
IntelliSec – The 1st International Workshop on Intelligent Security Systems
11-24th November 2009, Bucharest, Romania

RAMP SECRET SHARING AND SECURE INFORMATION STORAGE

CSIRMAZ, Laszlo
Central European University, Renyi Institute, Budapest

Abstract: In our age information is an important asset. We
need systems in which costumers can securely store
information, ensi\uring that is persists, contunuously available,
and is kept confidental. We discuss how such a systems might
work, what are the ingredients, and enlist some interesting
unsolved problems.
Key words: Secret sharing, ramp scheme, information
dispersal, distributed encryption

1. INTRODUCTION

Information is an important asset. Companies, individuals
might have tremendous problem when losing valuable data.
Data recovery could cost a whole fortune. Thus storing copies
of the most valuable data chunk in several remote places is an
everyday solution. Commercial IT companies offer data storage
services with high level guarantees. Using such services seems
to be a good solution. Nevertheless, there are some basic
requirements such and arrangements must meet:

1) Diversity: never rely on a single service. If you use a
single storage server, you lose your data if that server crashes of
becomes unavailable. Rather you should use a multitude of
servers.

2) Security: never trust any third party. Never store your
valuable data without encryption, and especially don't let any
third party store it where you have no control over who sees the
data.

3) Cost-effectiveness: minimize your cost by minimizing
the amount of data you store. Arrange the data so that each
external server stores the minimal possible amount of data.

We discuss how such a service can work, what are the
ingredients, and how to combine them. We enlist some
interesting problems as well. For an introduction for an existing
system, see Wylie et al (2000).

2. BASIC INGREDIENTS

Distributing information and later recovering it from some
of the share is the topic of secret sharing. It has a huge
literature, see, e.g., Blakley (1979) .Shamir (1979), Krawczyk
(1993). In the simplest case, discovered by Shamir (1979), the
secret is split into n pieces so that the secret can be recovered
form any k of them. In this case the secret is an element of a
finite field, and the shares are the computed as the value of a
secret random polynomial at certain public values. During the
reconstruction phase the polynomial is recovered via
interpolation from the available shares, and the secret is
computed as the value of the polynomial at zero.

Such threshold schemes come very handy when using
information storage. We split the information into n parts to be
stored at n different companies. The data can be recovered from
any k of the shares, thus even only k of the servers are
available, the data still can be recovered.

Furthermore, the above threshold secret scheme has the
following security advantage: even if k-1 of the servers collude
and put together their shares, they have no information on the
secret. This strong guarantee comes at a certain cost, namely all

shares must be at least as long as the secret itself. In the
threshold case, fortunately, this length is the minimal
theoretically possible.

Using Shamir's threshold secret sharing scheme our first
and second goal is achieved, but the third is not. If we want to
recover the data from k shares, then theoretically the share can
be as short as 1/k of the length of the data. For example, simply
split the data into k pieces bitwise, namely the first chunk
contains the first, k+1, 2k+2, etc bits, the second chunk the 2,
k+2, 2k+2, etc, and the k-th chunk contains the k-th, 2k, 3k, etc
bits. It is clear that each chunk contains 1/k of the original one,
and the original data can be recovered from them.

In this way we have cost-effectiveness, but we have lost
both diversity and security. It is even not clear how can we
reach diversity: we want to recover the data from any k shares,
not only from a particular k shares.

Fortunately Shamir's original idea works here as well.
Suppose the data is not the value of the polynomial at zero,
rather the polynomial itself. If the secret data is the k
coefficients of a degree k-1 polynomial, then it can be
recovered from arbitrary k values it takes by using Lagrange
interpolation.

Thus we have both diversity and efficiency. What is still
missing is security. Using the above method, each share, or
even a combination of several shares reveal a lot of information
about the secret. Is there anything we can do?

Using the ideas from Krawczyk (1993) before distributing
the data we use a strong encryption and the encrypted data is
distributed among the data storage servers. Even if all of them
collude, they can recover the encrypted data only, which has no
use without knowing the encryption key.

To recover our data we do need the secret key, thus it
becomes a very valuable and important data, thus it should be
stored securely at several places. However, as the key is at most
several thousand bits long, opposed to the data, which could be
several tera or petabytes, effectiveness is much less an issue for
the key.

Summing up: the proposed secure information storage
consists of the following parts:

1. a secure encryption system which using a secret key K
can safely encrypt the whole data.

2. a perfect secret sharing scheme which distributes the
secret key and leaks no information

3. a ramp secret sharing scheme which distributes the data,
this scheme might leak out data as long as the encryption
scheme is safe.

In the next section we look in more detail these ingredients
and their interplay.

