László Csirmaz

CEU \& Rényi Institute

Secret Sharing on infinite graphs

2006, NyírCrypt

Definition: a Perfect Secret Sharing on the graph G is a joint distribution

$$
\underbrace{\xi_{v_{1}}, \xi_{v_{2}}, \ldots, \xi_{v_{n}}}_{\text {vertices }}, \underbrace{\xi_{s}}_{\text {secret }} \text {, where: }
$$

- ξ_{v} is the share of $v \in V$,
- each edge can recover (=determine) the secret s,
- $A \subseteq V$ is independent $\Rightarrow\left\{\xi_{v}: v \in A\right\}$ and ξ_{s} are independent as random variables.

Definition: $\mathrm{R}(G)$, the worst case information rate of G is
$\mathrm{H}(A)=$ entropy of $\left\{\xi_{v}: v \in A\right\}$
$\frac{\mathrm{H}\left(\xi_{v}\right)}{\mathrm{H}\left(\xi_{s}\right)}=$ how many bits should v remember.

$$
\mathrm{R}(G) \stackrel{\text { def }}{=} \min _{\text {scheme }} \max _{v \in V} \frac{\mathrm{H}\left(\xi_{v}\right)}{\mathrm{H}\left(\xi_{s}\right)}
$$

Claim: $\mathrm{R}(G) \geq 1$ if G is not empty.
Claim (Shamir): $\mathrm{R}\left(K_{n}\right)=1$.

Theorem (Stinson): $G_{i} \subseteq S, \mathcal{S}_{i}$ is on $G_{i} ; \mathcal{S}_{i}$ assigns $\mathcal{S}_{i}(v)$ bits to $v \in V$. Each edge is covered $\geq k$ times. Then there is a scheme which assigns

$$
\frac{1}{k} \sum \mathcal{S}_{i}(v) \text { bits to } v
$$

Claim: If G^{\prime} is a spanned subgraph of G, then $\mathrm{R}\left(G^{\prime}\right) \leq \mathrm{R}(G)$.

Generally not true for arbitrary subgraphs.

Definition: rate for infinite graphs:
$\mathrm{R}(G) \stackrel{\text { def }}{=} \sup \left\{\mathrm{R}\left(G^{\prime}\right): G^{\prime}\right.$ is a finite, spanned subgraph of $G\}$.

Claim: $\mathrm{R}\left(K_{\infty}\right)=1, \mathrm{R}($ star $)=1$.
Proof: secret $s \in\{0,1\}$, random $r \in\{0,1\}$

Claim: If degree $\leq d$ then $\mathrm{R}(G) \leq(d+1) / 2$. Proof: Cover G with starts from each vertex. Edges covered twice; each vertex gets $\leq d+1$ bits.

Corollary: $R($ honeycomb $) \leq 2$.

Claim: $R($ lattice $) \leq 2$.

$s \in\{0,1\}, r \in\{0,1\}$

Claim: R (triangle) ≤ 3.

Proof:

$$
s \in\{0,1,2\}
$$

$$
r \in\{0,1,2\}
$$

Claim: R (path) ≤ 1.5.

Proof: Each edge is covered twice, each vertex gets 3 bits:

Claim: $R(3$-dim lattice $) \leq 3$.

Proof:

Faces of these cubes: each edge is covered twice; each vertex gets 6 bits.

Claim: $\mathrm{R}(d$-dim lattice $) \leq d$.

Proof: Consider 2-faces.

Claim: $R($ rake $) \leq 2$.

Proof:

Lower Bounds

Reminder: $\mathrm{H}(A)=$ entropy of $\left\{\xi_{v}: v \in A\right\}$
Use known linear inequalities (LP problem)
Example: For $G={ }_{\bullet}^{a} \quad{ }_{\bullet} \quad{ }_{\bullet}^{d} \quad$ we have $\mathrm{H}(b)+\mathrm{H}(c) \geq \mathrm{H}(b c) \geq 3$ as:

$$
\begin{aligned}
\mathrm{H}(a b c d) & \geq \mathrm{H}(a d)+1 \\
\mathrm{H}(a d)+\mathrm{H}(a c) & \geq \mathrm{H}(a b c d)+\mathrm{H}(a) \\
\mathrm{H}(a c d)+\mathrm{H}(a b c) & \geq \mathrm{H}(a b c d)+\mathrm{H}(a c)+1 \\
& \vdots \\
& \text { etc. }
\end{aligned}
$$

Claim: $R($ path $)=1.5$
Proof: Contains • • • as spanned subgraph.

Definition: Rake $_{k}$:

Rake $_{2}$:

Theorem: $\mathrm{R}\left(\mathrm{Rake}_{k}\right)=2-1 / k$.

Proof: \leq by example. Summing up all k sharings below, 1 bit is missing at every bottom node:

$\begin{array}{llllllllll}\geq: & \bullet a_{1} & a_{2} & \bullet & & \bullet & \bullet a_{k} \\ & A_{1} & A_{2} & A_{3} & \bullet & \bullet & A_{k}\end{array}$

$$
\sum_{i=1}^{k} \mathrm{H}\left(A_{i}\right) \geq \mathrm{H}\left(A_{1} A_{1} \ldots A_{k}\right)+k-2
$$

$$
H\left(A_{1} A_{1} \ldots A_{k}\right) \geq k+1
$$

Theorem: $R($ honeycomb $)=2$.

Proof: Contains the infinite rake as a spanned subraph:

Theorem: $R($ lattice $)=2$.

Proof: The rake can be embedded, too:

Theorem: $\mathrm{R}(d$-dim lattice $)=d$.

Proof (idea): Vertices of the cube are split as $L_{k}^{d} \cup R_{k}^{d}$; both are independent.
(*) $\sum_{v \in \text { cube }} \mathrm{H}(v) \geq f\left(L_{k}^{d}, R_{k}^{d}\right)+\left(d-\frac{1}{2}\right) k^{d}(1-o(1))$
$f($,$) is a smart expression which allows to$ prove (*) by induction on k and d. Finally

$$
f\left(L_{k}^{d}, R_{k}^{d}\right) \geq \frac{1}{2} k^{d}
$$

Problems

- $2 \leq R$ (triangle lattice) ≤ 3. Exact value?
- Investigate other nice infinite graphs.
- For the rake R is not local, i.e. the sup is not taken. The 2-dimensional lattice is local, as $R(\square)=2$. What happens in higher dimenions? Is the honeycomb local?
- Limits of the entropy method: for this graph the best lower bound is $7 / 4$. Is it the truth?

