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Abstract
The correctness of a simple sorting algorithm is resented, which algo-

rithm is \evidently wrong" at the �rst sight. It is conjectured that the
algorithm has no straightforward, transparent veri�cation.

1 Introduction
Since the appearance of the fundamental work of Floyd, Naur, and Hoare [1, 3,
4], a wide variety of programs were proved to be correct. These programs were
usually written by some more or less sophisticated idea in mind, and knowing the
idea { i.e. how the program works {, with not too much e�ort, an experienced
programmer can give a formal proof for the correctness (or at least for the
partial correctness). In the majority of the cases the formal proof seems to be
unnecessary, especially if it is made my hand, since the danger of overlooking
some �ne point in the proof is as big as overlooking something in the program.
But there are algorithms which have no such a transparent central idea, and,
so to speak, the work " incidentally." To show that they work as expected, a
program veri�cation method is unavoidable.

In this paper we intend to introduce such a program, which was found in
1974. A student wrote a simple sorting program, and made a trivial mistake.
But, in spite of the bug, the program worked well. Later several proofs have
been found independently by K. Balog, H. Andr�eka and I. N�emeti, and the
author. None of the proofs is simple, and by no means is straightforward.

2 The program
Suppose we are given a natural number N � 1, and two arrays, A and M with
indices running from 1 to N . Initially, A contains distinct real numbers, and
the content of M [k] is k for each 1 � k � N . The task is to write a program
which rearranges the elements of M so that the relations

A[M [1]] < A[M [2]] < � � � < A[M [N ]]
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Figure 1: The sorting program

hold. An Algol-60 representation of the program is as follows.
begin

integer i, j ;
i := 0 ;
for i := i+ 1 while i < N do

begin j := i ;
for j := j + 1 while j � N do

if A[M [i]] > A[j] then exchange(M [i];M [j])
end

end.
The procedure exchange exchanges the values of its parameters. The \bug" is
obvious: the condition in the if statement should be A[M [i]] > A[M [j]]. We
claim, however, that our program is correct: it arranges the arrayM as required.

The ow-chart in 1 follows the program closely. From now on we use the
ow-chart for reasoning about our program.

First we make some trivial observations. The program contains two nested
loops. In the outer loop the variable i runs from 1 to N � 1, and for each value
of i, j runs from i + 1 to N in the inner loop. In each iteration, A[M [i]] and
A[j] are compared, and if the �rst is the larger then the contents of M [i] and
M [j] are exchanged.

In table 1 we give snapshots of a sample run made at point q2 in the inner
loop. Here we have N = 5, and in the third and fourth column the bold face
numbers are A[M [i]] and A[j], they are to be compared next.

We can see at once that it is a rare occasion when A[M [i]] is compared
to A[M [j]] (i. e. when M [j] = j), and A[M [i]] is never compared to itself,
i. e. M [j] 6= j. Furthermore, A[j] takes quite unexpected values comparing to
A[M [j]], but A[j] and A[M [j]] are always on the same side of A[i]. If we were
able to prove this, the correctness of the program would follow at one. We shall
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i j A[M [:]] A[:] M [:]
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5 2 1 4 3 5 2 1 4 1 2 3 4 5
1 3 3 5 2 1 4 3 5 2 1 4 1 2 3 4 5
1 4 2 5 3 1 4 3 5 2 1 4 3 2 1 4 5
1 5 1 5 3 2 4 3 5 2 1 4 4 2 1 3 5
1 6 1 5 3 2 4 4 2 1 3 5
2 3 1 5 3 2 4 3 5 2 1 4 4 2 1 3 5
2 4 1 3 5 2 4 3 5 2 1 4 4 2 1 3 5
2 5 1 2 5 3 4 3 5 2 1 4 4 2 1 3 5
2 6 1 2 5 3 4 4 2 1 3 5
3 4 1 2 5 3 4 3 5 2 1 4 4 2 1 3 5
4 5 1 2 3 5 4 3 5 2 1 4 4 2 1 3 5
5 6 1 2 3 5 4 4 2 1 3 5
4 5 1 2 3 5 4 3 5 2 1 4 4 2 1 3 5
4 6 1 2 3 4 5 4 3 1 5 2

Table 1: Snapshots of a sample run with A = (3; 5; 2; 1; 4)

see later that this is the case indeed, but it will only be a side result of out
proof.

