Information inequalities from the book

Laszlo Csirmaz

Central European University, Budapest
Hong Kong, April 19, 2013

Outline

(1) The book
(2) Natural coordinates
(3) The book conjecture

4 Good sequences
(5) Pictures

Searching for new entropy inequalities

How to do it?

The Zhang-Yeung method

(1) split the random variables into two parts: \vec{x}_{1} and \vec{y},
(2) make a copy \vec{x}_{2} of \vec{x}_{1} over \vec{y} to get $\left\langle\vec{x}_{1}, \vec{x}_{2}, \vec{y}\right\rangle$,
(3) iterate steps 1 and 2,
(4) write up all Shannon inequalities for the final variable set,
(5) search consequences for the original variables.

Searching for new entropy inequalities

How to do it?

The Zhang-Yeung method

(1) split the random variables into two parts: \vec{x}_{1} and \vec{y},
(2) make a copy \vec{x}_{2} of \vec{x}_{1} over \vec{y} to get $\left\langle\vec{x}_{1}, \vec{x}_{2}, \vec{y}\right\rangle$,
(3) iterate steps 1 and 2,
(4) write up all Shannon inequalities for the final variable set,
(5) search consequences for the original variables.

Numerically intractable even after three iterations!

Searching for new entropy inequalities

Possible remedy

- Reduce the total number of auxiliary variables by
- cutting the number of copied variables in \vec{x}_{2}
- gluing together some variables in \vec{x}_{2}

Randall Dougherty et al computed all possibilities up to
3 iterations and
4 auxiliary variables

Searching for new entropy inequalities

Possible remedy

- Reduce the total number of auxiliary variables by
- cutting the number of copied variables in \vec{x}_{2}
- gluing together some variables in \vec{x}_{2}

Randall Dougherty et al computed all possibilities up to
3 iterations and
4 auxiliary variables

Our approach

- Make several copies of \vec{x}_{1} to get $\left\langle\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}, \vec{y}\right\rangle$
- the high symmetry reduces the size of the computation,
- equivalent to keeping the "over" variables \vec{y} in $\log _{2} k$ iterations.

The book

Definition

A book is a collection of variables $\vec{x}_{1}, \ldots, \vec{x}_{k}$, and \vec{y} such that - $\vec{x}_{1} \vec{y}, \vec{x}_{2} \vec{y}$, etc, $\vec{x}_{k} \vec{y}$ are identically distributed

- $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}$ are totally independent over \vec{y}.
\vec{y} is the spine of the book, and it has k pages, $\vec{x}_{1}, \ldots, \vec{x}_{k}$.
This book is not too interesting: all pages are the same.

Fact

Every almost entropic matroid has a k-page book extension.

Inequalities from the book

We have four random variables: a, b, c, and d.

Problem

Characterize all polymatroids on abcd which have a k-book extension with spine $a b$.

That is

What are the (4-variable) information inequalities which can be extracted from a k-book extension?

Inequalities from the book

We have four random variables: a, b, c, and d.

Problem

Characterize all polymatroids on abcd which have a k-book extension with spine $a b$.

That is

What are the (4-variable) information inequalities which can be extracted from a k-book extension?

The case $k=2$ was solved:
Theorem (F. Matus, 2007)
A polymatroid on abcd has a 2-page book extension at ab if and only if it satisfies six particular instances of the Zhang-Yeung inequality.

Outline

(1) The book

(2) Natural coordinates
(3) The book conjecture
(4) Good sequences
(5) Pictures

Natural coordinates

Every information inequality on abcd can be written as a linear combination of the following entropy expressions:

1 Ingleton: $[a, b, c, d]=-(a, b)+(a, b \mid c)+(a, b \mid d)+(c, d)$,
$2,3 \quad(a, b \mid c),(a, b \mid d)$,
4-7 $(a, c \mid b),(b, c \mid a),(a, d \mid b),(b, d \mid a)$,
8, $9 \quad(c, d \mid a),(c, d \mid b)$,
$10(c, d)$,
11 ($a, b \mid c d$),
12-15 (a|bcd), (b|acd), (c|adb), (d|abc),
This is an unimodular transformation of \mathbb{R}^{15}.

Natural coordinates

Theorem

An information inequality written in natural coordinates must have

- non-negative natural coefficients with the exception of the Ingleton,
- zero coeffs for ($a \mid b c d$), ($b \mid a c d$), ($c \mid a d b)$, ($d \mid a b c$)
- positive Ingleton coeff after a possible permutation of a, b, c, d.
- The second statement is equivalent to T . Chan's result on balanced inequalities.
- If the Ingleton is not positive for all permutations, then the inequality is a consequence of the Shannon inequalities.

