, : : : ; Ak, the top vertices as a1, : : : ; ak so that ai is connected to Ai only.Let f be any real valued function which satis�es properties (a){(e) from section 2 for the particularaccess structure which is de�ned by the edges of Combk. Then
kX
i=1 f(Ai) � 2k � 1: (2)

If we can show this, then we are done. The sum of k terms is at least 2k � 1, thus at least one ofthem is � (2k� 1)=k. Given any secret sharing scheme on Combk, the particular choice in (1) forthe function f satis�es (a){(e), consequently for at least one Ai we have
f(Ai) = H(�Ai)H(�s) �

2k � 1
k ;

i.e. someone must remember at least 2� 1=k bits for each bit in the secret.To �nish the proof, we state and prove two lemmas, 4.3 and 4.4. Inequality (2) is just the sumof the claims in the lemmas.
Lemma 4.3 Pki=1 f(Ai) � f(A1A2 : : : Ak) + k � 2.
Proof In general for any 2 � ` � k, Pì=1 f(Ai) � f(A1A2 : : : A`) + `� 2 which we will prove byinduction on `. When ` = 2 the claim is f(A1)+f(A2) � f(A1A2), which is just the submodularity(c).Now suppose we know the claim to be true for `� 1; to conclude it for ` it is enough to checkthat whenever ` � 3 then

f(A1A2 : : : A`�1) + f(A`) � f(A1 : : : A`) + 1: (3)
As ` � 3, both A1 : : : A`�1 and A`�1A` contain edge, i.e. they are a quali�ed sets. Then property(e) says that f(A1A2 : : : A`�1) + f(A`�1A`) � f(A1 : : : A`) + f(A`�1) + 1
as the singleton A`�1 is not quali�ed. By the submodularity (c) we have

f(A`�1) + f(A`) � f(A`�1A`):
Adding up the last two inequalities we get (3), as required.
Lemma 4.4 f(A1A2 : : : Ak) � k + 1.
Proof Let X = fA1A2 : : : Akg, and consider the di�erences

di = f(Xa1 : : : ai)� f(a1 : : : ai):
As f(;) = 0, the value we are interested in is d0. The trick is to consider these di�erences inreverse order. As fXa1 : : : akg is quali�ed, while fa1 : : : akg is not, condition (d) gives 1 � dk.Furthermore, for all 1 � i � k, di + 1 � di�1 which implies k + 1 � d0 as the lemma states.
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Figure 4: Paths, honeycomb, and 2-lattice

Now both fAia1 : : : aig and fXa1 : : : ai�1g are quali�ed, their intersection, which isfAia1 : : : ai�1g, is not, thus (e) gives
f(Aia1 : : : ai) + f(Xa1 : : : ai�1) � f(Aia1 : : : ai�1) + f(Xa1 : : : ai) + 1:

Furthermore the submodularity (c) tells
f(a1 : : : ai) + f(Aia1 : : : ai�1) � f(Aia1 : : : ai) + f(a1 : : : ai�1)

Adding these up and rearranging we get di + 1 � di�1, as needed.
Theorem 4.5 The information ratio of Comb1 is 2.
Proof Each connected component of Comb1 is a spanned subgraph of Combk for some k, con-sequently, by Theorem 4.2, its information ratio is < 2.On the other hand, for each natural number k, Combk is a spanned subgraph of Comb1, thusR(Comb1) is at least supk f 2� 1=kg = 2.
Corollary 4.6 Comb1 is not local, i.e. all of its �nite spanned subgraphs have smaller informa-tion ratio.

