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László Csirmaz
∗

Mathematical Institute of the Hungarian Academy of Sciences
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Abstract

A secret sharing scheme permits a secret to be shared among partici-
pants of an n-element group in such a way that only qualified subsets of
participants can recover the secret. If any non-qualified subset has abso-
lutely no information on the secret, then the scheme is called perfect. The
share in a scheme is the information what a participant must remember.
It was known that in any perfect secret sharing scheme realizing a certain
collection of qualified sets over n participant, at least one participant must
use at least O(n/ log n) random bits for each bit in the secret. Here we
present a collection of qualified sets so that the total number of random
bits used by all the participants, i.e. the dealer’s random bits is at least
O(n2/ log n) for each bit in the secret.

Key words. Secret sharing, perfect secret sharing schemes, polymatroid
structures, information theory.

1 Introduction

An important issue in secret sharing systems is the size of the shares distributed
among the participants which has received considerable attention in the last few
years, see e.g. [16], [5], [6], [9], etc. The reason is practical on one hand: the
more information must be kept secret the less secure the system is since human
being are not too good at remembering even medium size random data. On the
other hand the problem is theoretically intriguing, too. All the known general
constructions which work for arbitrary access structures assigns exponentially
large shares. For a long time even it was not known whether the size of the
shares should tend to infinity. The first results in this direction were [7] and [9]
where an almost linear lower bound was given. In [9] the question for access

∗This research was supported by OTKA grant no. 1911

1



structures based on graphs was settled: here the lower and upper bounds agree.
For other access structures still there is a gap, and as it was remarked in [7],
any better lower bound would yield an affirmative answer to a long standing
question in information theory: are there more (linear) inequalities among the
joint entropies of random variables which are not consequences of the known
ones [8]?

In this paper we construct an access structure on which any perfect secret
sharing scheme must use n/4 log n random bits for each secret bit on average for
each participant, i.e. total n2/4 log n bits. The construction in [7] gave an access
structure where some (in fact, at least log n) participant must use O(n/ log n)
random bits.

The paper is arranged as follows. First we give some definitions, and cite
notions and facts from information theory which we shall use. Then we present
the construction and prove that it is good. Finally we outline a conjecture about
the entropy function.

2 Prerequisites

In this section we review the technical concepts both from information theory
and from secret sharing which will be used in this paper. For a more complete
treatment of information theory the reader is referred to [8]; its application to
secret sharing is explained in [5].

2.1 Information Theoretic Notions

Given a probability distribution {p(x)}x∈X in a finite set X, define the entropy

of X as
H(X) = −

∑

x∈X

p(x) log2 p(x).

The entropy H(X) is a measure of the average information content of the ele-
ments in X. By definition, the entropy is always non-negative.

Given two setsX and Y and a joint probability distribution {p(x, y)}x∈X,y∈Y

on the Cartesian product of X and Y , the conditional entropy H(X|Y ) of X
assuming Y is defined as

H(X|Y ) =
∑

y∈Y

p(y)H(X|Y = y), (1)

where “X|Y = y” is the probability distribution got from p by fixing the value
y ∈ Y . The conditional entropy can also given in the form

H(X|Y ) = H(XY )−H(Y ) (2)

where Y is the marginal distribution. From definition (1) it is easy to see that
H(X|Y ) ≥ 0.
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The mutual information between X and Y is defined by

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(XY )

and is always non-negative: I(X;Y ) ≥ 0. This inequality expresses the intuitive
fact that the knowledge of Y , on average, can only decrease the uncertainty one
has on X.

Similarly to the conditional entropy, the conditional mutual information be-
tween X and Y given Z is defined as

I(X;Y |Z) = H(X|Z)−H(X|Y Z)

= H(XZ) +H(Y Z)−H(XY Z)−H(Z), (3)

and is also non-negative: I(X;Y |Z) ≥ 0. In fact, the only known (lin-
ear) inequalities for the entropy function are H(X) ≥ 0, H(X|Y ) ≥ 0 and
I(x;Y |Z) ≥ 0 and their algebraic consequences. One of the open questions in
information theory is to find more, or to show that there are none. We shall say
more about it in the last section.

2.2 Secret Sharing Schemes

In the following individuals will be denoted by small letters: a, b, x, y, etc., sets
(groups) of individuals by capital letters A, B, X, Y , etc., finally collection of
groups by script letters A, B. We use P to denote the set of participants who
will share the secret.

