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Polymatroids

Polymatroids are the abstracted view of submodular functions,
they are closely related to entropy (S. Fujishige, 1978)

Definition

The pair 〈f ,N〉 is a polymatroid, if f assigns non-negative real
numbers to the non-empty subsets of N such that

1 non-negative: f (I ) ≥ 0;

2 monotonic: if I ⊆ J ⊆ N then f (I ) ≤ f (J);

3 submodular: for subsets I , J ⊆ N,

f (I ) + f (J) ≥ f (I ∪ J) + f (I ∩ J).

N is the ground set, and f is the rank function.

Polymatroids are identified with the rank function which is a
sequence of length 2N − 1 indexed by the non-empty subsets of N.
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Entropy expressions

For I ⊆ N, δI is the vector of length 2N − 1 which is 0 everywhere,
except at the index I , where it is 1.

Definition (special entropy expressions)

For disjoint non-empty subsets I , J,K ⊆ N define

(I | J)
def
= δI∪J − δI ;

(I , J)
def
= δI + δJ − δI∪J ;

(I , J |K )
def
= δI∪K + δJ∪K − δI∪J∪K − δK .

Definition

δI · f is the scalar product of these two vectors, the value is f (I ).

Monotonicity can be expressed as (I | J)f ≥ 0;

Submodularity can be expressed as (I , J |K )f ≥ 0.
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Geometry of polymatroids

Claim

Polymatroids on the ground set N form a pointed convex
polyhedral cone ΓN in the 2N − 1-dimensional Euclidean space.

Proof.

The collection of polymatroids is the intersection of finitely many
closed half-spaces corresponding to the Shannon inequalities

(I | J)f ≥ 0, and (I , J |K )f ≥ 0.
The all-zero point is on the bounding hyperplanes, thus the
intersection is a pointed cone.

Actually, the following set defines all facets of the cone:

(a |N−{a}) f ≥ 0 for all a ∈ N, and

(a, b |K ) f ≥ 0 for all a 6= b ∈ N − K , K ⊂ N.
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Entropic polymatroids

Let 〈ξi : i ∈ N〉 be random variables with some joint distribution.
Define f on the non-empty subsets of N by

f (J)
def
= H(〈ξi : i ∈ J〉),

where H(·) is the entropy function. Then f is a polymatroid.

Definition

A polymatroid is entropic if it can be written as the entropy of
some collection of random variables.
The polymatroid is almost entropic (aent) if it is in the closure
(in the usual Euclidean topology) of entropic polymatroids.

Remark

The collection of entropic polymatroids is not closed when |N| ≥ 3.
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A special entropic polymatroid

Fix the ground set N. For non-empty S ⊆ N define 〈rS ,N〉 as

rS(I ) = 1 if I ∩ S 6= ∅, and 0 otherwise.

Claim

The polymatroid rS is entropic.

Proof.

Define a probability table with
two lines, each with probability
1/2. In the top line all entries are
0; in the bottom line entries are

1 2 3 4 . . . Prob

0 0 0 0 . . . 1/2

0 1 1 0 . . . 1/2

1 for columns in S (blue cells), and 0 for columns not in S . If
I ∩ S = ∅ then only one row remains (H = 0), otherwise both
rows remain (H = 1).
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More entropic polymatroids

Claim

Let λ > 0. Then the polymatroid λrS is entropic.

Proof.

Let ξ be a single random variable with H(ξ) = λ. Columns in
i ∈ S contain identical copies of ξ, columns not in S contain a
fixed value.

Claim

If f and g are entropic, then so is f + g.

Proof.

If ~ξ represents f , and ~η represents g , then take independent copies
of ~ξ and ~η (the number of rows will multiply). In this case
entropies add up.
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A useful corollary

Claim

Every point in the cone C =
{∑

S⊆N λsrS : λS ≥ 0
}
is entropic.

The cone C is full dimensional.

Proof.

We need to show that the 2N − 1 vectors rS ∈ R2N−1 are linearly
independent. Do it by induction on N. Fix a ∈ N; J,S are non-
empty subsets of N−a; rank(M) = 2N−1 − 1 by induction, so

J a aJ

rS M 0 M

ra 0 1 1 . . . 1

raS M 1 1 . . . 1

⇒
M 0 M
0 1 1
M 0 0

⇒
0 0 M
0 1 0
M 0 0
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The set of entropic polymatroids is almost closed

Definition

Γ∗N is the collection of entropic polymatroids, and Γ̄∗N is the closure:
the pointwise limits of entropic polymatroids.

Theorem (Yeung, Matus)

Internal points of Γ̄∗N are entropic: int(Γ̄∗N) ⊂ Γ∗N .

