Geometry of the entropy region - III

Laszlo Csirmaz

Central European University, Budapest
IHP, Paris, February 16, 2016

Outline

(1) Private information
(2) Heading for the case of four variables
(3) Image of the central region of $\bar{\Gamma}_{4}^{*}$
(4) $\bar{\Gamma}_{4}^{*}$ is not polyhedral
(5) Is the entropy region semi-algebraic?

Private information

Definition

The private info of $a \in N$ is what a knows but nobody else does, that is, the difference between $\boldsymbol{H}(N)$ and $\boldsymbol{H}(N-a)$.

Claim

For an almost entropic point g, one can freely add and take away private info, and it still remains almost entropic.

Proof.

- $g+\lambda r_{a}$ adds $\lambda \geq 0$ amount of private info to $a \in N$.
- Let $t=g(N)-g(N-a)$. Then $g \downarrow a=g \downarrow_{t}^{a}$ takes away all private info from a.

Reminder:

$$
g \downarrow_{t}^{a}(J)=\min \{g(a J)-t, g(J)\} \quad \text { for all } J \subseteq N
$$

Private information

Definition

The private info of $a \in N$ is what a knows but nobody else does, that is, the difference between $\boldsymbol{H}(N)$ and $\boldsymbol{H}(N-a)$.

Claim

For an almost entropic point g, one can freely add and take away private info, and it still remains almost entropic.

Proof.

- $g+\lambda \boldsymbol{r}_{a}$ adds $\lambda \geq 0$ amount of private info to $a \in N$.
- Let $t=g(N)-g(N-a)$. Then $g \downarrow a=g \downarrow_{t}^{a}$ takes away all private info from a.

Corollary (Reduction)

When investigating the entropy region, we may assume that no variable has private info.

Visualizing the entropy region of 3 random variables

For a view of the entropy region determined by $N=3$ random variables choose another coordinate system determined by

$$
\begin{aligned}
& x_{1}=(a, b \mid c), x_{2}=(b, c \mid a), x_{3}=(c, a \mid b) \\
& x_{4}=(a, b)-(a, b \mid c)=(b, c)-(b, c \mid a)=(a, c)-(a, c \mid b) \\
& x_{5}=(a \mid b c), x_{6}=(b \mid a c), x_{7}=(c \mid a b)
\end{aligned}
$$

The last three coordinates are the private info, and can be discarded.
The rest determines a convex pointed cone in \mathbb{R}^{4}, which can be visualized by using ($x_{1}, x_{2}, x_{3}, x_{4}$) as barycentric coordinates: set weights $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ at vertices of a regular tetrahedron.

Image of the 3 -variable entropy region

Set weights $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ at vertices of a regular tetrahedron.

$x_{4}=\boldsymbol{I}(a, b, c)$ can be negative (pink bottom part).

Outline

(1) Private information
(2) Heading for the case of four variables
(3) Image of the central region of $\bar{\Gamma}_{4}^{*}$
(4) $\bar{\Gamma}_{4}^{*}$ is not polyhedral
(5) Is the entropy region semi-algebraic?

Shorthands for entropy expressions

We denote the four random variables by a, b, c, d. Letters \boldsymbol{H} and \boldsymbol{I} denoting entropy and mutual information are omitted:

- $(a, b)=\boldsymbol{I}(a, b)$
\Leftarrow mutual info
- $(a, b \mid c)=\boldsymbol{I}(a, b \mid c) \quad \Leftarrow$ conditional mutual info
- $(a \mid b c d)=\boldsymbol{H}(a \mid b c d) \quad \Leftarrow$ private info
- $[a b c d]=-\boldsymbol{I}(a, b)+\boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d)$

The Ingleton expression is symmetric in $a b$ and $c d$:

$$
[a b c d]=[\stackrel{\curvearrowright}{b a c d}]=[a b \stackrel{\sim}{d c}]=[\stackrel{\curvearrowright}{b a d c}] .
$$

There are six non-equivalent Ingleton expressions: $[a b c d] \quad[a c b d] \quad[a d b c] \quad[b c a d] \quad[b d a c] \quad[c d a b]$.

