Multiobjective optimization and the entropy region

Laszlo Csirmaz
Central European University, Budapest

Prague Stochastics, Aug 28, 2014

Outline

(1) Polymatroids and regions
2) Entropy inequalities
(3) The structure of \boldsymbol{H}_{4} and the natural coordinates

4 Multiobjective optimization
(5) Solving the optimization problem

Polymatroids

- The ground set N is any finite set, $N=\{1,2, \ldots, N\}$.
- The rank function f assigns non-negative values to the subsets $I \subseteq N$, that is, $f: 2^{N} \rightarrow \mathbb{R} \geq 0$.
- $\langle f, N\rangle$ is a polymatroid if it satisfies the Shannon inequalities:

$$
\begin{aligned}
& f(\emptyset)=0 \\
& f(A) \geq f(B) \text { if } A \supseteq B \\
& f(A)+f(B) \geq f(A \cup B)+f(A \cap B) .
\end{aligned}
$$

- $\langle f, N\rangle$ is a matroid if $f(A)$ is integer, and $f(A) \leq|A|$.
- $\langle f, N\rangle$ is entropic if $f(A)=\boldsymbol{H}\left(\xi_{A}\right)$, where $\left(\xi_{i}: i \in N\right)$ are discrete random variables with some joint distribution.
- Pointwise limit of entropic polymatroids are almost entropic.

Regions

The rank function f is a vector indexed by non-empty subsets of N.

- $\boldsymbol{H}_{N} \subseteq \mathbb{R}^{2^{N}-1}$ is the region of polymatroids.
- a full-dimensional closed convex pointed cone.
- $\boldsymbol{H}_{N}^{\text {ent }} \subseteq \boldsymbol{H}_{N}$ is the entropy region.
- $c l\left(\boldsymbol{H}_{N}^{\text {ent }}\right)$ is the pointwise closure of $\boldsymbol{H}_{N}^{\text {ent }}$.

Theorem (Zhang-Yeung 1998, Matúš 2007)

- $c l\left(\boldsymbol{H}_{N}^{\text {ent }}\right)$ is a convex full-dimensional cone in $\mathbb{R}^{2^{N}-1}$.
- The interior of $c l\left(\boldsymbol{H}_{N}^{\text {ent }}\right)$ is entropic.
- $\boldsymbol{H}_{2}^{\text {ent }}=c l\left(\boldsymbol{H}_{2}^{\text {ent }}\right)=\boldsymbol{H}_{2}$.
- $\boldsymbol{H}_{3}^{\text {ent }} \neq c l\left(\boldsymbol{H}_{3}^{\text {ent }}\right)=\boldsymbol{H}_{3}$.
- $\boldsymbol{H}_{N}^{\text {ent }} \neq c l\left(\boldsymbol{H}_{N}^{\text {ent }}\right) \neq \boldsymbol{H}_{N}$ for $N \geq 4$.
- cl($\left.\boldsymbol{H}_{N}^{\text {ent }}\right)$ is not polyhedral for $N \geq 4$.

The boundary of the entropy region

Definition

$\boldsymbol{H}_{N}^{k} \subseteq \boldsymbol{H}_{N}^{\text {ent }}$ is the subregion where the distribution $\left(\xi_{i}: i \in N\right)$ has alphabet size k.

Facts

H_{N}^{k} is closed; $\boldsymbol{H}_{N}^{k} \subseteq \boldsymbol{H}_{N}^{k+1}$; and $\boldsymbol{H}_{N}^{\text {ent }}=\bigcup_{k} \boldsymbol{H}_{N}^{k}$.

Research Problems

(1) For fixed N, is the convergence $\boldsymbol{H}_{N}^{k} \rightarrow \boldsymbol{H}_{N}^{\text {ent }}$ uniform?
(2) Give an estimate for the thickness of $\boldsymbol{H}_{N}^{\text {ent }}-\boldsymbol{H}_{N}^{k}$ (in different metrics) as a function of k.
(3) Give a description of $c l\left(\boldsymbol{H}_{N}^{\text {ent }}\right)-\boldsymbol{H}_{N}^{\text {ent }}$ in the case $N=3$. Where is it fractal-like?