Corollary

Entropy inequalities have non-negative coefficients when written in natural coordinates.

Outline

(1) The book

(2) Natural coordinates
(3) The book conjecture

4 Good sequences
(5) Pictures

The case of the 2-page book

Theorem (F. Matus, 2007)

2-page extensions of abcd over ab are characterized by the following six instances of the Zhang-Yeung inequality:

$$
\begin{aligned}
& {[a b c d]+(a, b \mid c)+(a, c \mid b)+(b, c \mid a) \geq 0,} \\
& {[a b d c]+(a, b \mid d)+(a, d \mid b)+(b, d \mid a) \geq 0,} \\
& {[b d a c]+(b, d \mid a)+(a, b \mid d)+(a, d \mid b) \geq 0,} \\
& {[b c a d]+(b, c \mid a)+(a, b \mid c)+(a, c \mid b) \geq 0,} \\
& {[a d b c]+(a, d \mid b)+(a, b \mid d)+(b, d \mid a) \geq 0,} \\
& {[a c b d]+(a, c \mid b)+(a, b \mid c)+(b, c \mid a) \geq 0}
\end{aligned}
$$

As the statement is symmetric for the $a \leftrightarrow b$ and $c \leftrightarrow d$ permutations, the condition must also be symmetric: the first two and the last four are the same up to symmetry.

The book conjecture

Conjecture

The k-page extensions are characterized by the following inequalities and their $a \leftrightarrow b$ and $c \leftrightarrow d$ symmetric versions:

$$
\begin{aligned}
& {[a b c d]+\frac{1}{x_{s}}(a, b \mid c)+\left(1+\frac{y_{s}}{x_{s}}\right) }((a, c \mid b)+(b, c \mid a))+ \\
&+\frac{z_{s}}{x_{s}}((a, d \mid b)+(b, d \mid a)) \geq 0 \\
& {[b d a c]+\frac{1}{\ell}(b, d \mid a)+\left(1+\frac{\ell-1}{2}\right)((a, b \mid d)+(a, d \mid b)) \geq 0 }
\end{aligned}
$$

where $\ell=1,2, \ldots, k-1$, and either $\left\langle x_{s}, y_{s}, z_{s}\right\rangle$ or $\left\langle x_{s}, z_{s}, y_{s}\right\rangle$ is in $\bigcup\left\{G_{\ell}: \ell<k\right\}$, where G_{ℓ} is described next.

Look out for the the unexpected $y_{s} \leftrightarrow z_{s}$ symmetry.

The book conjecture - the coeffs

G_{1}	G_{2}	G_{3}	G_{4}	G_{5}
$\langle 1,0,0\rangle$	$\langle 2,1,0\rangle$	$\langle 3,3,0\rangle$	$\langle 4,6,0\rangle$	$\langle 5,10,0\rangle$
	$\langle 3,1,1\rangle$	$\langle 4,3,1\rangle$	$\langle 5,6,1\rangle$	$\langle 6,10,1\rangle$
		$\langle 6,5,3\rangle$	$\langle 7,8,3\rangle$	$\langle 8,12,3\rangle$
		$\langle 7,5,5\rangle$	$\langle 8,8,5\rangle$	$\langle 11,18,6\rangle$
			$\langle 10,14,6\rangle$	$\langle 12,18,8\rangle$
			$\langle 11,14,8\rangle$	$\langle 15,21,14\rangle$
			$\langle 14,17,14\rangle$	$\langle 15,30,10\rangle$
			$\langle 15,17,17\rangle$	$\langle 16,15,12\rangle$
				$\langle 16,21,17\rangle$
				$\langle 19,33,18\rangle$
				$\langle 20,33,21\rangle$
				\ldots

The G_{ℓ} sets

The coefficients $\left\langle 1 / x_{s}, y_{s} / x_{s}, z_{s} / x_{s}\right\rangle$

4-page book

5-page book

Outline

(1) The book

(2) Natural coordinates
(3) The book conjecture

4 Good sequences
(5) Pictures

How to get the coefficients?

Fill the positive quadrant as follows:

3	1,	4,	10,	20,	35,
2	1,	3,	6,	10,	15,
1	1,	2,	3,	4,	5,
0	1,	1,	1,	1,	1,
	1,		1	2	3

How to get the coefficients?