Why Ingleton is so important

Definition

$\boldsymbol{H}^{\square} \subset \bar{\Gamma}_{4}^{*}$ where all six Ingleton expressions are $\geq 0 ;$
$\boldsymbol{H}_{a b}^{\square}, \boldsymbol{H}_{a c}^{\square}, \ldots$ where the corresponding Ingleton is ≤ 0, that Ingleton is violated.

Theorem (Matus - Studeny, 1995)

- $\bar{\Gamma}_{4}^{*}=\boldsymbol{H}^{\square} \cup \boldsymbol{H}_{a b}^{\square} \cup \boldsymbol{H}_{a c}^{\square} \cup \boldsymbol{H}_{a d}^{\square} \cup \boldsymbol{H}_{b c}^{\square} \cup \boldsymbol{H}_{b d}^{\square} \cup \boldsymbol{H}_{c d}^{\square}$.
- Any two of the abopve parts have disjoint interior; common points are on the boundary of the core \boldsymbol{H}^{\square}.
- \boldsymbol{H}^{\square} is a full dimensional closed polyhedral cone.
- Vertices and internal points of \boldsymbol{H}^{\square} are linearly representable.
- $\boldsymbol{H}_{a b}^{\square}, \ldots, \boldsymbol{H}_{c d}^{\square}$ are isomorphic; isomorphisms are provided by permutations of a, b, c, d.

If . . .

If we know $\boldsymbol{H}_{a b}^{\square}$,
then
we know everything*

If ...

$$
\text { If we know } \boldsymbol{H}_{a b}^{\square} \text {, }
$$

then

we know everything*

at least about Γ_{4}^{}.

The case of five variables

Research problem

Give a similar decomposition of the 31-dimensional polymatroid cone Γ_{5}^{*} of five variables.

- Γ_{5}^{*} has a 120 -fold symmetry;
- the enclosing Shannon polytope has 117978 vertices ${ }^{[1]}$;
- the vertices fall into 1319 equivalence classes ${ }^{[1]}$ (into 15 classes in case of four variables);
- the linearly representable core of Γ_{5}^{*} is known precisely ${ }^{[2]}$.
[1] M. Studeny, R. R. Bouckaert, T. Kocka: Extreme supermodular set functions over five variables
[2] R. Dougherty, C. Freiling, K. Zeger: Linear rank inequalities on five or more variables

Bounding facets of $\boldsymbol{H}_{x b}^{\square}$

$\boldsymbol{H}_{a b}^{\square}$ is contained in the simplex determined by these facets:

$$
\begin{array}{rlr}
1 . & {[a b c d],} & \Leftarrow \text { the Ingleto } \\
2,3 . & (a, b \mid c),(a, b \mid d), & \Leftarrow \text { Shannon } \\
4,5 . & (c, d \mid a),(c, d \mid b), \\
6-9 . & (a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a), \\
10 . & (c, d), \\
11 . & (a, b \mid c d), \\
12-15 . & (a \mid b c d),(b \mid a c d),(c \mid a b d),(d \mid a b c) .
\end{array}
$$

$\boldsymbol{H}_{a b}^{\square}$ is on the ≤ 0 side of the Ingleton facet, and on the ≥ 0 side of the other 14 Shannon-facets.
$\Rightarrow \quad$ The base of the simplex is in \boldsymbol{H}^{\square}.
$\Rightarrow \quad$ The base is entropic, the top is not.

Using "natural" coordinates

Definition

Use the facet equations as the coordinates of the entropy vector.

Example: entropies
of the ringing bells distribution:
Original entropy vector:

a	b	c	d	Prob
0	0	0	0	$1 / 4$
1	0	0	1	$1 / 4$
1	0	1	0	$1 / 4$
1	1	1	1	$1 / 4$

a	b	c	d	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$	$a b c$	$a b d$	$a c d$	$b c d$	$a b c d$
.811	.811	1	1	1.5	1.5	1.5	1.5	1.5	2	2	2	2	2	2

The same in natural coordinates:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-0.12	0	0	.19	.19	.19	.19	.19	.19	0	0	0	0	0	0

Transformations which preserve entropic points

$$
\begin{aligned}
1 . & {[a, b, c, d] } \\
2,3 . & (a, b \mid c),(a, b \mid d) \\
4,5 . & (c, d \mid a),(c, d \mid b) \\
6-9 . & (a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a) \\
10 . & (c, d) \\
11 . & (a, b \mid c d), \\
12-15 . & (a \mid b c d),(b \mid a c d),(c \mid a b d),(d \mid a b c)
\end{aligned}
$$

(1) The private info can be discarded (replace them by zero).

