Multiobjective optimization and the entropy region

Laszlo Csirmaz

Central European University, Budapest

Prague Stochastics, Aug 28, 2014

Outline

- 2 Entropy inequalities
- ${}^{\textcircled{3}}$ The structure of H_4 and the natural coordinates
- 4 Multiobjective optimization
- 5 Solving the optimization problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polymatroids

- The ground set N is any finite set, $N = \{1, 2, \dots, N\}$.
- The rank function f assigns non-negative values to the subsets I ⊆ N, that is, f : 2^N → ℝ^{≥0}.
- $\langle f, N \rangle$ is a **polymatroid** if it satisfies the Shannon inequalities:

$$f(\emptyset) = 0,$$

$$f(A) \ge f(B) \text{ if } A \supseteq B,$$

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

- $\langle f, N \rangle$ is a **matroid** if f(A) is integer, and $f(A) \leq |A|$.
- ⟨f, N⟩ is entropic if f(A) = H(ξ_A), where (ξ_i : i ∈ N) are discrete random variables with some joint distribution.
- Pointwise limit of entropic polymatroids are almost entropic.

Regions

The rank function f is a vector indexed by non-empty subsets of N.

- *H_N* ⊆ ℝ^{2^N-1} is the region of **polymatroids**.
 a full-dimensional closed convex pointed cone.
- $H_N^{\text{ent}} \subseteq H_N$ is the entropy region.
- $cl(H_N^{\text{ent}})$ is the **pointwise closure** of H_N^{ent} .

Theorem (Zhang–Yeung 1998, Matúš 2007)

- $cl(\mathbf{H}_N^{\text{ent}})$ is a convex full-dimensional cone in \mathbb{R}^{2^N-1} .
- The interior of $cl(H_N^{ent})$ is entropic.

•
$$H_2^{\mathsf{ent}} = cl(H_2^{\mathsf{ent}}) = H_2.$$

- $H_3^{ ext{ent}}
 eq \textit{cl}(H_3^{ ext{ent}}) = H_3.$
- $H_N^{\text{ent}} \neq cl(H_N^{\text{ent}}) \neq H_N$ for $N \geq 4$.
- $cl(\mathbf{H}_N^{\text{ent}})$ is **not** polyhedral for $N \ge 4$.

= \$\\$<</p>\$\\$

・ロット 御ママ キョマ キョン

5 / 29

The boundary of the entropy region

Definition

 $H_N^k \subseteq H_N^{ent}$ is the subregion where the distribution $(\xi_i : i \in N)$ has alphabet size k.

Facts

$$H_N^k$$
 is closed; $H_N^k \subseteq H_N^{k+1}$; and $H_N^{\text{ent}} = \bigcup_k H_N^k$.

Research Problems

- For fixed N, is the convergence $H_N^k \to H_N^{ent}$ uniform?
- **②** Give an estimate for the thickness of $H_N^{\text{ent}} H_N^k$ (in different metrics) as a function of k.
- Give a description of $cl(H_N^{ent}) H_N^{ent}$ in the case N = 3. Where is it fractal-like?

Outline

Polymatroids and regions

2 Entropy inequalities

- 3 The structure of H_4 and the natural coordinates
- 4 Multiobjective optimization
- 5 Solving the optimization problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Searching for new entropy inequalities

Known methods to get new entropy inequalities are:

- Image: Comparison of the second se
- 2 Makarychev et al. technique (2002)
- Matúš' polymatroid convolution (2007)
- Maximum entropy extension (2014)

Equivalence of #1 and #2 for **balanced** inequalities was shown by Tarik Kaced (2013).

Research problem

Show that methods #3 and #4 are actually **stronger** than the other two.

Searching for new entropy inequalities

Known methods to get new entropy inequalities are:

- Image: Comparison of the second se
- Ø Makarychev et al. technique (2002)
- Matúš' polymatroid convolution (2007)
- Maximum entropy extension (2014)

Equivalence of #1 and #2 for **balanced** inequalities was shown by Tarik Kaced (2013).