An access structure on an n-element set P of participants is a collection A of
subsets of P : exactly the qualified groups are collected into A. We shell denote
a group simply by listing its members, so x denotes both a member of P and
the group which consists solely of x.

A secret sharing scheme permits a secret to be shared among n participants
in such a way that only qualified subsets of them can recover the secret. Secret
sharing schemes satisfying the additional property that unqualified subsets can
gain absolutely no information about the secret are called perfect as opposed to
schemes where unqualified groups may have some information on the secret.

A natural property of access structures is monotonicity, i.e. A ∈ A and
A ⊆ B ⊆ P implies that B ∈ A. This property expresses the fact that if any
subset can recover the secret, then the whole group can also recover the secret.
Also, a natural requirement is that the empty set should not be in A, i.e. there
must be some secret at all. Thus we may concentrate on minimal qualified
subsets, no members of which can be dismissed without changing the subset
into an unqualified one. We say that the access structure is generated by its
minimal elements,

Let P be the set of participants, A be an access structure, and S be the set
of possible secrets. A secret sharing scheme, given a secret s ∈ S, assigns to
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each member x ∈ p a random share from some domain. The shares are thus
random variables with some disjoint distribution determined by the value of the
secret s. Thus a scheme can be regarded as a collection of random variables,
one for the secret, and one for each x ∈ P . The scheme determines the joint
distribution of these n+ 1 random variables. For x ∈ P the x’s share, which is
(the value of) a random variable, will also be denoted by x. For a subset A ⊆ P
of participants, A also denotes the joint (marginal) distribution of the shares
assigned to the participants in A.

Following [5] we call the scheme perfect if the following hold:

1. Any qualified subset can reconstruct the secret, that is, the shares got by
the participants in A determine uniquely the secret. This means H(s|A) =
0 for all A ∈ A.

2. Any non qualified subset has absolutely no information on the secret, i.e. s
and the shares got by members of A are statistically independent: knowing
the shares in A, the conditional distribution of s is exactly the same as
its a priori distribution. Translated to information theoretic notions this
gives H(s|A) = H(s) for all A /∈ A.

By the above description the entropy of the secret, H(s) can be considered
as the length of the secret. Any lower bound on the entropy of x ∈ P gives
immediately a lower bound on the size of x’s share, and any lower bound on
any subset X ⊆ P of participants gives a lower bound on the total amount
of random bits the dealer must have when distributing the shares among the
participants.

2.3 Polymatroid structure

Let Q be any finite set, and B = 2Q be the collection of the subsets of Q. Let
f : B → R be a function assigning real numbers to subsets of Q and suppose f
satisfies the following conditions:

(i) f(A) ≥ 0 for all A ⊆ Q, f(∅) = 0,

(ii) f is monotone, i.e. if A ⊆ B ⊆ Q then f(A) ≤ f(B),

(iii) f is submodular, i.e. if A and B are different subsets of Q then f(A) +
f(B) ≥ f(A ∩B) + f(A ∪B).

The system (Q, f) is called polymatroid. If, in addition, f takes only integer
values and f(x) ≤ 1 for one-element subsets, then the system is a matroid.

S. Fujishige in [10] observed that having a finite collection of random vari-
ables, we will get a polymatroid by assigning the entropy to each subset. The
proof of the following proposition can also be found in [14].
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Proposition 2.1 By defining f(A) = H(A)/H(s) for each A ⊆ P ∪{s} we get

a polymatroid.

In our case the random variable s, the “secret” plays a special role. By our
extra assumptions on the conditional entropies containing s we can calculate
the value of f(As) from f(A) for any A ⊆ P , see [5, 14].

Proposition 2.2 The secret sharing scheme is perfect if and only if for any

A ⊆ P we have

if A ∈ A then f(As) = f(A);

if A /∈ A then f(As) = f(A) + 1.

Now let us consider the function f defined in Proposition 2.1 restricted to the
subsets of P . From this restriction we can calculate easily the whole function;
and since the extension is also a polymatroid, the restriction will satisfy some
additional inequalities.