Transformations which preserve entropic points

$$
\begin{aligned}
1 . & {[a, b, c, d] } \\
2,3 . & (a, b \mid c),(a, b \mid d) \\
4,5 . & (c, d \mid a),(c, d \mid b) \\
6-9 . & (a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a) \\
10 . & (c, d) \\
11 . & (a, b \mid c d), \\
12-15 . & 0, \quad 0,
\end{aligned} \quad 0, \quad 0
$$

(1) The private info can be discarded (replace them by zero).

Transformations which preserve entropic points

$$
\begin{aligned}
& \text { 1. }[a, b, c, d] \text {, } \\
& \text { 2, 3. }(a, b \mid c)+t,(a, b \mid d) \text {, } \\
& \text { 4, 5. } \quad(c, d \mid a),(c, d \mid b) \text {, } \\
& \text { 6-9. (} a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a), \\
& \text { 10. }(c, d)-t \text {, } \\
& \text { 11. }(a, b \mid c d) \text {, } \\
& \text { 12-15. } 0, \quad 0, \quad 0, \quad 0
\end{aligned}
$$

(1) The private info can be discarded (replace them by zero).
(2) Using $g \uparrow_{t}^{c}$, values from 10 can be moved to 2 (or 3).

Transformations which preserve entropic points

$$
\begin{aligned}
\text { 1. } & {[a, b, c, d] } \\
2,3 . & (a, b \mid c)^{*},(a, b \mid d) \\
4,5 . & (c, d \mid a),(c, d \mid b) \\
6-9 . & (a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a) \\
10 . & 0, \\
11 . & (a, b \mid c d), \\
12-15 . & 0,
\end{aligned} \quad 0, \quad 0, \quad 0
$$

(1) The private info can be discarded (replace them by zero).
(2) Using $g \uparrow_{t}^{c}$, values from 10 can be moved to 2 (or 3).

Transformations which preserve entropic points

1. $[a, b, c, d]$,

2, 3. $(a, b \mid c)^{*},(a, b \mid d)$,
4, 5. $\quad(c, d \mid a)+u,(c, d \mid b)$,
6-9. $(a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a)$,
10. 0 ,
11. $(a, b \mid c d)-u$,

12-15. $0, \quad 0, \quad 0, \quad 0$
(1) The private info can be discarded (replace them by zero).
(2) Using $g \uparrow_{t}^{c}$, values from 10 can be moved to 2 (or 3).
(3) Using $g \downarrow_{t}^{a}$, values from 11 can be moved to 4 (or 5).

Transformations which preserve entropic points

$$
\begin{aligned}
1 . & {[a, b, c, d] } \\
2,3 . & (a, b \mid c)^{*},(a, b \mid d) \\
4,5 . & (c, d \mid a) *,(c, d \mid b) \\
6-9 . & (a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a) \\
10 . & 0, \\
11 . & 0,
\end{aligned}
$$

(1) The private info can be discarded (replace them by zero).
(2) Using $g \uparrow_{t}^{c}$, values from 10 can be moved to 2 (or 3).
(3) Using $g \downarrow_{t}^{a}$, values from 11 can be moved to 4 (or 5).

Transformations which preserve entropic points

$$
\begin{array}{rll}
1 . & {[a, b, c, d],} & =-\alpha / 4 \\
2,3 . & (a, b \mid c)^{*},(a, b \mid d), & =\beta \\
4,5 . & (c, d \mid a) *,(c, d \mid b), & =\gamma / 2 \\
6-9 . & (a, c \mid b),(a, d \mid b),(b, c \mid a),(b, d \mid a), & =\delta \\
10 . & 0, & \\
11 . & 0, & \\
12-15 . & 0, & 0, \quad 0,
\end{array} \quad 0 \quad l
$$

(1) The private info can be discarded (replace them by zero).
(2) Using $g \uparrow_{t}^{c}$, values from 10 can be moved to 2 (or 3).
(3) Using $g \downarrow_{t}^{a}$, values from 11 can be moved to 4 (or 5).
(4) As $\alpha+\beta+\gamma+\delta=\boldsymbol{H}(a b c d)$, use them as barycentric coordinates to visualize the central symmetrical part of $\boldsymbol{H}_{a b}^{\square}$.