Research problem

Show that methods #3 and #4 are actually **stronger** than the other two.

We focus on method #1, others raise similar issues.

In nutshell

- Start with a pool of some (at least four) random variables;
- 2 split the random variables into two sets: $\vec{x_1}$ and \vec{y} ,
- Some make an independent copy \$\vec{x}_2\$ of \$\vec{x}_1\$ over \$\vec{y}\$ to get the new pool of random variables \$\langle \$\vec{x}_1\$, \$\vec{x}_2\$, \$\vec{y} \rangle\$;
- iterate steps 2 and 3 several times;
- ollect the constraints:
 - Shannon inequalities for the final variable set;
 - equalities among entropy values expressing: all conditional independence; identical distribution of $(\vec{x_1}, \vec{y})$ and $(\vec{x_2}, \vec{y})$; symmetry of $\vec{x_1}$ and $\vec{x_2}$ over \vec{y} ;
- **(**) extract all consequences for the original variables.

In nutshell

- Start with a pool of some (at least four) random variables;
- 2 split the random variables into two sets: $\vec{x_1}$ and \vec{y} ,
- Some make an independent copy \$\vec{x}_2\$ of \$\vec{x}_1\$ over \$\vec{y}\$ to get the new pool of random variables \$\langle \$\vec{x}_1\$, \$\vec{x}_2\$, \$\vec{y} \rangle\$;
- iterate steps 2 and 3 several times;
- ollect the constraints:
 - Shannon inequalities for the final variable set;
 - equalities among entropy values expressing: all conditional independence; identical distribution of $(\vec{x_1}, \vec{y})$ and $(\vec{x_2}, \vec{y})$; symmetry of $\vec{x_1}$ and $\vec{x_2}$ over \vec{y} ;
- O extract all consequences for the original variables.

Numerically intractable even for three full iterations.

(日)、(四)、(E)、(E)、(E)

Remedy (Dougherty *et al*)

- discard some of the copied variables in \vec{x}_2 ; and/or
- glue together some variables in \vec{x}_2 .

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Remedy (Dougherty et al)

- discard some of the copied variables in \vec{x}_2 ; and/or
- glue together some variables in \vec{x}_2 .

Example **copy string** with three iterations, **initial** random variables **abcd** and **auxiliary** variables **rstuv**:

rs=cd:ab; tu=cr:ab; v=(cr):abtu

The set of constraints is composed of

- all Shannon inequalities,
- all conditional independence, and

• equality arising from identical distributions and symmetry, written for entropies of the subsets of the initial and auxiliary variables (abcd+rstuv).

Zhang–Yeung method – geometrical view

Given a copy string for initial variables abcd, we use the notation

- $\mathbf{x} \in \mathbb{R}^p$ for the entropies of subsets of abcd (p = 15);
- $\mathbf{y} \in \mathbb{R}^m$ for the vector of all other entropies;
- $\mathcal{M}(\mathbf{x}, \mathbf{y})$ for the collection of constraints.

 $\mathcal{M}(\mathbf{x}, \mathbf{y})$ is **linear** and **homogeneous**, thus can be written as

$$P\mathbf{x} + M\mathbf{y} \ge 0$$

for some $p \times n$ and $m \times n$ matrices P and M determined by the copy string.

P = { (x, y) ∈ ℝ^{p+m} : x ≥ 0, y ≥ 0, Px + My ≥ 0 } is the feasible region, a convex pointed polyhedral cone;
Q = {x ∈ ℝ^p : for some y ∈ ℝ^m, (x, y) ∈ P} is the projection of P, a convex, pointed polyhedral cone.