3. ENCRYPTION SYSTEM

To ensure maximal security, an encryption scheme should
be used which allows random access to the data. Very
probably not all data will be required at once, and modifying
data at particular location will be necessary. Such a system
could be, e.g., AES with a key which is derived from the master
key K and the actual location of the block to be

encrypted/decrypted inside the whole data. Such method is used
when encrypting the content of a hard drive. A particularly
useful method to “tweak” a block cipher for this purpose was
designed by Phillip Rogaway in 2003, see Rogaway (2004),
and is called XEX mode. A variation, which uses two different
keys rather than a single one was named XTS and was
approved as the IEEE 1619 standard for cryptographic
protection of data on block-oriented storage devices in
December 2007.

The encryption works as follows. The E
K

(m) is a secure

block cipher using secret key K. The data is split into chunks
and each chunk will be accessed incrementally. In practice, the
chunk size can vary from 16k to a few megabytes. Let N denote
some physical address identifying a chunk, and let i be the
sequence number of the next block (thus i=0 for the first block,
i=2 for the next, etc.). Then first create a chunk key L as
follows:

L = E
K2

(N)

where K2 is the so-called secondary key. This L has the same
length as the block size of the block cipher. Using L new keys
are generated for each block. For the first block this is the same
as L, for each subsequent block the previous key is multiplied
by a primitive element of the finite field of which L is a
member. Denoting this primitive element by a, the block key
of the i-th block is

Δ = a
i
 L

Encrypting the content M of the i-th block is done as
C = E

K1
(M+Δ)+Δ

where the addition is bitwise modulo 2, and K1 is the primary
encryption key. Generating the next block key from the
previous one is a fast and efficient, and is negligible compared
to the execution of the encription itself. In fact, it is a mere
multiplication by a constant (predetermined) value over a finite
field. This multiplication can even be speed up by choosing an
appropriate base. In Rogaway (2004) paper it is shown that if E
is resistent to chosen ciphertect attack (CCA-secure), then so is
this scheme. Thus if we have confidence in the underlying
block cipher, then this encryption scheme which makes random
access possible within the stored data is secure as well.

4. SECRET SHARING SCHEMES

As discussed above, secret sharing scheme is used both for
storing the master key and the data itself. In both cases the
simplest, and the most popular arrangement is Shamir's
threshold scheme: any k shares out of n determine the secret.

The security of the two schemes should be different. While
the data ‒ being encrypted ‒ is not sensitive, the key is sensitive.
Thus, we should use the strongest possibility, namely any k-1 of
the shares should give no information on the secret value at all.

As indicated in the introduction, Shamir's secret sharing is
based on polynomial interpolation. In the stronger case suppose
that the secret to be distributed is an element of the finite field
F. Label all units who will receive some share by different
elements of the field, for simplicity we indicate these elements
as small integers. To distribute the secret sϵ F, choose a
random polynomial of degree k-1:

p(x)= a
k -1

x
k -1

 + a
k – 2

x
k - 2

 + . . . + a
1
x + a

0

in a way that the value of the polynomial at 0 is the secret itself.
Unit i will receive the share p(i).

As any degree k-1 polynomial is determined uniquely by
the k values it takes at k different places, thus p(x) can be
determined uniquely by the shares of k units. But can it be
done efficiently?

The key observation is the so-called Lagrange
interpolation theorem. Suppose the polynomial is given at

places b
1
, b

2
, . . ., b

k
. Then it is easy to come up with a

polynomial of degree k – 1 which takes 1 at, say, b
1
, and zero

at all other places. As it is zero at k – 1 places and it has degree
k – 1, it should be of the form

p
1
(x) = c (x – b

2
) (x – b

3
) ... (x – b

k
)

The constant c should be chosen so that p
1
(x) have value 1 at b

1

i.e. c is just the reciprocal value of
(b

1
– b

2
) (b

1
 – b

3
) ... (b

1
 – b

k
).

We can define the polynomials p
2
(x), . . . p

k
(x) similarly. Now

the polynomial
p(x) = v

1
 p

1
(x) + v

2
p

2
(x) + . . . + v

k
p

k
(x)

takes the value v
1
 at b

1
, v

2
 at b

2
,, etc, and v

k
 at b

k
., thus we

have recovered the randomly selected polynomial. To get the
secret, one has to replace 0 here to get

secret = v
1
 p

1
(0) + v

2
p

2
(0) + . . . + v

k
p

k
(0).

As can be seen, there is no need t compute the polynomials
p

i
(x) only the value they take at zero. Knowing all the b

i
 values

beforehand, these values can be precomputed. Recovering the
secret is thus a simple linear combination of values in the field
F.

Recovering the secret will be done (hopefully) rarely, and it
is only as a safety device. Don't forget: your data is worth a
single penny only if you know the secret key to recover the
data. Storing the master key (or keys) by secret sharing makes
key loss a negligible possibility. Secret sharing also ensures that
to recover the key at least k shares are necessary, thus if at most
k – 1 of the external companies collude, they can get no
information on the key. Choosing the value of k appropriately is
a matter of trust which should be balanced between the
possibility of data theft and data loss.