Proposition 2.3 The function f defined in Proposition 2.1 satisfies the follow-

ing additional inequalities:

(i) if A ⊆ B, A /∈ A and B ∈ A then f(B) ≥ f(A) + 1;

(ii) if A ∈ A, B ∈ A but A∩B /∈ A then f(A)+f(B) ≥ f(A∩B)+f(A∪B)+1.

The method can be outlined as follows. We define an access structure on
the n-element set P , an A ⊆ P , and show that for any polymatroid (P, f)
satisfying (i) and (ii) above we have f(A) ≥ n2/4 log n. By the discussion at the
beginning of this section this implies that for any perfect secret sharing scheme
H(A)/H(s) ≥ n2/4 log n. This means that members of A has to remember
n/4 log n bits for every secret bit on the average, and also that the dealer must
use at least n2/4 log n random bits for each secret bit for distributing the shares
to the members of A.

3 The construction

The first lemma expresses a trivial fact about qualified and unqualified subsets.

Lemma 3.1 Let A1, . . ., Ak, and B1, . . ., Bℓ be subsets of P . There exists an

access structure A on P for which all Ai are qualified and all Bj are unqualified

if and only if no Bj is a subset of any Ai.

The next lemma is also the main lemma in [7]. Let k > 1 and t < 2k − 1;
X be a k-element set, X0 = X, X1, . . ., X2k−1 = ∅ all the subsets of X in such
an order that if i < j then Xi 6⊆ Xj . (Reverse order, for example, by the size of
the subsets.) Let b1, . . ., bt be individuals, not in X, and B0 = ∅, B1 = {b1}, in
general Bj = {b1, . . . , bj} for j ≤ t.
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Lemma 3.2 Let A be an access structure on P , (P, f) be a polymatroid satis-

fying (i) and (ii) of Proposition 2.3; Y ⊆ P , Xj and Bj as above. Suppose that

for each j ≤ t, Y ∪Bj ∪Xj ∈ A and Y ∪Bj ∪Xj+1 /∈ A. Then

f(X ∪ Y )− f(Y ) ≥ t+ 1.

Proof. Observe that Y ∪Bj /∈ A since it has a superset not in A, and Y ∪Bj ∪
X ∈ A since it has a subset in A. Thus (i) of Proposition 2.3 gives immediately

f(Y ∪Bj ∪X)− f(Y ∪Bj) ≥ 1. (4)

Similarly, for each 0 ≤ j < t, (ii) of Proposition 2.3 gives

f(Y ∪Bj+1∪Xj+1)+f(Y ∪Bj ∪X) ≥ f(Y ∪Bj ∪Xj+1)+f(Y ∪Bj+1∪X)+1.

The submodular inequality applied to Y ∪Bj+1 and Y ∪Bj ∪Xj+1 yields

f(Y ∪Bj+1) + f(Y ∪Bj ∪Xj+1) ≥ f(Y ∪Bj) + f(Y ∪Bj+1 ∪Xj+1).

Adding up the last two inequalities, after rearranging we get

[

f(Y ∪Bj ∪X)− f(Y ∪Bj)
]

−
[

f(Y ∪Bj+1 ∪X)− f(Y ∪Bj+1)
]

≥ 1. (5)

This holds for j = 0, . . ., j = t − 1. Since B0 = ∅, adding (5) for all of these
values to (4) gives the claim of the lemma.

Theorem 3.3 Let k > 1, t < 2k − 1, s ≥ 1. There is an access structure A
on an n = t + sk + ⌈log2 s⌉ element set P so that for any polymatroid (P, f)
satisfying the conditions of Proposition 2.3, f(P ) ≥ s(t+ 1).

Proof. Let Bt = {b1, . . . , bt}; have X(i) exactly k elements for 1 ≤ i ≤ s,
finally let Z be a ⌈log2 s⌉ element set, and Z1, Z2, . . ., Zs be subsets of Z
such that if i < j then Zi 6⊆ Zj . The set of participants P will be just the
union of the disjoint sets Bt, X

(i) and Z, obviously |P | = n. Let moreover
W (1) = ∅, W (2) = X(1), W (3) = X(1) ∪X(2), . . ., W (s+1) = X(1) ∪ . . . ∪X(s),
and Y (i) = Zi ∪W (i) for 1 ≤ i ≤ s+ 1.

Applying Lemma 3.2 to the sets Y (i), B1, . . ., Bt, and X(i) we get

f(X(i) ∪ Y (i))− f(Y (i)) ≥ t+ 1,

i.e.
f(Zi ∪W (i+1))− f(Zi ∪W (i)) ≥ t+ 1.