5 Examples
The path of length n (with n + 1 vertices) is denoted as Pn, and P1 is the in�nite path, orthe 1-dimensional lattice. The honeycomb is the two-dimensional tiling of the plane with regularhexagons. The two-dimensional (square) lattice is the usual checkered paper like tiling (see �g 4),and the triagonal tiling is the tiling with regular triangles (�g 7).
Example 5.1 R(P1) = 3=2.
Proof We have seen that Comb2 is the same graph as the path of length 3, thus by Theorem4.2 R(Comb2) = R(P3) = 3=2. (For other proofs see, e.g. [2, 3, 6], or the Appendix.) As P3is a spanned subgraph of P1), we have R(P3) = 3=2 � R(P1). For the other direction we use
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Figure 5: Covering P1 by stars
Theorem 3.6 for the 2-cover indicated on �gure 5. All subgraphs in the cover are stars havingratio 1; each edge is covered twice and each vertex gets 3 bits. Thus R(P1) � 3=2.
Example 5.2 R(honeycomb) = 2.
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Figure 6: The comb as spanned subgraph
Proof As each vertex has degree 3, Corollary 3.9 says that the ratio is at most 2. On the otherhand the, honeycomb contains the in�nite comb as a spanned subgraph (left picture on �gure 6).Consequently 2 = R(Comb1) � R(honeycomb).
Example 5.3 R(2-lattice) = 2.
Proof Here each vertex has degree 4, thus Corollary 3.9 gives only 5=2. We could, however, applyTheorem 3.6 directly for the four-cycles C4 indicated on �gure 4. Each edge is covered once, andeach vertex is in two cycles. As C4 has information ratio 1 we proved that the information ratio forthe 2-lattice is � 2. The statement on C4 can be shown as follows: let the random bit s 2 f0; 1gbe the secret, and pick r 2 f0; 1g randomly and independently from s. Give r to the �rst andthird node in C4, and r � s to the two other nodes.The lower bound follows from the fact that the in�nite comb can be embedded to the 2-latticeas a spanned subgraph, see Figure 6.

The proof given here does not tell whether the 2-lattice is local or not. In the Appendix weshow that a particular graph on 8 vertices has information ratio 2. That graph is a spannedsubgraph of the 2-lattice, thus the 2-lattice is not local.
Example 5.4 2 � R(triangle lattice) � 12=5.
Proof The lower bound follows again from the fact that the comb can be embedded into thislattice as well, see �gure 7.
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Figure 7: The triangle lattice

The construction which gives the upper bound 12=5 is due to P�eter Gergely [13]. Consider thediamond-shaped graph on four vertices at the right hand side of �gure 7. This graph has ratio1, which can be shown as follows: pick the secret s from f0; 1; 2g uniformly, and pick a randomr from the same set. Give r to nodes on the left and on the right, give s + r mod 3 to the topvertex, and s� r mod 3 to the bottom vertex. Any two connected vertices can recover the secrets, moreover each assigned number is independent of s. The two unconnected vertices receive thesame share, thus their joint information is independent of the secret as well. Both the secret andthe shares have entropy log 3, thus the ratio is 1.The cover consists of all spanned subgraphs of the triangle lattice isomorphic to this graph.It is easy to check that this is a 5-cover (each edge is in 5 of such subgraphs), and each vertex iscovered 12 times. By Theorem 3.6 this gives 12=5 as an upper bound.
The countable universal or random graph is the unique (up to isomorphism) graph on countablemany vertices which has the property that picking �nitely many vertices vi and numbers "i 2 f0; 1g,there exists a vertex in the graph which is connected to vi just in case "i = 1.

Example 5.5 The information ratio for the universal graph is 1.
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Proof As we have remarked, there is a graph of n vertices with information ratio � 0:25 log n,see [7]. As all �nite graphs can be embedded into the universal graph as spanned subgraphs, itsinformation ratio is at least 0:25 log n, i.e. not bounded.
Example 5.6 The information ratio for the in�nite binary tree is 2.
Proof Lower bound: for each k the graph Combk can be embedded into this graph, consequentlyR � 2.Upper bound: we show that each tree has information ratio � 2 by using the Theorem 3.6.We may assume that the tree is connected. Pick any vertex and consider it as \root." Directthe edges recursively away from the root. When all edges has been directed, each node has oneinvertex except for the root which has none. Consider the stars with center at a vertex consistingof all outgoing edges. Each edge is covered exactly once, and each vertex gets one or two bits (onebit for the root and leaves, and two bits for all other vertices).