Outline

(1) Polymatroids and regions

(2) Entropy inequalities
(3) The structure of \boldsymbol{H}_{4} and the natural coordinates

4 Multiobjective optimization
(5) Solving the optimization problem

Searching for new entropy inequalities

Known methods to get new entropy inequalities are:
(1) Zhang-Yeung method (1998)
(2) Makarychev et al. technique (2002)
(3) Matúš' polymatroid convolution (2007)
(4) Maximum entropy extension (2014)

Equivalence of \#1 and \#2 for balanced inequalities was shown by Tarik Kaced (2013).

Research problem

Show that methods \#3 and \#4 are actually stronger than the other two.

Searching for new entropy inequalities

Known methods to get new entropy inequalities are:
(1) Zhang-Yeung method (1998)
(2) Makarychev et al. technique (2002)
(3) Matúš' polymatroid convolution (2007)
(4) Maximum entropy extension (2014)

Equivalence of \#1 and \#2 for balanced inequalities was shown by Tarik Kaced (2013).

Research problem

Show that methods \#3 and \#4 are actually stronger than the other two.

We focus on method $\# 1$, others raise similar issues.

Zhang-Yeung method

In nutshell

(1) Start with a pool of some (at least four) random variables;
(2) split the random variables into two sets: \vec{x}_{1} and \vec{y},
(3) make an independent copy \vec{x}_{2} of \vec{x}_{1} over \vec{y} to get the new pool of random variables $\left\langle\vec{x}_{1}, \vec{x}_{2}, \vec{y}\right\rangle$;
(4) iterate steps 2 and 3 several times;
(5) collect the constraints:

- Shannon inequalities for the final variable set;
- equalities among entropy values expressing:
all conditional independence; identical distribution of $\left(\vec{x}_{1}, \vec{y}\right)$ and $\left(\vec{x}_{2}, \vec{y}\right)$; symmetry of \vec{x}_{1} and \vec{x}_{2} over \vec{y};
(0) extract all consequences for the original variables.

Zhang-Yeung method

In nutshell

(1) Start with a pool of some (at least four) random variables;
(2) split the random variables into two sets: \vec{x}_{1} and \vec{y},
(3) make an independent copy \vec{x}_{2} of \vec{x}_{1} over \vec{y} to get the new pool of random variables $\left\langle\vec{x}_{1}, \vec{x}_{2}, \vec{y}\right\rangle$;
(4) iterate steps 2 and 3 several times;
(5) collect the constraints:

- Shannon inequalities for the final variable set;
- equalities among entropy values expressing:
all conditional independence; identical distribution of $\left(\vec{x}_{1}, \vec{y}\right)$ and $\left(\vec{x}_{2}, \vec{y}\right)$; symmetry of \vec{x}_{1} and \vec{x}_{2} over \vec{y};
(0) extract all consequences for the original variables.

Numerically intractable even for three full iterations.

Zhang-Yeung method

Remedy (Dougherty et al)

- discard some of the copied variables in \vec{x}_{2}; and/or
- glue together some variables in \vec{x}_{2}.

Zhang-Yeung method

Remedy (Dougherty et al)

- discard some of the copied variables in \vec{x}_{2}; and/or
- glue together some variables in \vec{x}_{2}.

Example copy string with three iterations, initial random variables abcd and auxiliary variables rstuv:

$$
r s=c d: a b ; t u=c r: a b ; v=(c r): a b t u
$$

The set of constraints is composed of

- all Shannon inequalities,
- all conditional independence, and
- equality arising from identical distributions and symmetry, written for entropies of the subsets of the initial and auxiliary variables (abcd+rstuv).

Zhang-Yeung method - geometrical view

Given a copy string for initial variables abcd, we use the notation

- $\mathbf{x} \in \mathbb{R}^{p}$ for the entropies of subsets of abcd $(p=15)$;
- $\mathbf{y} \in \mathbb{R}^{m}$ for the vector of all other entropies;
- $\mathcal{M}(\mathbf{x}, \mathbf{y})$ for the collection of constraints.
$\mathcal{M}(\mathbf{x}, \mathbf{y})$ is linear and homogeneous, thus can be written as

$$
P x+M y \geq 0
$$

for some $p \times n$ and $m \times n$ matrices P and M determined by the copy string.

- $\mathcal{P}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{p+m}: \mathbf{x} \geq 0, \mathbf{y} \geq 0, P \mathbf{x}+M \mathbf{y} \geq 0\right\}$ is the feasible region, a convex pointed polyhedral cone;
- $\mathcal{Q}=\left\{\mathbf{x} \in \mathbb{R}^{p}:\right.$ for some $\left.\mathbf{y} \in \mathbb{R}^{m},(\mathbf{x}, \mathbf{y}) \in \mathcal{P}\right\}$ is the projection of \mathcal{P}, a convex, pointed polyhedral cone.