The submodularity applied to W (i+1) and Zi ∪W (i) gives

[

f(W (i+1))− f(W (i))
]

−
[

f(Zi ∪W (i+1))− f(Zi ∪W (i))
]

≥ 0,
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from where we get
f(W (i+1))− f(W (i)) ≥ t+ 1.

Since f(W (1)) = f(∅) = 0 and f(P ) ≥ f(W (s+1)) the claim of the theorem
follows. We still have to check that there is an access structure so that conditions
of Lemma 3.2 hold. Let the subsets of X(i) be X

(i)
j as in the lemma; picking

any i and j we must have Y (i) ∪Bj ∪X
(i)
j ∈ A, and Y (k) ∪Bℓ ∪X

(k)
ℓ+1 /∈ A. By

our observation 3.1 such an access structure exists if for no two different pairs
(i, j) and (k, ℓ)

Y (i) ∪Bj ∪X
(i)
j ⊆ Y (k) ∪Bℓ ∪X

(k)
ℓ+1.

Suppose on the contrary that this is the case. Replacing Y ’s with their defini-
tions this means

Zi ∪W (i) ∪X
(i)
j ∪Bj ⊆ Zk ∪W (k) ∪X

(k)
ℓ+1 ∪Bℓ.

Since Z, B, and W (s+1) are pairwise disjoint, this inclusion means that Zi ⊆ Zk,

W (i) ⊆ W (k) ∪ X
(k)
ℓ+1, and Bj ⊆ Bℓ. Now, if i < k then by the choice of the

Z’s, Zi 6⊆ Zk, and if i > k then W (i) is a proper superset (and not a subset) of

W (k) ∪X
(k)
ℓ+1. Therefore we must have i = k. Similarly, if j < ℓ+1 then X

(i)
j is

not a subset of X
(k)
ℓ+1 = X

(i)
ℓ+1, finally if j ≥ ℓ + 1 then Bj is a proper superset

of Bℓ. No cases left, the claim is proved.

To get the result announced in the Introduction, choose k = log(n/2), t =
n/2, and s = n/(2 log n), this gives f(P ) ≥ n2/(4 log n), as claimed. The
following table summarizes the best values for k, t and s, and the coefficient λ
so that f = n2/λn log2 n. It is not hard to see that λn converges to 4 as n tends
to infinity.

n f λn t s k
3 2 2.839184 1 1 2
4 2 4.000000 1 1 3
5 3 3.588971 2 1 3

10 8 3.762875 3 2 3
20 24 3.856304 11 2 4
30 52 3.527222 12 4 4
50 116 3.818617 28 4 5
100 400 3.762875 49 8 6
200 1386 3.775585 98 14 7
400 4900 3.777603 195 25 8
800 17556 3.780103 398 44 9

1600 63520 3.786435 793 80 10
3200 231710 3.795407 1597 145 11
6400 851200 3.805825 3199 266 12
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4 Conclusion

There are several general methods for generating shares, see [2, 16]. These
usually work well on “structured” access structures, but assign exponentially
large shares on the worst case. We have constructed an access structure on an
n-element group so that in any perfect secret sharing scheme the dealer must
use at least n2/4 log n random bits for each bit in the secret. This shows that
any method must assign almost linear shares on the average in some cases.

Karchmer and Wigderson in [13] showed that there is a strong connection
between the so-called (monotone) span programs and certain secret sharing
schemes. Thus our result also gives immediately a lower bound for the size of
span programs. Beimel, Gál, and Paterson in [1] gave general lower bounds for
the size of span programs, which implies that for some access structure on n
participants, if the scheme is of Karchmer–Wigderson type the dealer must use
at least c · n2 random bits for each secret bit.

Given any, say random, access structure A on a set P of n participants, all
perfect secret sharing schemes can be generated as follows.

(i) devise a polymatroid (P, f) satisfying the conditions of Proposition 2.2,
and then

(ii) realize f by assigning random variables to each participant so that for each
A ⊆ P , f(A) = λ ·H(A) for some constant λ.