 \Rightarrow

(日) (四) (日) (日) (日) (日)

Geometrical view

•
$$\mathcal{P} = \{ (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{p+m} : \mathbf{x} \ge 0, \ \mathbf{y} \ge 0, \ P\mathbf{x} + M\mathbf{y} \ge 0 \},$$

• $\mathcal{Q} = \{ \mathbf{x} \in \mathbb{R}^p : \text{ for some } \mathbf{y} \in \mathbb{R}^m, \ (\mathbf{x}, \mathbf{y}) \in \mathcal{P} \}.$

Linear consequences of $P\mathbf{x} + M\mathbf{y} \ge 0$ are the non-negative linear combinations of the rows of (P, M). Such an inequality bounds Q iff in it all \mathbf{y} coordinates are zero. Thus the collection of linear inequalities bounding Q – the **dual cone of** Q – is

•
$$\mathcal{Q}^{\circ} = \{ P^T \mathbf{v} \in \mathbb{R}^p : \mathbf{v} \in \mathbb{R}^n, \ \mathbf{v} \ge 0, \ M^T \mathbf{v} = 0 \}.$$

Observations

a) If $\mathbf{x} \in \mathbb{R}^p$ is entropic, then for some $\mathbf{y} \in \mathbb{R}^m$, $(\mathbf{x}, \mathbf{y}) \in \mathcal{P}$. Therefore the entropy region is contained in the projection \mathcal{Q} . b) The "strongest" entropy inequalities which can be extracted from a copy string are the extremal rays of \mathcal{Q}° .

・ロト ・ 雪 ト ・ ヨ ト

э

Creating new information inequalities

In theory it is as easy as ...

- Choose your favorite copy string.
- Generate the matrices (P, M) describing the linear homogeneous constraints arising from your copy string.
- Compute the extremal rays of Q° using your favorite computer algebra package.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Creating new information inequalities

In theory it is as easy as ...

- Choose your favorite copy string.
- Generate the matrices (P, M) describing the linear homogeneous constraints arising from your copy string.
- Compute the extremal rays of Q° using your favorite computer algebra package.

In practice there are annoying nuisances ...

- When things get interesting, M becomes really large (over 28000 Shannon inequalities just for 4+7 variables).
- Even if the size is not a problem, *M* is highly degenerate (hated by all packages).
- The computational problem is numerically unstable (and integer arithmetic takes ages).

Improving the performance

Use what is known about H_4

Where to look:

 Frantisek Matúš and Milan Studený, Conditional independencies among four random variables I, *Combinatorics, Probability and Computing*, no 4, (1995) pp. 269-278.

Outline

Polymatroids and regions

2 Entropy inequalities

3 The structure of H_4 and the natural coordinates

- 4 Multiobjective optimization
- 5 Solving the optimization problem

Entropy expressions

Fix four random variables as a, b, c, d. For any subset J of *abcd*, J also denotes its entropy, H(J).

Definition

For any permutation of the variables a, b, c, d we define

- $(a, b) \stackrel{\text{def}}{=} a + b ab;$ \Leftarrow mutual info
- $(a, b | c) \stackrel{\text{def}}{=} ac + bc abc c; \quad \leftarrow \text{ cond. mutual info}$

•
$$(a, b | cd) \stackrel{\text{def}}{=} acd + bcd - abcd - cd;$$

- $(a \mid bcd) \stackrel{\text{def}}{=} abcd bcd; \quad \leftarrow \text{ cond. entropy}$
- $[abcd] \stackrel{\text{def}}{=} -(a,b) + (a,b|c) + (a,b|d) + (c,d). \leftarrow \text{Ingleton}$

The **Ingleton** expression is symmetric in *ab* and *cd*:

$$[abcd] = [\overrightarrow{bacd}] = [\overrightarrow{abdc}] = [\overrightarrow{badc}].$$

Why Ingleton is so important

Definition

 $\square \subset cl(H_4^{ent})$ where **all six** Ingleton expressions are ≥ 0 ; $\square_{ab} \subset cl(H_4^{ent})$ where $[abcd] \le 0$, i.e., this Ingleton is violated; $\square_{ac} \subset cl(H_4^{ent})$ where $[acbd] \le 0$; etc.