Geometrical view

$\Rightarrow \quad \bullet \mathcal{P}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{p+m}: \mathbf{x} \geq 0, \mathbf{y} \geq 0, P \mathbf{x}+M \mathbf{y} \geq 0\right\}$,

- $\mathcal{Q}=\left\{\mathbf{x} \in \mathbb{R}^{p}:\right.$ for some $\left.\mathbf{y} \in \mathbb{R}^{m},(\mathbf{x}, \mathbf{y}) \in \mathcal{P}\right\}$.

Linear consequences of $P \mathbf{x}+M \mathbf{y} \geq 0$ are the non-negative linear combinations of the rows of (P, M). Such an inequality bounds \mathcal{Q} iff in it all \mathbf{y} coordinates are zero. Thus the collection of linear inequalities bounding \mathcal{Q} - the dual cone of \mathcal{Q} - is

$$
\text { - } \mathcal{Q}^{\circ}=\left\{P^{T} \mathbf{v} \in \mathbb{R}^{p}: \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \geq 0, M^{T} \mathbf{v}=0\right\}
$$

Observations

a) If $\mathbf{x} \in \mathbb{R}^{p}$ is entropic, then for some $\mathbf{y} \in \mathbb{R}^{m},(\mathbf{x}, \mathbf{y}) \in \mathcal{P}$. Therefore the entropy region is contained in the projection \mathcal{Q}.
b) The "strongest" entropy inequalities which can be extracted from a copy string are the extremal rays of \mathcal{Q}°.

Creating new information inequalities

In theory it is as easy as ...
(1) Choose your favorite copy string.
(2) Generate the matrices (P, M) describing the linear homogeneous constraints arising from your copy string.
(3) Compute the extremal rays of \mathcal{Q}° using your favorite computer algebra package.

Creating new information inequalities

In theory it is as easy as ...
(1) Choose your favorite copy string.
(2) Generate the matrices (P, M) describing the linear homogeneous constraints arising from your copy string.
(3) Compute the extremal rays of \mathcal{Q}° using your favorite computer algebra package.

In practice there are annoying nuisances ...
(1) When things get interesting, M becomes really large (over 28000 Shannon inequalities just for 4+7 variables).
(2) Even if the size is not a problem, M is highly degenerate (hated by all packages).
(3) The computational problem is numerically unstable (and integer arithmetic takes ages).

Improving the performance

Use what is known about \boldsymbol{H}_{4}

Where to look:
[1] Frantisek Matúš and Milan Studený, Conditional independencies among four random variables I, Combinatorics, Probability and Computing, no 4, (1995) pp. 269-278.

Outline

(1) Polymatroids and regions
(2) Entropy inequalities
(3) The structure of \boldsymbol{H}_{4} and the natural coordinates

4 Multiobjective optimization
(5) Solving the optimization problem

Entropy expressions

Fix four random variables as a, b, c, d.
For any subset J of $a b c d, J$ also denotes its entropy, $\boldsymbol{H}(J)$.

Definition

For any permutation of the variables a, b, c, d we define

- $(a, b) \stackrel{\text { def }}{=} a+b-a b ;$
\Leftarrow mutual info
- $(a, b \mid c) \stackrel{\text { def }}{=} a c+b c-a b c-c$;
\Leftarrow cond. mutual info
- $(a, b \mid c d) \stackrel{\text { def }}{=} a c d+b c d-a b c d-c d$;
- $(a \mid b c d) \stackrel{\text { def }}{=} a b c d-b c d$;
\Leftarrow cond. entropy
- $[a b c d] \stackrel{\text { def }}{=}-(a, b)+(a, b \mid c)+(a, b \mid d)+(c, d)$. \Leftarrow Ingleton

The Ingleton expression is symmetric in $a b$ and $c d$:

$$
[a b c d]=[\stackrel{\sim}{b a c d}]=[a b \tilde{d c}]=[\stackrel{\sim}{b a d c}] .
$$

Why Ingleton is so important

Definition

$\square \subset c l\left(\boldsymbol{H}_{4}^{\text {ent }}\right)$ where all six Ingleton expressions are $\geq 0 ;$
$\square_{a b} \subset c l\left(\boldsymbol{H}_{4}^{\text {ent }}\right)$ where $[a b c d] \leq 0$, i.e., this Ingleton is violated;
$\square_{a c} \subset c l\left(\boldsymbol{H}_{4}^{\text {ent }}\right)$ where $[a c b d] \leq 0$; etc.