Proof.

h

g

Let g be an internal point of Γ̄∗N .
C is the cone from the previous page.

Entropic points are dense around g .
Pick an entropic point h inside g − C.
Every point in h + C is entropic,
g is an internal point of h + C ⇒
a neighbor of g (and g) is entropic.
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Methods

Presently known methods to get new entropy inequalities are:

1 Zhang–Yeung method (1998)

2 Makarychev et al. technique (2002)

3 Matúš’ polymatroid convolution (2007)

4 Maximum entropy extension (2014)

Equivalence of #1 and #2 for balanced inequalities (see later)
was shown by Tarik Kaced (2013).

Research problem

Show that methods #3 and #4 are actually stronger than the
other two.
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Zhang–Yeung method
Zhang – Yeung, 1998

~X , ~Y , Z are (collections of) random variables.

Copy-variable method

(A) If we have an information inequality of the form

u(~X , ~Y ) + v(~Y ,Z ) + λI(Z , ~X | ~Y ) ≥ 0

for some λ ≥ 0,

(B) then the following stronger inequality also holds:

u(~X , ~Y ) + v(~Y ,Z ) ≥ 0

Example: This is a Shannon inequality (checked by itip∗):

I(a, b) ≤ I(a, b | c) + I(a, b | d) + I(c , d) +

+ I(a, b | z) + I(z , a | b) + I(z , b | a) + 3I(z , cd | ab)

∗http://xitip.epfl.ch, or https://github.com/lcsirmaz/minitip
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Makarychev et al. technique
Makarychev – Makarychev – Romashchenko – Vereschagin, 2002

~X , ~Y , Z are (collections of) random variables.

Makarychev technique

(A) If we have an information inequality of the form

u(~X , ~Y ) + v(~Y ,Z ) ≥ 0,

where v() is a linear combination of entropies,

(B) then the following inequality also holds:

u(~X , ~Y ) + v(~Y ,Z )− λH(Z | ~Y ) ≥ 0,

where λ is the sum of coefficients in v involving Z .

Example: This is a Shannon inequality:

H(z) ≤ 2H(z | a) + 2H(z | b)− 3H(z | ab)

+ I(a, b | c) + I(a, b | d) + I(c , d).
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Frantisek Matúš’ convolution method
Matúš, 2007

Let 〈g ,N〉 be a polymatroid, a ∈ N, and 0 < t. Define the
polymatroids g↓at and g↑at as

g↓at (J) = min{g(aJ)− t, g(J)},
g↑at (J) = min{g(aJ), g(J) + t},

for all J ⊆ N.

Matúš method

(A) If we have an entropy inequality u(g) ≥ 0

(B) then for all a ∈ N and 0 ≤ t ≤ g(a), u(g↓at ) ≥ 0 is also an
information inequality;

(B’) for all a ∈ N, u(g↑at ) ≥ 0 is also an information inequality.

Example: This is a Shannon inequality:

H(z)−t ≤ 2H(z | a)−2t + 2H(z | b)−2t

+ I(a, b | c) + I(a, b | d) + I(c , d).
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H(z)−t ≤ 2H(z | a)−2t + 2H(z | b)−2t

+ I(a, b | c) + I(a, b | d) + I(c , d).
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Maximum entropy method
Csirmaz – Matus, 2013

~U is a collection of random variables, ~Xk , ~Yk
~Zk are subsets of ~U.

Maximum entropy method

(A) Suppose we have an information inequality of the form

u(~U) + v( (~X1, ~Y1 | ~Z1), (~X2, ~Y2 | ~Z2) . . . ) ≥ 0,

where no term in u() intersects both Xk and Yk at the same
time.

(B) Then the following stronger inequality also holds:

u(~U) + v(0, 0, . . . ) ≥ 0.

Example: This is a Shannon inequality:

(u, v) ≤(u, v |y) + (u, v |t) + (y , v |x) + (t, v |z) +

+ (u, y |v) + (u, z |v) + (v , z |u) + (x , u) + 4(xy , zt|uv)
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~U is a collection of random variables, ~Xk , ~Yk
~Zk are subsets of ~U.

Maximum entropy method

(A) Suppose we have an information inequality of the form

u(~U) + v( (~X1, ~Y1 | ~Z1), (~X2, ~Y2 | ~Z2) . . . ) ≥ 0,

where no term in u() intersects both Xk and Yk at the same
time.

(B) Then the following stronger inequality also holds:

u(~U) + v(0, 0, . . . ) ≥ 0.

Example: This is a new entropy inequality:

(u, v) ≤(u, v |y) + (u, v |t) + (y , v |x) + (t, v |z) +

+ (u, y |v) + (u, z |v) + (v , z |u) + (x , u)
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