Once master key is available, we can start recovering our
data. In this case – being the data encrypted – there is no need
for high secrecy. In this case we can focus on efficiency.

Once again, we consider the scenario when we want to
recover our data from any k of the external units. It is clear (but
a strict proof can be quite involved) that we cannot do better
than to store at least 1/k of the data at each unit. The question
is: can we do it in a way so that we can recover the whole data
from any k of them? The answer is yes, and the method used is
the ramp secret sharing indicated in the title of this paper.

In a ramp sharing we do not require that unqualified sets
should have no information on the secret value (which is a very
important property when the encryption key is distributed),
rather we focus on efficiency, i.e., store the smallest possible
amount of material.

We shall use Shamir's original idea with a little twist.
Namely, in this case the distributed value will be the whole
polynomial, and not its value at a certain point. As we have
seen above, the polynomial can be recovered from any k values
it takes somewhere. The method is as follows.

Choose the finite field F to have size, say 2
128

 which means
that each element of F is a 128-bit binary number. Take the
next k elements of the data stream, and consider them as the
coefficients of the polynomial

p(x)= a
k -1

x
k -1

 + a
k – 2

x
k - 2

 + . . . + a
1
x + a

0

Compute the value of this polynomial at 1, 2, ..., N – 1, and N,
where N is the number of units we want to distribute the data
among. Then send these values to the corresponding units.
Observe, that for each block of k 128-bit number, we send one
128-bit number to each unit, thus each of them will receive only
1/k part of our data.

To recover the data we connect to k units with labels say
b

1
, b

2
, . . ., b

k
. We can recover any block of length k. We

request the data from which was generated from this particular
block. Say, we receive the 128-bit numbers v

1
, v

2
, . . . , v

k
.

Using these values we can recover the polynomial p(x) as
p(x) = v

1
 p

1
(x) + v

2
p

2
(x) + . . . + v

k
p

k
(x)

and the coefficients of p(x) give us the numbers in the requsted
block.

Observe, again, that similarly the case above, we can
precompute the polynomials p

i
(x) thus recovering the

coefficients of p(x) requires computing k linear combinations of
the returned values.

5. IMPROVEMENTS

The method outlined in the above uses the specially tailored
Shamir's secret sharing. There are other efficient secret sharing
schemes which can be fit to a more refined requirement. This
happens, e.g., when we have more storage servers available,
and might weight them. Very probably they do not offer the
same level of services, they have different prices, and have
different reliability. Or simply we trust one service better than
others. Thus we might need to store more data on one server
than the other. How can we balance the distribution?

There is an extensive literature to that type of questions in
case of perfect secret sharing, see, e.g., Csirmaz (2008) for a
comprehensive overview of the topic. For ramp schemes we
know very little. The main unsolved question can be formulated
as follows:

Given n servers and we enlist those subsets which should
recover the secret data. Also, each server has a price tag which
tells the storage cost per unit data on that server. Find an
algorithm which minimizes the total cost of distributed data
storage.

As additional requirements, we can prescribe certain
untrusted coalitions, i.e. coalitions of servers which should not
be able to recover the secret.

It is clear, that if k servers should recover the secret, then
one of them should store at least 1/k part of the secret. In
Shamir's scheme this lower bound is attained, in fact every
server stores just as much as 1/k part of the total data. If one
server offers half price on storage, is there any way we could
put more load on that particular server without giving it extra
power as well?

5. CONCLUSION

We have outlined how secure distributed data storage
should work. It uses data encryption and secret sharing. The
latter one is used for two purposes: first to distribute the secret
key used during encryption and decryption, second to distribute
the encrypted data. While we have a good understanding how
secret sharing works when the secret key is distributed, and
unqualified coalitions should not gain information on the data,
our knowledge is less vague for the other case. The simplest
secret sharing, namely Shamir's threshold scheme works well
and is theoretically the best possible, but it is not scalable, and
cannot handle different prizing models.

6. REFERENCES

Blakley, G.R (1979), Safeguarding cryptography keys, Proc.
NCC AFIPS;, pp 313-317

Csirmaz, L (2008) Secret sharing schemes: Solved and
unsolved problems Available from:
http://www.renyi.hu/~csirmaz/talk9-.pdf

Shamir, A (1979) How to share a secret, Comm of ACM, vol
22(1979) no 11, pp 612-613

Krawczyk, H (1993) Secret sharing made short, CRYPTO'93,
LNCS 773 (1993) pp 136-146

Rogaway, P (2004) Efficient Instantiations of Tweakable
Blockciphers and Refinements to Modes OCB and PMAC,
ASIACRYIPT '04, LNCS 3329 (2004) pp 16-31

Wylie, J.J, Bigrigg, M.W, Strunk, J.D, Ganger, G.R, Killccote,
H, Khoisa, P.K(2000): Survivable Information Storage
Systems,Computer-Los Alamitos,