Outline

(1) Private information
(2) Heading for the case of four variables
(3) Image of the central region of $\bar{\Gamma}_{4}^{*}$
(4) $\bar{\Gamma}_{4}^{*}$ is not polyhedral
(5) Is the entropy region semi-algebraic?

Upper and lower bounds

Upper bound from known inequalities

Lower bound from computer search
https://www.youtube.com/watch?v=sam97F7oDnE
bas

Outline

(1) Private information

(2) Heading for the case of four variables
(3) Image of the central region of $\bar{\Gamma}_{4}^{*}$
(4) $\bar{\Gamma}_{4}^{*}$ is not polyhedral
(5) Is the entropy region semi-algebraic?

An entropy inequality

This is a Shannon inequality checked by xitip*:

$$
[a b c d]+(z, b \mid c)+(z, c \mid b)+(b, c \mid z) \geq-3(z, a d \mid b c)
$$

As z and $a d$ are independent in the black part, the Maximum Entropy Method (MAXE) says that in this case $(z, a d \mid b c)=0$ can be assumed:

$$
[a b c d]+(z, b \mid c)+(z, c \mid b)+(b, c \mid z) \geq 0
$$

is a five-variable entropy inequality.
Setting $z=a$ we get the Zhang-Yeung inequality.

[^0]
An entropy inequality

Theorem (Matus)

For each $k \geq 0$ this is a 5 -variable entropy inequality:

$$
\begin{aligned}
& k[a b c d]+\frac{k(k-1)}{2}((a, b \mid c)+(a, c \mid b))+ \\
& \quad+k((z, b \mid c)+(z, c \mid b))+(b, c \mid z) \geq 0
\end{aligned}
$$

For $k=0$ this is Shannon; for $k=1$ it is the previous inequality.

Proof.

By induction on k. By MAXE, $(z, a d \mid b c)=0$. Use the induction hypothesis for the variables $a z, b z, c z, d, a z$ to get

$$
\begin{aligned}
& k[a z, b z, c z, d]+\frac{k(k-1)}{2}((a z, b z \mid c z)+(a z, c z \mid z b))+ \\
& +k((a z, b z \mid c z)+(a z, c z \mid b z))+(b z, c z \mid a z) \geq 0
\end{aligned}
$$

An entropy inequality

Theorem (Matus)

For each $k \geq 0$ this is a 5 -variable entropy inequality:

$$
\begin{aligned}
& k[a b c d]+\frac{k(k-1)}{2}((a, b \mid c)+(a, c \mid b))+ \\
& \quad+k((z, b \mid c)+(z, c \mid b))+(b, c \mid z) \geq 0
\end{aligned}
$$

For $k=0$ this is Shannon; for $k=1$ it is the previous inequality.

Proof.

By induction on k. By MAXE, $(z, a d \mid b c)=0$. Use the induction hypothesis for the variables $a z, b z, c z, d, a z$ to get

$$
\begin{aligned}
& k[a z, b z, c z, d]+\frac{k(k-1)}{2}((a z, b z \mid c z)+(a z, c z \mid z b))+ \\
& +k((a z, b z \mid c z)+(a z, c z \mid b z))+(b z, c z \mid a z) \geq 0
\end{aligned}
$$

An entropy inequality - proof

$$
\begin{aligned}
& \Rightarrow \quad k[a z, b z, c z, d]+\frac{k(k-1)}{2}((a z, b z \mid c z)+(a z, c z \mid z b))+ \\
& \quad+k((a z, b z \mid c z)+(a z, c z \mid b z))+(b z, c z \mid a z) \geq 0 .
\end{aligned}
$$

These are Shannon inequalities, and by MAXE, $(z, a d \mid b c)=0$:

$$
\begin{aligned}
{[a b c d]+(b, c \mid z)+} & \\
+(z, b \mid c)+(z, c \mid b) & \geq(b z, c z \mid a z)-3(z, a d \mid b c) \\
{[a b c d]+(z, b \mid c)+(z, c \mid b) } & \geq[a z, b z, c z, d]-3(z, a d \mid b c), \\
(a, b \mid c) & \geq(a z, b z \mid c z)-(z, a d \mid b c), \\
(a, c \mid b) & \geq(a z, c z \mid b z)-(z, a d \mid b c) .
\end{aligned}
$$