Theorem (Matus – Studeny, 1995)

- $cl(H_4^{\text{ent}}) = \Box \cup \Box_{ab} \cup \cdots \cup \Box_{cd}$.
- Any two of \Box , \Box_{ab} , ..., \Box_{cd} have disjoint interior; common points are on the boundary of \Box .
- \square is a full dimensional closed polyhedral cone, bounded by the six Ingleton, and certain other Shannon facets.
- Internal points and vertices of \square are linearly representable.
- $\square_{ab}, \ldots, \square_{cd}$ are isomorphic; isomorphisms are provided by permutations of abcd.

If we know \square_{ab} , then

we know everything.*

*at least about $cl(H_4^{ent})$.

The case of five variables

Research problem

Give a similar decomposition of the 31-dimensional cone H_5 .

- H₅ has a 120-fold symmetry;
- it has 117978 vertices ^[2];
- the vertices fall into 1319 equivalence classes^[2] (into 15 equivalence classes in case of four variables);
- the linearly representable core of H_5 is known precisely^[3].
- [2] M. Studený, R. R. Bouckaert, T. Kočka: Extreme supermodular set functions over five variables
- [3] R. Dougherty, C. Freiling, K. Zeger: Linear rank inequalities on five or more variables

Natural coordinates

 $\square_{ab} \subset H_4$ is contained in the simplicial cone determined by these facets (proved in [1]):

Natural coordinates

Use the facet equations as the coordinates for the entropies.

Entropy inequalities in natural coordinates

There are **six** natural coordinate systems corresponding to the six non-equivalent Ingleton expressions. Each entropy inequality can be written using any of the natural coordinates.

General form of a linear inequality

 $\lambda_1[abcd] + \lambda_2(a, b|c) + \lambda_3(a, b|d) + \cdots + \lambda_{15}(d|abc) \ge 0.$ (1)

Claim

$$1 \lambda_2 \geq 0, \ \lambda_3 \geq 0, \ \dots, \ \lambda_{15} \geq 0.$$

- **2** The Ingleton coeff is > 0 in some natural coordinate system.
- **③** Can be strenghtened by setting $\lambda_{12}, \lambda_{13}, \lambda_{14}, \lambda_{15}$ to zero.

Proof.

- (1) must hold for the entropic vector $(0, \ldots, 0, 1, 0, \ldots)$.
- **2** If not, then all points satisfying (1) are in \square .
- Sequivalent to balancing (1).

Outline

- Polymatroids and regions
- 2 Entropy inequalities
- 3 The structure of H_4 and the natural coordinates
- 4 Multiobjective optimization
 - 5 Solving the optimization problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What we've had

- $\mathbf{x} \in \mathbb{R}^p$ are the entropies of abcd ,
 - $\mathbf{y} \in \mathbb{R}^m$ are all other entropies,
 - the constraints are given by the matrices (P, M),

•
$$\mathcal{P} = \left\{ \left(\mathbf{x}, \mathbf{y} \right) \in \mathbb{R}^{p+m} : \mathbf{x} \ge 0, \ \mathbf{y} \ge 0, \ P\mathbf{x} + M\mathbf{y} \ge 0 \right\},$$

•
$$\mathcal{Q} = \{ \mathbf{x} \in \mathbb{R}^p : \text{ for some } \mathbf{y} \in \mathbb{R}^m, (\mathbf{x}, \mathbf{y}) \in \mathcal{P} \}.$$

•
$$\mathcal{Q}^{\circ} = \left\{ \mathcal{P}^{T} \mathbf{v} \in \mathbb{R}^{p} : \mathbf{v} \in \mathbb{R}^{n}, \ \mathbf{v} \geq 0, \ M^{T} \mathbf{v} = 0 \right\},$$