Theorem (Matus - Studeny, 1995)

- $c l\left(\boldsymbol{H}_{4}^{\text {ent }}\right)=\square \cup \square_{a b} \cup \cdots \cup \square_{c d}$.
- Any two of $\square, \square_{a b}, \ldots, \square_{c d}$ have disjoint interior; common points are on the boundary of \square.
- \square is a full dimensional closed polyhedral cone, bounded by the six Ingleton, and certain other Shannon facets.
- Internal points and vertices of \square are linearly representable.
- $\square_{a b}, \ldots, \square_{c d}$ are isomorphic; isomorphisms are provided by permutations of abcd.

The case of five variables

Research problem

Give a similar decomposition of the 31-dimensional cone \boldsymbol{H}_{5}.

- \boldsymbol{H}_{5} has a 120 -fold symmetry;
- it has 117978 vertices ${ }^{[2]}$;
- the vertices fall into 1319 equivalence classes ${ }^{[2]}$ (into 15 equivalence classes in case of four variables);
- the linearly representable core of \boldsymbol{H}_{5} is known precisely ${ }^{[3]}$.
[2] M. Studený, R. R. Bouckaert, T. Kočka:
Extreme supermodular set functions over five variables
[3] R. Dougherty, C. Freiling, K. Zeger:
Linear rank inequalities on five or more variables

Natural coordinates

$\square_{a b} \subset \boldsymbol{H}_{4}$ is contained in the simplicial cone determined by these facets (proved in [1]):

$$
\begin{aligned}
\text { 1. } & {[a b c d], } \\
\text { 2., 3. } & (a, b \mid c),(a, b \mid d) \\
4-7 . & (a, c \mid b),(b, c \mid a),(a, d \mid b),(b, d \mid a) \\
\text { 8., 9. } & (c, d \mid a),(c, d \mid b) \\
\text { 10. } & (c, d) \\
\text { 11. } & (a, b \mid c d) \\
12-15 . & (a \mid b c d),(b \mid a c d),(c \mid a d b),(d \mid a b c)
\end{aligned}
$$

Natural coordinates

Use the facet equations as the coordinates for the entropies.

Entropy inequalities in natural coordinates

There are six natural coordinate systems corresponding to the six non-equivalent Ingleton expressions. Each entropy inequality can be written using any of the natural coordinates.

General form of a linear inequality

$$
\begin{equation*}
\lambda_{1}[a b c d]+\lambda_{2}(a, b \mid c)+\lambda_{3}(a, b \mid d)+\cdots+\lambda_{15}(d \mid a b c) \geq 0 . \tag{1}
\end{equation*}
$$

Claim

(1) $\lambda_{2} \geq 0, \lambda_{3} \geq 0, \ldots, \lambda_{15} \geq 0$.
(2) The Ingleton coeff is >0 in some natural coordinate system.
(3) Can be strenghtened by setting $\lambda_{12}, \lambda_{13}, \lambda_{14}, \lambda_{15}$ to zero.

Proof.

(1) (1) must hold for the entropic vector $(0, \ldots, 0,1,0, \ldots)$.
(2) If not, then all points satisfying (1) are in \square.
(3) Equivalent to balancing (1).

Outline

(1) Polymatroids and regions
(2) Entropy inequalities
(3) The structure of \boldsymbol{H}_{4} and the natural coordinates

4 Multiobjective optimization
(5) Solving the optimization problem

What we've had

$\Rightarrow \quad \bullet \mathbf{x} \in \mathbb{R}^{p}$ are the entropies of abcd,

- $\mathbf{y} \in \mathbb{R}^{m}$ are all other entropies,
- the constraints are given by the matrices (P, M),
- $\mathcal{P}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{p+m}: \mathbf{x} \geq 0, \mathbf{y} \geq 0, P \mathbf{x}+M \mathbf{y} \geq 0\right\}$,
- $\mathcal{Q}=\left\{\mathbf{x} \in \mathbb{R}^{p}\right.$: for some $\left.\mathbf{y} \in \mathbb{R}^{m},(\mathbf{x}, \mathbf{y}) \in \mathcal{P}\right\}$.
- $\mathcal{Q}^{\circ}=\left\{P^{T} \mathbf{v} \in \mathbb{R}^{p}: \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \geq 0, M^{T} \mathbf{v}=0\right\}$,