In [9] it has been proved that all �nite trees have information ratio 2 � 1=k for some integerk � 1. Therefore the information ratio of an in�nite tree is the sup of numbers of this form. IfT is an in�nite tree, then either R(T ) = 2, and then T is not local (as, e.g., is the case for thecomplete binary tree in Example 5.6), or R(T ) = 2 � 1=k for some integer k � 1, and then T islocal.
Example 5.7 There is an in�nite graph with information ratio 5=3.
Proof Consider the (rooted) complete binary tree from example 5.6, and insert a new vertex atthe midpoint of every edge. This will be our graph T .As three-tooth comb can be embedded into T , its information ratio is R(T ) � R(Comb3)= 2� 1=3. The upper bound comes from Theorem 3.6: we de�ne a 3-cover by stars so that eachvertex gets 5 bits; this gives R(T ) � 5=3. First take the stars with center at the inserted newvertices and both edges as rays. Second take stars at the old vertices with all incident edges asrays, but take them twice. That way an old vertex gets 2 � 1 + 3 bits (two from the double star,and one from each new neighbor), while a new vertex gets 2 � 2 + 1 bits, as required.
Example 5.8 The in�nite ladder L on �gure 8 has information ratio 10=6 � R(L) � 11=6.
Proof The upper bound comes from the following construction (see �gure 8). The 1-cover on theright has period 6. It uses stars and C4, both assigns a single bit for each bit in the secret. In aperiod all vertices get 2 bits, except for one in the top, and one in the bottom which get only 1bit. Shifting this cover by 1, : : :, 5 we get a 6-cover, and each vertex gets a total of 11 bits. ByTheorem 3.6 the upper bound follows.For the lower bound one can observe that the in�nite path is a spanned subgraph. Unfortu-nately this gives only 9=6. For the missing 1=6 we prove in the Appendix that the graph G1 on�gure 9 has information ratio 10=6. As this is a spanned subgraph of the ladder, we are done.

We remark that the ladder of width 2 has information ratio 2. It is a spanned subgraph of the2-lattice (� 2), and contains Comb1 as a spanned subgraph (� 2).

6 Conclusion and further problems
Determining the exact amount of information a participant must remember in a perfect secretsharing scheme is an important problem both from theoretical and practical point of view. Access
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structures based on graphs pose special challenges. They are easier to de�ne, have a transparent,and sometimes trivial, structure.In this paper we extended the de�nition of secret sharing for in�nitely many participants,and gave a de�nition for its information ratio. We consider this extension to be an importantcontribution, and hope to see further, interesting applications.We have used a compactness-type de�nition to overcome the di�culty of in�nite entropy: theinformation ratio is de�ned as the sup of the ratio for the �nite embedded structures. The �rstproblem is to �nd an appropriate de�nition of the \relative information content" for arbitraryrandom variables.
Problem 6.1 Given two random variables � and �, de�ne their relative size, which is the analogof H(�)=H(�) when both � and � are �nite.

In [5] the authors show that the secret and shares, as random variables, cannot be based ona countable domain, even if the number of participants is �nite. The paper also contains thefollowing using reals numbers: let the secret �s be uniform in [0; 1), then choose the shares �i ofthe �rst k � 1 of the participants uniformly and independently in [0; 1), and choose �k 2 [0; 1) sothat �s = �1 + : : :+ �k�1 + �k (mod 1)
It is easy to check that �s is independent of any set of k � 1 shares, and, of course, all sharesdetermine the secret uniquely. Just as in the �nite case, this scheme can be used as a buildingblock to create a perfect secret sharing when all quali�ed subsets are �nite: simply distribute �sfor each quali�ed subset independently. In this case each participant will receive as many sharesas many minimal quali�ed sets it is in. In particular, if the scheme is based on a graph, then thisnumber will be the degree of the vertex.In case of �nite complete graphs the above construction has extremely high information ratio.Shamir's construction from [18] is more e�cient, it has the lowest possible information ratio 1. CanShamir's construction be generalized for the in�nite case? The beginning is easy. Pick elementsxi of a �eld for each participant, and pick the point xs for the secret (these values are public).Choose a secret linear function p(x) = ax + b according to a certain distribution. The value ofthe secret is �s = p(xs); and the shares are �i = p(xi). Clearly all pair of shares determine thefunction p, thus the value �s. What is not clear why �s and �i should be independent.
Problem 6.2 Do there exists a distribution for which �s and �i are always independent when thelinear functions are taken (a) over reals, (b) over some appropriately chosen �eld?
By the result of [5] the �eld cannot be countable. Here and in all problems \determines" can (andshould) mean that �s is determined uniquely with probability 1.Existence of an \in�nite" threshold scheme seems to be a pure probability theoretical question.
Problem 6.3 Do there exists a perfect scheme where the secret is independent of �nitely manyof the shares, but is determined by in�nitely many of them? Or at least do there exist a rumpscheme where the secret is independent of any �nite collection of the shares, but is determined byany co�nite collection (i.e. all but �nitely many) of shares?