An entropy inequality - proof

$$
\begin{aligned}
& \Rightarrow \quad k[a z, b z, c z, d]+\frac{k(k-1)}{2}((a z, b z \mid c z)+(a z, c z \mid z b))+ \\
& +
\end{aligned} \quad k((a z, b z \mid c z)+(a z, c z \mid b z))+(b z, c z \mid a z) \geq 0 . ~ \$
$$

These are Shannon inequalities, and by MAXE, $(z, a d \mid b c)=0$:

$$
\left.\begin{array}{rl}
\Rightarrow 1 *[a b c d]+(b, c \mid z)+ \\
& +(z, b \mid c)+(z, c \mid b)
\end{array}\right) \geq(b z, c z \mid a z)-3(z, a d \mid b c), ~ \begin{aligned}
\Rightarrow k *[a b c d]+(z, b \mid c)+(z, c \mid b) & \geq[a z, b z, c z, d]-3(z, a d \mid b c), \\
\Rightarrow k(k+1) / 2 * \quad(a, b \mid c) & \geq(a z, b z \mid c z)-(z, a d \mid b c), \\
\Rightarrow(a, c \mid b) & \geq(a z, c z \mid b z)-(z, a d \mid b c) .
\end{aligned}
$$

Sum them up; the LHS is the claim for $k+1$, the RHS is ≥ 0 by induction.

A useful non-linear entropy inequality

Corollary

If $[a b c d] \leq 0$, then

$$
(2(b, c \mid a)-3[a b c d])((a, b \mid c)+(a, c \mid b)) \geq[a b c d]^{2} .
$$

Proof.

$\mathcal{I}=[a b c d], \mathcal{B}=(b, c \mid a), \mathcal{C}=(a, b \mid c)+(a, c \mid b)$. Setting $z=a$ in Matus' theorem we have

$$
2 k \mathcal{I}+2 \mathcal{B}+k(k+1) \mathcal{C} \geq 0
$$

By assumption, $\mathcal{I} \leq 0$; choose $k \geq 0$ with $-1-\mathcal{I} / \mathcal{C}<k \leq-\mathcal{I} / \mathcal{C}$:

$$
\begin{aligned}
\Rightarrow \mathcal{C} * \quad 2(-1-\mathcal{I} / \mathcal{C}) \mathcal{I}+2 \mathcal{B}+(-\mathcal{I} / \mathcal{C})(-\mathcal{I} / \mathcal{C}+1) \mathcal{C} & \geq 0 \\
2(-\mathcal{C}-\mathcal{I}) \mathcal{I}+2 \mathcal{B C}+\mathcal{I}(\mathcal{I}-\mathcal{C}) & \geq 0 \\
-3 \mathcal{I C}+2 \mathcal{B C}-\mathcal{I}^{2} & \geq 0
\end{aligned}
$$

A 2-dimensional view of F_{4}^{*}

(1) Start from this consequence of Matus' inequality:

$$
(2(b, c \mid a)-3[a b c d])((a, b \mid c)+(a, c \mid b)) \geq[a b c d]^{2}
$$

(2) Take the cross-section of $\bar{\Gamma}_{4}^{*}$ with the hyperplane

$$
2(b, c \mid a)-3[a b c d]=2 .
$$

Alternate view: norm the entropies according to this equation.
(3) Consider the 2-dimensional plane spanned by the vectors

$$
\mathbf{x}=-[a b c d] \quad \text { and } \quad \mathbf{y}=(a, b \mid c)+(a, c \mid b) .
$$

(4) Project the cross-section to this plane. Matus' inequality restricts where the projection can go: it must satisfy

$$
2 y \geq x^{2}, \quad \text { i.e., } \quad y \geq x^{2} / 2
$$

Picture

Where the examples are coming from?