3 The assertions
We assume that the reader is familiar with the so-called Floyd-Hoare partial
correctness proof method [2, 5]. Following this, we choose four points, qS , qH ,
q1, and q2 in the ow-chart so that they separate the program into �ve straight-
line paths: qS|q1, q1|q2, q2|q2 through the heavy-line loop, q2|q1, �nally
q1|qH . We are going to assign assertions to these points so that each path is
correct with respect to the assertions put at its start and and; moreover the
assertion qS contains only our assumptions about the arrays A and M , and qH
implies the �nal requirement, i. e. that A is sorted.

With qS and qH there is no problem. The input assertion qS states that
N � 1, the elements of A are distinct, and the M [k] = k �r every integer
1 � k � N . To be a bit more formal, we write this assertion as

N � 1, (1)
(8k � N)M [k] = k, (2)
A = AP and the elements of A are distinct; (3)

When we write an assertion into several line, as we did there, it is the conjunct of
the simple statements. In (2) the quanti�cation (8k � N) means \for all positive
integer k such that k � N ." We shall make use of the similar quanti�cations
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(8k < N), (8i � k � N), etc. with meanings \for all positive integer k such
that k < N ," \for all positive integer k such that i � k � N ," etc.

The array AP is the initial version of A; we de�ne it in the input assertion
qS so that we can refer it in other assertions.

The output assertion qH is as follows.
A = AP , (4)
the set fM [1], : : :, M [N ]g is the same as f1; 2; : : : ; Ng, (5)
(8k < N) A[M [k]] is the k-th (in order of magnitude) (6)

in the set fA[1]; : : : ; A[N ]g.
The �rst conjunct states that the array A remains unchanged; the second means
that M [1], : : :, M [N ] is a permutation of 1; 2; : : : ; N ; and in the third we claim
that the index-array M contains the indices of A in the proper order, i.e. all
the relations

A[M [1]] < A[M [2]] < � � � < A[M [N ]]
hold.

To make a long line short, we denote the set

fM [a]; : : : ;M [b� 1];M [b]g

by M [a : b], and similarly for A. With this notation, the conjuncts (4){(6) can
be written into the more compact form

A = AP , (7)
M [1 : N ] = f1; 2; : : : ; Ng, (8)
(8k < N)A[M [k]] is the k-th in A[1 : N ]. (9)
Next we must choose the assertion q1 and q2 so that the above mentioned

paths between the consecutive assertions be correct. Let us go backward. We
have to derive qH from q1 and from the additional assumption \not i < N ." It
can evidently be done if q1 contains the conjuncts

A = AP and the elements of A are distinct, (10)
M [1 : N ] = f1; 2; : : : ; Ng, (11)
1 � i � N , (12)
(8k < i)A[M [k]] is the k-th in A[1 : N ]. (13)

We include (12) here in order to ensure that (13) is meaningful, and to give i = n
from the assumption \not i < N ." Now from (1){(3) we can derive (10){(13)
with i = 1, this proves the partial correctness of the pat qS|q1. Note that in
this case (13) become

(8k < 1)A[M [k]] is the k-th in A[1 : N ]. (14)
There is no positive integer less than 1, so (14) hods vacuously.

The next backward step is to choose an appropriate assertion for q2. This
must be true when the inner loop is entered (via q1(, must remain true whenever
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the control passes around the loop and returns, and must be string enough to
imply the assertion (10){(13) for the next value of i. With this last requirement
in mind, we try the following conjunct for q2:

A[M [i]] is just the i-th element in the set A[1 : j � 1]. (15)
Then M [i] must be an index less than j, so we also put

M [i] < j (16)
Both (15) and (16) are a�rmed by the snapshots. Now let us see what happens
with the conjunct (15) if we follow the heavy line and arrive back to q2. If
A[M [i]] < A[j] then, from (15), it follows that A[M [i]] is also the i-th element
in the set A[1 : j]. But what can we say if A[M [i]] > A[j] ? In this case the
values ofM [i] andM [j] are exchanged, so in the next iteration (15) will be valid
only if

A[M [j]] is the i-th element in A[1 : j] (17)
holds at present. (17) can be derived easily from the (inductive) conjunct

(8j � k � N)A[M [k]] is the i-th element in A[1 : k], (18)
which we would like to attach to q2. But, alas, (18) is not always true. For
example, using Table 1 of snapshots for the values i = 1, j = 2, k = 5, (18)
claims

A[M [5]] = 4 is the least element in f3; 5; 2; 1; 4g;
which is false. So we have to re�ne (18). Examine a bit closely the sentence (17).
We know from the inductive hypothesis (15) that A[M [i]] is the i-th element in
the set A[1 : j � 1], and assume that A[M [i]] > A[j]. At the same time we need
that A[M [j]] is the i-th element in A[1 : j]. Since we know something about
A[j], and want to derive something about A[M [j]], it seems quite natural to
split the investigation into two cases depending on whether M [j] = j or not.