The total number of random bits used by the dealer will then be λH(P ).
The lower bound proved in the present paper comes from (i). We showed

that for a particular access structure every feasible polymatroid must satisfy
f(P ) ≥ O(n2/ log n). We cannot push it higher since for any access structure
there exists a polymatroid with f(P ) ≤ n2. Thus we have to concentrate on
(ii) and consider only representable polymatroids. Unfortunately very little is
known along this line. For n ≤ 3 all polymatroids are representable. For n = 4
F. Matuš in [15] gives a non representable polymatroid. In fact, he proves that
if P = {a, b, c, d} and (P, f) is a polymatroid then

f(ac) + f(bc) + f(ad) + f(bd) + f(cd)− f(c)− f(d)− f(acd)− f(bcd)− f(ab)

≥ −
1

4
f(abcd),

and for representable polymatroids equality holds only if f(abcd) = 0. There
are polymatroids for which equality holds here, thus they are not representable.
It is interesting to note that the left hand side also appears in matroid theory:
it cannot be negative for matroids representable over fields [11]. For those more
familiar with the entropy function the above inequality can be written as

I(a; b) + I(c; d|a) + I(c; d|b)− I(c; d) ≥ −
1

4
H(abcd),
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and is the consequence of the usual entropy inequalities. We conjecture that
for representable polymatroids (i.e. for random variables) the constant 1/4 can
be replaced by a much smaller value. Showing that it holds with any value less
than 1/4 would also give a new linear inequality for the entropy thus settling
an important open problem of information theory.

Conjecture 4.1 If a, b, c, and d are random variables, then

I(a; b) + I(c; d|a) + I(c; d|b)− I(c; d) ≥ −0.09876...H(abcd),

and equality attained, for example, if all variables take only 0-1 values, c =
min(a, b), d = max(a, b), and

Prob(a = 0, b = 0) = Prob(a = 1, b = 1),

Prob(a = 0, b = 1) = Prob(a = 1, b = 0).

References

[1] A. Beimel, A. Gál, M. Paterson, Lower bounds for monotone span pro-
grams, Preprint, 1994

[2] G. R. Blakley and C. Meadows, Security of Ramp Schemes, Proceeding of

Crypto’84 – Advances in Cryptology, Lecture Notes in Computer Science,
Vol 196, G. R. Blakley and D. Chaum, eds. Springer-Verlag, Berlin, 1985,
pp. 411-431.

[3] C. Blundo, A. De Santis, L. Gargano, U. Vaccaro, On the Information
Rate of Secret Sharing Schemes, in Advances in Cryptology – CRYPTO

’92, Lecture Notes in Computer Science, Vol 740, E. Brickell ed, Springer-
Verlag, Berlin, 1993, pp. 149-169.

[4] C. Blundo, A. De Santis, A. G. Gaggia, U. Vaccaro, New Bounds on the
Information Rate of Secret Sharing Schemes, Preprint, 1993

[5] R. M. Capocelli, A. De Santis, U. Vaccaro, On the Size of Shares for Secret
Sharing Schemes, Journal of Cryptology, Vol 6(1993) pp. 157-167.

[6] M. Carpentieri, A. De Santis, U. Vaccaro, Size of Shares and Probability
of Cheating in Threshold Schemes, Proceeding of Eurocrypt’93.

[7] L. Csirmaz, The size of a share must be large, Journal of Cryptology, to
appear

[8] I. Csiszár and J. Körner, Information Theory. Coding Theorems for Dis-

crete Memoryless Systems, Academic Press, New York, 1981.

[9] M. van Dijk, On the Information Rate of Perfect Secret Sharing Schemes,
Preprint, 1994

9



[10] S. Fujishige, Polymatroid dependence structure of a set of random variables,
Information and Control 39(1978) pp. 55-72.

[11] A. W. Ingleton, Conditions for representability and transversality of ma-
troids, Proceeding of Fr. Br. Conf Springer Lecture Notes 211(1970),
pp. 62-67

[12] M. Ito, A. Saito, T. Nishizeki, Multiple Assignment Scheme for Sharing
Secret Journal of Cryptology, Vol 6(1993) pp. 15-20.

[13] M. Karchmer and A. Wigderson, On span programs in: Proceedings of the
8th annual structure in complexity theory (1993) pp. 102-111

[14] K. Kurosawa, K. Okada, K. Sakano, W. Ogata, S. Tsujii, Nonperfect Secret
Sharing Schemes and Matroids, Proceedings of Eurocrypt’93.
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