Take the ringing bells $\varepsilon \rightarrow 0$:

$$
\begin{array}{ll|l|l|l|l|l}
a & b & c & d & \text { Prob } & -[a b c d]=\varepsilon / 2+O\left(\varepsilon^{3}\right), \\
\hline 0 & 0 & 0 & 0 & \varepsilon / s & (a, b \mid c)=0, \\
1 & 0 & 0 & 1 & 1 / s & (b, c \mid a)=1+O(\varepsilon \log \varepsilon), \\
1 & 0 & 1 & 0 & \varepsilon / s & \\
1 & 1 & 1 & 1 & 1 / s & (a, c \mid b)=\frac{1}{2 \ln 2} \varepsilon^{2}+O\left(\varepsilon^{3}\right) .
\end{array}
$$

With these distributions $x \approx-[a b c d]=\varepsilon / 2+O\left(\varepsilon^{3}\right)$, $y \approx(a, b \mid c)+(a, c \mid b)=\varepsilon^{2} /(2 \ln 2)+O\left(\varepsilon^{3}\right)$, which means

$$
y=\frac{2}{\ln 2} x^{2}+O\left(x^{4}\right) \approx 2.8854 x^{2}
$$

Improving the constant

Fine tuning the probabilities in the bells distribution, the constant 2.8854 in

$$
y=\frac{2}{\ln 2} x^{2}+O\left(x^{3}\right) \approx 2.8854 x^{2}
$$

can be lowered to around 1.688.

Improving the constant

Fine tuning the probabilities in the bells distribution, the constant 2.8854 in

$$
y=\frac{2}{\ln 2} x^{2}+O\left(x^{3}\right) \approx 2.8854 x^{2}
$$

can be lowered to around 1.688.

Research Problem

Find a sequence of distributions which improve this constant. You need to look beyond the ringing bells distribution.

Outline

(1) Private information
(2) Heading for the case of four variables
(3) Image of the central region of $\bar{\Gamma}_{4}^{*}$
(4) $\bar{\Gamma}_{4}^{*}$ is not polyhedral
(5) Is the entropy region semi-algebraic?

Outline of the attack

Mimic the idea of the proof that $\bar{\Gamma}_{4}^{*}$ is not polyhedral:
(1) Find a good cross-section of $\bar{\Gamma}_{4}^{*}$.
(2) Project the cross-section to a well-chosen two-dimensional plane.
(3) Find an entropy inequality which excludes the pointset \mathcal{X} of the plane.
(4) Find distributions in the cross-section whose projection to the plane give \mathcal{D}.
(5) Prove that \mathcal{X} and \mathcal{D} cannot be separated by a semi-algebraic curve.

Outline of the attack

For each point there are good candidates, but more work is needed.

Outline of the attack

For each point there are good candidates, but more work is needed.

$$
A=M C^{2}
$$

\#3: A useful entropy inequality

The following book inequality was discovered by Dougherty et al.

$$
\begin{aligned}
\left(2^{k}-1\right)[a b c d] & +(a, b \mid c)+k 2^{k-1}((a, c \mid b)+(b, c \mid a)) \\
& +\left(k 2^{k-1}-2^{k}+1\right)((a, d \mid b)+(b, d \mid a)) \geq 0
\end{aligned}
$$

Using $\mathcal{I}=-[a b c d], \mathcal{B}=(a, b \mid c), \mathcal{C}=(a, c \mid b)+\cdots+(b, d \mid a)$,

$$
-\left(2^{k}-1\right) \mathcal{I}+\mathcal{B}+k 2^{k-1} \mathcal{C} \geq 0
$$

Take the cross-section defined by $\mathcal{I}+\mathcal{B}=1$; then $1+k 2^{k-1} \mathcal{C} \geq$ $2^{k} \mathcal{I}$. Assuming \mathcal{I} is positive, choose $2 \leq 2^{k} \mathcal{I}$. Then

$$
\begin{gathered}
k \geq \quad 2^{k-1} \geq \\
1+\log _{2}(2 / \mathcal{I}) \quad(1 / \mathcal{I}) \quad \mathcal{C} \geq 1+k 2^{k-1} \mathcal{C} \geq 2^{k} \mathcal{I} \geq 2
\end{gathered}
$$

This gives the forbidden region for $\langle\mathcal{I} /(\mathcal{I}+\mathcal{B}), \mathcal{C} /(\mathcal{I}+\mathcal{B})\rangle$:

$$
\mathcal{X}=\left\{\langle x, y\rangle: y \geq \frac{x}{1-\log _{2} x}>-0.5 \frac{x}{\log _{2} x}\right\} .
$$

\#4 and \#5: sample distributions

$$
\Rightarrow \quad \mathcal{X}=\left\{\langle x, y\rangle: y \geq \frac{x}{1-\log _{2} x}>-0.5 \frac{x}{\log _{2} x}\right\}
$$

Looking at the distribution,

$$
\mathcal{B}=(a, b \mid c)=0,
$$

whatever probabilities are chosen.