What we've had, and what we've got

- $\mathbf{x} \in \mathbb{R}^{p}$ are the entropies of abcd in natural coordinates,
 - $\mathbf{y} \in \mathbb{R}^m$ are all other entropies,
 - the constraints are given by the matrices (P, M),

•
$$\mathcal{P} = \left\{ \left(\mathbf{x}, \mathbf{y} \right) \in \mathbb{R}^{p+m} : \mathbf{x} \ge 0, \ \mathbf{y} \ge 0, \ P\mathbf{x} + M\mathbf{y} \ge 0 \right\},$$

•
$$\mathcal{Q} = \left\{ \mathbf{x} \in \mathbb{R}^p : \text{ for some } \mathbf{y} \in \mathbb{R}^m, \, (\mathbf{x}, \mathbf{y}) \in \mathcal{P} \right\}.$$

•
$$\mathcal{Q}^{\circ} = \left\{ P^{T} \mathbf{v} \in \mathbb{R}^{p} : \mathbf{v} \in \mathbb{R}^{n}, \ \mathbf{v} \ge 0, \ M^{T} \mathbf{v} = 0
ight\},$$

The gains are

- **1** the first (Ingleton) coordinate in Q° can be fixed to be 1;
- 2 the last four coordinates in \mathcal{Q}° can be requested to be zero.

These conditions can be moved from P to M to get (P_*, M_*) . The relevant part of Q° with coordinates $\lambda_2, \ldots, \lambda_{11}$ is

•
$$\mathcal{Q}^* = \left\{ P_*^T \mathbf{v} \in \mathbb{R}^{10} : \mathbf{v} \in \mathbb{R}^n, \, \mathbf{v} \ge 0, \, M_*^T \mathbf{v} = \mathbf{e}_{\mathsf{Ing}} \right\}.$$

The optimization problem

•
$$Q^* = \{ P_*^T \mathbf{v} \in \mathbb{R}^{10} : \mathbf{v} \in \mathbb{R}^n, \mathbf{v} \ge 0, M_*^T \mathbf{v} = \mathbf{e}_{\text{lng}} \},$$

where \mathbf{e}_{lng} is the lngleton unit vector.

Observations

a) If $\lambda \in Q^*$, then $\lambda \ge 0$. b) Q^* is upward closed: if $\lambda \in Q^*$, and $\lambda \le \lambda'$, then $\lambda' \in Q^*$.

The vertices of \mathcal{Q}^* are the coefficients of the "strongest" entropy inequalities which can be extracted from the copy string,

The optimization problem

•
$$Q^* = \{ P^T_* \mathbf{v} \in \mathbb{R}^{10} : \mathbf{v} \in \mathbb{R}^n, \mathbf{v} \ge 0, M^T_* \mathbf{v} = \mathbf{e}_{\mathsf{Ing}} \},$$

where $\mathbf{e}_{\mathsf{Ing}}$ is the Ingleton unit vector.

Observations

a) If $\lambda \in Q^*$, then $\lambda \ge 0$. b) Q^* is upward closed: if $\lambda \in Q^*$, and $\lambda < \lambda'$, then $\lambda' \in Q^*$.

The vertices of Q^* are the coefficients of the "strongest" entropy inequalities which can be extracted from the copy string, and the vertices of Q^* are the solutions of

Multiobjective optimization problem	
Find the minimum of: $\ P_*^{\mathcal{T}} \mathbf{v} \in \mathbb{R}^{10}$	\Leftarrow 10 objectives
subject to: $\mathbf{v} \ge 0$, and $M_*^T \mathbf{v} = \mathbf{e}_{Ing}$	\Leftarrow constraints

Outline

- Polymatroids and regions
- 2 Entropy inequalities
- 3 The structure of H_4 and the natural coordinates
- 4 Multiobjective optimization
- 5 Solving the optimization problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Benson's outer approximation algorithm