What we've had, and what we've got

$\Rightarrow \quad \bullet \mathbf{x} \in \mathbb{R}^{p}$ are the entropies of abcd in natural coordinates,

- $\mathbf{y} \in \mathbb{R}^{m}$ are all other entropies,
- the constraints are given by the matrices (P, M),
- $\mathcal{P}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{p+m}: \mathbf{x} \geq 0, \mathbf{y} \geq 0, P \mathbf{x}+M \mathbf{y} \geq 0\right\}$,
- $\mathcal{Q}=\left\{\mathbf{x} \in \mathbb{R}^{p}:\right.$ for some $\left.\mathbf{y} \in \mathbb{R}^{m},(\mathbf{x}, \mathbf{y}) \in \mathcal{P}\right\}$.
- $\mathcal{Q}^{\circ}=\left\{P^{T} \mathbf{v} \in \mathbb{R}^{p}: \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \geq 0, M^{T} \mathbf{v}=0\right\}$,

The gains are

(1) the first (Ingleton) coordinate in \mathcal{Q}° can be fixed to be 1 ;
(2) the last four coordinates in \mathcal{Q}° can be requested to be zero.

These conditions can be moved from P to M to get $\left(P_{*}, M_{*}\right)$. The relevant part of \mathcal{Q}° with coordinates $\lambda_{2}, \ldots, \lambda_{11}$ is

- $\mathcal{Q}^{*}=\left\{P_{*}^{\top} \mathbf{v} \in \mathbb{R}^{10}: \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \geq 0, M_{*}^{\top} \mathbf{v}=\mathbf{e}_{\text {Ing }}\right\}$.

The optimization problem

$\Rightarrow \quad \bullet \mathcal{Q}^{*}=\left\{P_{*}^{T} \mathbf{v} \in \mathbb{R}^{10}: \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \geq 0, M_{*}^{T} \mathbf{v}=\mathbf{e}_{\mathrm{Ing}}\right\}$, where $\mathbf{e}_{\text {Ing }}$ is the Ingleton unit vector.

Observations

a) If $\boldsymbol{\lambda} \in \mathcal{Q}^{*}$, then $\boldsymbol{\lambda} \geq 0$.
b) \mathcal{Q}^{*} is upward closed: if $\boldsymbol{\lambda} \in \mathcal{Q}^{*}$, and $\boldsymbol{\lambda} \leq \boldsymbol{\lambda}^{\prime}$, then $\boldsymbol{\lambda}^{\prime} \in \mathcal{Q}^{*}$.

The vertices of \mathcal{Q}^{*} are the coefficients of the "strongest" entropy inequalities which can be extracted from the copy string,

The optimization problem

$\Rightarrow \quad \bullet \mathcal{Q}^{*}=\left\{P_{*}^{T} \mathbf{v} \in \mathbb{R}^{10}: \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \geq 0, M_{*}^{T} \mathbf{v}=\mathbf{e}_{\mathrm{Ing}}\right\}$, where $\mathbf{e}_{\text {Ing }}$ is the Ingleton unit vector.

Observations

a) If $\boldsymbol{\lambda} \in \mathcal{Q}^{*}$, then $\boldsymbol{\lambda} \geq 0$.
b) \mathcal{Q}^{*} is upward closed: if $\boldsymbol{\lambda} \in \mathcal{Q}^{*}$, and $\boldsymbol{\lambda} \leq \boldsymbol{\lambda}^{\prime}$, then $\boldsymbol{\lambda}^{\prime} \in \mathcal{Q}^{*}$.