We return to schemes based on graphs. In almost all examples we have used Theorem 3.6, thegeneralization of Stinson's decomposition theorem. Does it generalize for in�nite sharing schemesas well?
Problem 6.4 Suppose that Gi is (an arbitrary) subgraph of G, and Si is a perfect secret sharingscheme on Gi. Assume moreover that all edges of G is contained in at least t of the subgraphs.Does it follow that there is perfect secret sharing scheme on G?
The problem is that the secret in Si might have arbitrary distribution, and it is not clear how tocombine them.In the Examples section we have computed the information ratio for several in�nite graphs.In two cases: the triangle lattice (Example 5.4) for the ladder (Example 5.8) we could only giveestimates.
Problem 6.5 Determine the exact information ratio of the triangle lattice and that of the ladder.
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We conjecture that for the triangle the upper bound, for the ladder the lower bound is the rightvalue.We have seen two examples for non-local graphs: the comb, and the complete binary tree.Both of them have information ratio 2, but every �nite spanned subgraph has smaller informationratio.
Problem 6.6 Is there any non-local graph with information ratio strictly below 2?
In fact is the following stronger conjecture true:
Problem 6.7 Is it true that if R(G) < 2 then R(G) = 2� 1=k for some integer k?
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Figure 9: The graphs G1 and G2

Appendix
We determine the exact information ratio for the graphs G1 and G2 of �gure 9. G1 is a spannedsubgraph of the in�nite ladder in Example 5.8 while G2 is a spanned subgraph of the 2-lattice(but not of the ladder).
Claim 6.8 The information ratio of G1 is 5=3.
Proof For the upper bound consider the following 3 covers of G1. The �rst cover consists of thecycle BbcCB (assigning 1 bit for each secret bit), plus the two edges ab and cd. Using this covernodes b and c get two bits, all other nodes get one bit. The second cover contains the star withrays ba, bB, bc; the path Ccd and the edge BC. Here a, b, and d get one bit, all other nodes gettwo bits. The third cover is the mirror image of the second one: the star cb, cC cD, the path abB,and the edge BC. Using all three covers all edges are covered three times, and every node getseither three (a and d), or �ve bits (all the rest).For the lower bound we use the entropy method. Assume f satis�es properties (a){(e) listedat the end of section 2. We claim that

f(b) + f(c) + f(C) � 5; (4)
i.e. at least one of b, c and C gets 5=3 bits for each bit in the secret.First we give a strengthening of the usual proof that the information ratio of the path of length3 is at least 3=2. That proof goes by showing that f(bc) � f(abcd)�f(ad)+2. As abcd is quali�edand ad is not, f(abcd)� f(ad) � 1. That is, f(b) + f(c) � f(bc) � 3, therefore either f(b) or f(c)is � 3=2. Here we show that in this inequality f(abcd) can be replaced by f(acd):

f(a) + f(b) � f(ab)
f(ab) + f(bc) � f(b) + f(abc) + 1

f(abc) � f(ac) + 1
f(ac) + f(ad) � f(a) + f(acd)
f(bc) + f(ad) � f(acd) + 2

Second, we take into account the vertices B and C as well:
f(c) + f(C) � f(cC)

f(cd) + f(cC) � f(c) + f(cdC) + 1
f(acd) + f(cdC) � f(cd) + f(acdC)

f(acdC) � f(adC) + 1
f(adC) + f(adB) � f(ad) + f(adBC)

f(adBC) � f(adB) + 1
f(C) + f(acd) � f(ad) + 3

As f(b) + f(c) � f(bc), the sum of the two inequalities gives (4).
Claim 6.9 G2 has information ratio 2.
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Proof R(G2) � 2 as G2 is a spanned subgraph of the 2-lattice, and the 2-lattice has informationratio 2. On the other hand, let f be again any function satisfying (a){(e); we claim that
f(bc) + f(BC) � 8: (5)

As f(b) + b(c) + f(B) + f(C) � f(bc) + f(BC) � 8, the lower bound 2 follows.Each of the inequalities below are instances of one of the properties (a){(e) of the function f :
f(a) + f(b) � f(ab)

f(ab) + f(bc) � 1 + f(b) + f(abc)
f(acAC)� f(acA) � f(acACD)� f(acAD) � 1

f(acABC)� f(acAC) � 1
f(ac)� f(a) � f(acB)� f(aB)

f(acB)� f(aB) � 1 + f(acABC)� f(aABC)
f(abc)� f(ac) � f(abcA)� f(acA)

f(bc) � 4 + f(abcA)� f(aABC)
Swapping lower case and upper case letters leaves the graph unchanged, thus we also have the\swapped" instance: f(BC) � 4 + f(aABC)� f(abcA):
Adding these latter two inequalities we get (5), as required.

13