First, ifM [j] = j and A[M [i]] > A[j] then A[M [j]] = A[j] is the i-th element
in A[1 : j] just in case there are at least (i�1) elements less than A[j] in A[1 : j].
No try to attach it as a conjunct to q2:

(8j � k � N) if M [k] = k then there are (19)
at least i� 1 elements less than A[k] in the set A[1 : k].

After a short glance at the snapshots, we see that it is a hopeful candidate.
Second, ifM [j] 6= j then A[M [j]] is an element of the set A[1 : j], i. e.M [j] <

j. So we put at once
(8j � k � N) M [k] � k. (20)

In the lack of any better idea, we use (18) in this case, the snapshots do not
contradict to this conjunct anymore:

(8j � k � N) if M [k] < k then (21)
A[M [k]] is the i-th in the set A[1 : k].
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No let us see were we are. From (15) we can derive (13) with i + 1 instead
of i, and from (19){(21) we can derive (15) for the next iteration of the inner
loop. Since we want (19){(21) be valid whenever the control enters the inner
loop, we put into q1 the conjuncts

(8i � k � N) if M [k] = k then (22)
there are at least i� 1 elements in A[1 : k] less than A[k];

(8i � k � N) M [k] � k, (23)
(8i � k � N) if M [k] < k then A[M [k]] is the i-th in A[1 : k]. (24)

When the control �rst reaches q1 then i = 1 and, by the assertion we made at
qS , M [k] = k for every 1 � k � N . Therefore (22){(24) evidently hold. But
how can we ensure that they would hold whenever the control returns from the
inner loop? There is no hope: we have to put the new conjuncts into q2, the
state that as j goes higher, the initial parts in (22){(24) become valid with the
next value of i. So we put

(8i < k < j) if M [k] = k then (25)
there are at least i elements less than A[k] in A[1 : k],

(8i < k < j) M [k] � k, (26)
(8i < k < j) if M [k] < k then (27)

A[M [k]] is the (i+ 1)-st element in the set A[1 : k].
At this point we decide it is best to start another paragraph.

4 The proof
We prove the correctness of our program in two stages. First we check that
the program always terminates. This is fairly easy. The control passes through
every box at most once for each possible value of the pair (i; j), therefor it
reaches the HALT box before visiting 5N(N + 1) boxes altogether.

Second, we prove the partial correctness with respect to the input and output
assertions qS and qH de�ned previously. To do so, we collect and complete the
disjuncts q1 and q2 we have found so far, and then check the partial correctness
of the straight-line paths qS|q1, q1|q2, q2|q2, q2|q1, and q1|qH in turn.

The conjuncts of the assertion q1 are (10){(13) and (22){(24). For the sake
of completeness, we collect them here:

A = AP and the elements of A are distinct, (28)
M [1 : N ] = f1; 2; : : : ; Ng, (29)
1 � i � N , (30)
(8k < i)A[M [k]] is the k-th in A[1 : N ], (31)
(8i � k � N) if M [k] = k then (32)

there are at least i� 1 elements in A[1 : k] less than A[k];
(8i � k � N) M [k] � k, (33)
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(8i � k � N) if M [k] < k then A[M [k]] is the i-th in A[1 : k]. (34)
With this assertion at q1, as we have explained above, the paths qS|q1 and
q1|qH are correct. Indeed, when the control reaches q1 in the path qS|q1,
then i = 1, and from this and from (1){(3) then conjuncts follow easily. In
the path q1|qH leading to the endpoint, (30) and the condition \not i < N"
gives i = N , and then (7), (8), and (9) can be got from (28), (29), and (31),
respectively.

The assertion attached to q2 is the following twelve-line monster:
A = AP and the elements of A are distinct, (35)
M [1 : N ] = f1; 2; : : : ; Ng, (36)
1 � i < N , (37)
(8k < i)A[M [k]] is the k-th element in A[1 : N ], (38)
(8i < k � N) M [k] � k, (39)
i < j � N + 1, (40)
M [i] < j, (41)
A[M [i]] is just the i-th element in A[1 : j � 1], (42)
(8j � k � N) if M [k] = k then (43)

there are at least i� 1 elements less than A[k] in A[1 : k],
(8j � k � N) if M [k] < k then (44)

A[M [k]] is the i-th element in A[1 : k],
(8i < k < j) if M [k] = k then (45)

there are at least i elements less than A[k] in A[1 : k],
(8i < k < j) if M [k] < k then (46)

A[M [k]] is the (i+ 1)-st element in A[1 : k].
The conjuncts (35){(38) are (almost faithful) copies of the conjuncts (28){(31)
of q1; they are saved and then given back to q1. In (39) we unify (20) and (26).
(40) is necessary to ensure that when we leave the inner look then j = N + 1.
The conjuncts (41){(46) were discussed in detail in the previous section.