Fill the positive quadrant as follows:

3	1,0,	4,4,	10,20,	20,60,	35,140,
2	1,0,	3,3,	6,12,	10,30,	15,60,
1	1,0,	2,2,	3,6,	4,12,	5,20,
0	1,0,	1,1,	1,2,	1,3,	1,4,
	0		0	1	2
3	4				

How to get the coefficients?

Fill the positive quadrant as follows:

3	$1,0,3$	$4,4,12$	$10,20,30$	$20,60,60$	$35,140,105$
2	$1,0,2$	$3,3,6$	$6,12,12$	$10,30,20$	$15,60,30$
1	$1,0,1$	$2,2,2$	$3,6,3$	$4,12,4$	$5,20,5$
0	$1,0,0$	$1,1,0$	$1,2,0$	$1,3,0$	$1,4,0$
	0		1	2	3

How to get the coefficients?

Fill the positive quadrant as follows:

3	$1,0,3$	$4,4,12$	$10,20,30$	$20,60,60$	$35,140,105$
2	$1,0,2$	$3,3,6$	$6,12,12$	$10,30,20$	$15,60,30$
1	$1,0,1$	$2,2,2$	$3,6,3$	$4,12,4$	$5,20,5$
	$1,0,0$	$1,1,0$	$1,2,0$	$1,3,0$	$1,4,0$
	0		1	2	3

At $\langle i, j\rangle$ we have

$$
\mathbf{v}_{i, j}=\binom{i+j}{j}\langle 1, i, j\rangle
$$

Good sequences

The sequence $s=\left\langle s_{1}, s_{2}, \ldots, s_{k}\right\rangle$ is good if

- $s_{1} \geq s_{2} \geq \cdots \geq s_{k-1} \geq s_{k}=1$,
- $s_{i}-s_{i+1}$ is either 0 or 1 .

Good sequences of different length are:

- 1 ;
- 11, 21;
- 111, 211, 221, 321;
- 1111, 2111, 2211, 2221, 3211, 3221, 3321, 4321;
- 11111, 21111, 22111, 22211, 22221, 32221, 33221, ...

To get the coefficients in G_{k} take all good sequences s of length k, mark the bottom s_{i} cells in column i, and add up the triplets.

And finally: the coefficients

sequence	sum	sequence	sum
1	$\langle 1,0,0\rangle$	211	$\langle 4,3,1\rangle$
11	$\langle 2,1,0\rangle$	2111	$\langle 5,6,1\rangle$
21	$\langle 3,1,1\rangle$	2211	$\langle 7,8,3\rangle$
111	$\langle 3,3,0\rangle$	3221	$\langle 11,14,8\rangle$
1111	$\langle 4,6,0\rangle$	4321	$\langle 15,17,17\rangle$
11111	$\langle 5,10,0\rangle$	43211	$\langle 16,21,17\rangle$

3	$1,0,3$	$4,4,12$	$10,20,30$	$20,60,60$	$35,140,105$
2	$1,0,2$	$3,3,6$	$6,12,12$	$10,30,20$	$15,60,30$
1	$1,0,1$	$2,2,2$	$3,6,3$	$4,12,4$	$5,20,5$
0	$1,0,0$	$1,1,0$	$1,2,0$	$1,3,0$	$1,4,0$
0					

Special cases

If s is the sequence of k ones, then $x_{s}=k, y_{s}=k(k-1) / 2$, $z_{s}=0$, and the first inequality is one from Matus' infinite lists:

$$
[a b c d]+\frac{1}{k}(a, b \mid c)+\left(1+\frac{k-1}{2}\right)((a, c \mid b+(b, c \mid a)) \geq 0
$$

When s is the sequence $\langle k, k-1 \ldots, 2,1\rangle$ then $x_{s}=2^{k}-1, y_{s}=$ $z_{s}=(k-2) 2^{k-1}+1$, and the first inequality is Theorem 10 from Dougherty, Freiling and Zeger:

$$
\begin{aligned}
{[a b c d] } & +\frac{1}{2^{k}-1}(a, b \mid c)+ \\
& +\left(1+\frac{(k-2) 2^{k-1}+1}{2^{k}-1}\right)((a, c \mid b)+(b, c \mid a))+ \\
& +\frac{(k-2) 2^{k-1}+1}{2^{k}-1}((a, d \mid b)+(b, d \mid a)) \geq 0,
\end{aligned}
$$

Outline

(1) The book
(2) Natural coordinates
(3) The book conjecture

4 Good sequences
(5) Pictures

2 pages

3 pages

4 pages

5 pages

6 pages

7 pages

8 pages

9 pages

lots of pages