The vertices of \mathcal{Q}^{*} are the coefficients of the "strongest" entropy inequalities which can be extracted from the copy string, and the vertices of \mathcal{Q}^{*} are the solutions of

Multiobjective optimization problem
Find the minimum of: $P_{*}^{T} \mathbf{v} \in \mathbb{R}^{10}$
subject to: $\mathbf{v} \geq 0$, and $M_{*}^{T} \mathbf{v}=\mathbf{e}_{\text {Ing }}$
$\Leftarrow 10$ objectives
\Leftarrow constraints

Outline

(1) Polymatroids and regions
(2) Entropy inequalities
(3) The structure of \boldsymbol{H}_{4} and the natural coordinates

4 Multiobjective optimization
(5) Solving the optimization problem

Benson's outer approximation algorithm

The problem is to find the vertices of the polytope

$$
\mathcal{Q}^{*}=\left\{P_{*}^{T} \mathbf{v}: \mathbf{v} \geq 0, M_{*}^{T} \mathbf{v}=\mathbf{e}\right\} .
$$

Benson's idea: Given the internal point $\mathbf{x}_{i} \in \mathcal{Q}^{*}$, and the external point $\mathbf{x}_{o} \notin \mathcal{Q}^{*}$, find

$$
\max _{\mu}\left\{0 \leq \mu \leq 1: \mu \mathbf{x}_{o}+(1-\mu) \mathbf{x}_{i} \in \mathcal{Q}^{*}\right\} .
$$

a) This is an $n+11$-dimensional LP problem.
b) The (dual of the) solution gives a proof for maximality, which is a facet of \mathcal{Q}^{*} separating \mathbf{x}_{i} and \mathbf{x}_{0}.

The algorithm

Use this idea to get all facets of \mathcal{Q}^{*}, maintaining the vertices of the approximating polytope bounded by the facets obtained so far.

Some results for Dougherty et al out of 133

Copy string	Size of M_{*}	Vertices	Facets	Time
r=c:ab;s=r:ac;t=r:ad	561×80	5	20	$0: 01$
rs=cd:ab;t=r:ad;u=s:adt	1509×172	40	132	$6: 19$
rs=cd:ab;t=a:bcs;u=(cs):abrt	1569×178	47	76	$6: 51$
rs=cd:ab;t=a:bcs;u=b:adst	1512×178	177	261	$17: 40$
rs=cd:ab;t=a:bcs;u=t:acr	1532×178	85	134	$18: 27$
rs=cd:ab;t=(cr):ab;u=t:acs	1522×172	181	245	$22: 58$
r=c:ab;st=cd:abr;u=a:bcrt	1346×161	209	436	$29: 18$
rs=cd:ab;t=a:bcs;u=c:abrst	1369×166	355	591	$38: 59$
rs=cd:ab;t=a:bcs;u=c:abrt	1511×178	363	599	$1: 04: 32$
rs=cd:ab;t=a:bcs;u=s:abcdt	1369×166	355	591	$1: 07: 01$
rs=cd:ab;t=a:bcs;u=(at):bcs	1555×177	484	676	$1: 39: 30$
rs=cd:ab;t=a:bcs;u=a:bcst	1509×177	880	1238	$4: 30: 26$
rs=cd:ab;t=a:bcs;u=a:bdrt	1513×177	2506	2708	$5: 11: 25$

Running time vs. vertices + facets

Some results with five auxiliary variables

Copy string

rs=cd:ab;tu=cr:ab;v=(cs):abtu	4055×370	19	58	$1: 10: 10$
$r s=a d: b c ; t u=a r: b c ; v=r: a b s t$	4009×370	40	103	$3: 24: 37$
$r s=c d: a b ; t=(c r): a b ; u v=c s: a b t$	3891×358	30	102	$3: 34: 31$
$r s=c d: a b ; t u=c r: a b ; v=t: a d r$	3963×362	167	235	$9: 20: 19$
$r s=c d: a b ; t u=d r: a b ; v=b: a d s u$	4007×370	318	356	$13: 20: 08$
$r s=c d: a b ; t v=d r: a b ; u=a: b c r t$	4007×370	318	356	$14: 34: 42$
$r s=c d: a b ; t u=c s: a b ; v=a: b c r t$	4007×370	297	648	$22: 02: 39$
$r s=c d: a b ; t=a: b c s ; u v=b t: a c r$	3913×362	779	1269	$37: 15: 33$
$r s=c d: a b ; t u=c r: a b ; v=a: b c s t u$	3987×362	4510	7966	$427: 43: 30$
$r s=c d: a b ; t u=c s: a b ; v=a: b c r t u$	3893×362	10387	13397	$716: 36: 32$

Using five auxiliary variables, more than 260 new entropy inequalities were generated. One of them is

$$
2[a b c d]+(a, b \mid c)+3(a, c \mid b)+(b, c \mid a)+3(c, d \mid a) \geq 0 .
$$

Thank you for your attention