\#4 and \#5: sample distributions

$$
\Rightarrow \quad \mathcal{X}=\left\{\langle x, y\rangle: y \geq \frac{x}{1-\log _{2} x}>-0.5 \frac{x}{\log _{2} x}\right\} .
$$

\#4 and \#5: sample distributions

$$
\Rightarrow \quad \mathcal{X}=\left\{\langle x, y\rangle: y \geq \frac{x}{1-\log _{2} x}>-0.5 \frac{x}{\log _{2} x}\right\}
$$

$=$ 32ews.Today $=$

GODD NEWS!

Using $\mathcal{I}=-[a b c d], \mathcal{B}=(b, c \mid a), \mathcal{C}=$ $(a, b \mid c)+(a, c \mid b)+(a, b \mid d)+(a, d \mid b)$ and the cross-section $\mathcal{I}+\mathcal{B}=1$, we can do better... (see next page)

\#4 and \#5: sample distributions

$$
\Rightarrow \quad \mathcal{X}=\left\{\langle x, y\rangle: y \geq \frac{x}{1-\log _{2} x}>-0.5 \frac{x}{\log _{2} x}\right\} .
$$

$=$ 32ews.Today $=$

6000 NEWSI!

Bews. Today
BAD NEWS!!

Using $\mathcal{I}=-[a b c d], \mathcal{B}=(b, c \mid a), \mathcal{C}=$ $(a, b \mid c)+(a, c \mid b)+(a, b \mid d)+(a, d \mid b)$ and the cross-section $\mathcal{I}+\mathcal{B}=1$, we can do better... (see next page)

No corresponding entropy inequality is known. (But probably exists.)

Tweaking the bells distribution

$\mathcal{X} \Rightarrow$

$$
\mathcal{X}=\left\{\langle x, y\rangle: y \geq \frac{x}{1-\log _{2} x}>-0.5 \frac{x}{\log _{2} x}\right\} .
$$

Using the probabilities below with $s=(1+\varepsilon)^{2}$,

l	b	c	d	Prob
0	0	0	0	ε^{2} / s
1	0	0	1	ε / s
1	0	1	0	ε / s
1	1	1	1	$1 / s$

$$
\begin{aligned}
& \mathcal{I}=-(1+o(1)) \varepsilon^{2} \log _{2} \varepsilon \\
& (a, b \mid c)=(a, b \mid d)=0 \\
& \mathcal{B}=-(1+o(1)) \varepsilon \log _{2} \varepsilon \\
& \mathcal{C}=(2+o(1)) \varepsilon^{2}
\end{aligned}
$$

which gives the example dataset for $\mathcal{I} /(\mathcal{I}+\mathcal{B})$ and $\mathcal{C} /(\mathcal{I}+\mathcal{B})$:
$\mathcal{D} \Rightarrow$

$$
\mathcal{D}=\left\{\langle x, y\rangle: y=-(2+o(x)) \frac{x}{\log _{2} x}\right\}
$$

Observe: \mathcal{X} and \mathcal{D} are inseparable by algebraic curves.

Conclusion

To prove that $\bar{\Gamma}_{4}^{*}$ is not semi-algebraic,
Research problem \#3
Prove this variant of the book inequality à la Matúš:

$$
\begin{aligned}
\left(2^{k}-1\right)[a b c d] & +(b, c \mid a)+k 2^{k-1}((a, b \mid c)+(a, c \mid b)) \\
& +\left(k 2^{k-1}-2^{k}+1\right)((a, b \mid d)+(a, d \mid b)) \geq 0
\end{aligned}
$$

Or,
Research problem \#4
Show that the quoted book inequality is essentially sharp by giving examples where

$$
y \leq \operatorname{const} \frac{x}{\log _{2}(1 / x)}
$$

for small values of x.

Thank you for your attention

[^0]: * http://xitip.epfl.ch, or https://github.com/lcsirmaz/minitip