The problem is to find the vertices of the polytope

$$\mathcal{Q}^* = \left\{ \ \textit{P}_*^{\textit{T}} \mathbf{v} \ : \ \mathbf{v} \geq \mathbf{0}, \ \textit{M}_*^{\textit{T}} \mathbf{v} = \mathbf{e} \
ight\}.$$

Benson's idea: Given the internal point $\mathbf{x}_i \in \mathcal{Q}^*$, and the external point $\mathbf{x}_o \notin \mathcal{Q}^*$, find

$$\max_{\mu} \left\{ 0 \leq \mu \leq 1 : \mu \mathbf{x}_o + (1-\mu) \mathbf{x}_i \in \mathcal{Q}^* \right\}.$$

a) This is an n + 11-dimensional LP problem.
b) The (dual of the) solution gives a proof for maximality, which is a facet of Q* separating x_i and x_o.

The algorithm

Use this idea to get all facets of Q^* , maintaining the vertices of the approximating polytope bounded by the facets obtained so far.

Some results for Dougherty *et al* out of 133

Copy string	Size of M_*	Vertices	Facets	Time
r=c:ab;s=r:ac;t=r:ad	561×80	5	20	0:01
rs=cd:ab;t=r:ad;u=s:adt	1509×172	40	132	6:19
rs=cd:ab;t=a:bcs;u=(cs):abrt	$1569{ imes}178$	47	76	6:51
rs=cd:ab;t=a:bcs;u=b:adst	1512×178	177	261	17:40
rs=cd:ab;t=a:bcs;u=t:acr	1532×178	85	134	18:27
rs=cd:ab;t=(cr):ab;u=t:acs	1522×172	181	245	22:58
r=c:ab;st=cd:abr;u=a:bcrt	1346×161	209	436	29:18
rs=cd:ab;t=a:bcs;u=c:abrst	1369×166	355	591	38:59
rs=cd:ab;t=a:bcs;u=c:abrt	1511×178	363	599	1:04:32
rs=cd:ab;t=a:bcs;u=s:abcdt	1369×166	355	591	1:07:01
rs=cd:ab;t=a:bcs;u=(at):bcs	$1555{ imes}177$	484	676	1:39:30
rs=cd:ab;t=a:bcs;u=a:bcst	1509×177	880	1238	4:30:26
rs=cd:ab;t=a:bcs;u=a:bdrt	1513×177	2506	2708	5:11:25

Running time vs. vertices + facets

▲□> ▲圖> ▲目> ▲目> 二目 - のへで

Some results with five auxiliary variables

Copy string	Size of M_*	Vertices	Facets	Time
rs=cd:ab;tu=cr:ab;v=(cs):abtu	4055×370	19	58	1:10:10
rs=ad:bc;tu=ar:bc;v=r:abst	4009×370	40	103	3:24:37
rs=cd:ab;t=(cr):ab;uv=cs:abt	$3891{ imes}358$	30	102	3:34:31
rs=cd:ab;tu=cr:ab;v=t:adr	3963×362	167	235	9:20:19
rs=cd:ab;tu=dr:ab;v=b:adsu	4007×370	318	356	13:20:08
rs=cd:ab;tv=dr:ab;u=a:bcrt	4007×370	318	356	14:34:42
rs=cd:ab;tu=cs:ab;v=a:bcrt	4007×370	297	648	22:02:39
rs=cd:ab;t=a:bcs;uv=bt:acr	3913×362	779	1269	37:15:33
rs=cd:ab;tu=cr:ab;v=a:bcstu	3987×362	4510	7966	427:43:30
rs=cd:ab;tu=cs:ab;v=a:bcrtu	3893×362	10387	13397	716:36:32

Using five auxiliary variables, more than 260 new entropy inequalities were generated. One of them is

 $2[abcd] + (a, b | c) + 3(a, c | b) + (b, c | a) + 3(c, d | a) \ge 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

Thank you for your attention