There are three further paths whose correctness need justi�cation.

The path q1|q2

When the control reaches the point q2 along from q1 then i < N and j = i+ 1
hold as well. Therefore (35){(39) and (43){(44) are easy consequences of (28){
(32), and (33)-(34), respectively. (45) and (46) hold vacuously because there is
no integer between i and i + 1. (40) is trivial, and by (32), M [i] < i + 1 = j,
which proves (41). To only questionable conjunct is (42). (Observe that we did
not bother to make (42) valid at entering the inner look.) But either M [i] < i,
and then (34) says the A[M [i]] is the i-th element in A[1 : i], or M [i] = i. (By
(32) the case M [i] > i cannot happen.) Since in this latter case (33) gives that
there are at least (i� 1) elements less than A[i] in the set A[1 : i], A[i] must be
the i-th element. This proves (42).
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The path q2|q1

When the control leaves the inner look, we have \not j < N ," i. e. by (40),
j = N + 1. Afterwards i is increased by 1, and then the control arrives at
q1. Here the assertion (28){(34) must hold, and we show that this is the case
indeed, keeping in mind that j = N + 1, and that the \new" i in (28){(32) is
the same as the \old" i plus one in (35){(46).

Now (28){(30), (32) and (33){(34) follow easily from (35){(37), (39) and
(45){(46), respectively. (31) is contained in (38) except for the last value of k,
when k equals to the \old" i, in which case (42) works.

The path q2|q2

Suppose that the assertion (35){(46) holds at the point q2, and the control goes
around the loop and arrives back to q2. We claim that the assertion remains
valid. For conjuncts (35){(38), (40), and (43){(44) this is evidently true. When
the control enters the look, then by (41)M [i] < j, and by (35), then elements of
A are di�erent. Therefore either A[M [i]] < A[j], or A[M [i]] > A[j], and there
is no other case. We go ahead by handling these cases separately.

Case A[M [i]] < A[j]
Here (42) implies

A[M [i]] is the i-th element in A[1 : j], (47)
and, because the i-th element in A[1 : j] is less than A[j],

there are at least i elements less than A[j] in A[1 : j]. (48)
Now we claim that

M [j] = j (49)
If not, then M [j] < j (by (39)), and therefore (44) gives

A[M [j]] is the i-th element in A[1 : j]. (50)
Since the elements of A are di�erent, (47) and (50) implies M = [i] = M [j],
which is a contradiction.

When the control arrives back to q2 then only the value of j has increased.
So (39) and (41) trivially hold, and (47), (48), (49) show the validity of (42),
(45), and (46), respectively. The completes our �rst case.

Case A[M [i]] > A[j]
The conjunct (42) says that A[M [i]] is the i-th element in A[1 : j� 1], therefore

M [j] < j and A[M [i]] is the (i+ 1)-st element in A[1 : j]. (51)
The claim
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A[M [j]] is the i-th element in A[1 : j] (52)
follows from (42), (43), and from A[M [i]] > A[j] if M [j] = j, and form (44) if
M [j] < j. On the other hand, (39) gives

M [j] < j + 1. (53)
As the control goes ahead, the values of M [i] and M [j] are exchanged, and then
j is increased by 1. Therefore (51), (52), and (53) show the validity of (39){(45),
(46), (42) and (41).

This completes the proof of the correctness of the sorting algorithm.

A bit more closely examination of (49), (51) and (52) gives that
if A[M [i]] < A[j] then M [j] = j, (54)
if A[M [i]] > A[j] then A[M [i]] > A[M [j]]

always hold at point q2. And because A[M [j]] 6= A[j], this is equivalent to
A[M [i]] > A[j] if and only if A[M [i]] > A[M [j]], (55)

as we promised.

5 Conclusion
We have seen the correctness of a rather simple sorting algorithm, which, at the
�rst sight, seemed to be wrong. The main invariant assertion mate at point q2
is rather di�cult. Although it makes possible to prove the correctness, gives
no insight into the essence of the algorithm, and gives no explanation why the
program works.

Of course, the requirement that A has only distinct elements, is unnecessary,
it only makes the proof simpler.

By complexity considerations, there are simple algorithms whose correctness
can be proved only by hard and di�cult way (comparing to the simplicity of
the algorithm, see [6]), and we think that this algorithm belongs to this class.
This claim may be wrong, but a more transparent proof would not be without
interest.
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