Geometry of the entropy region - II

Laszlo Csirmaz

Central European University, Budapest
IHP, Paris, February 16, 2016

Outline

(1) Polymatroids
(2) Entropic polymatroids
(3) Geometry of the entropic region
4. Search for new entropy inequalities

Polymatroids

Polymatroids are the abstracted view of submodular functions, they are closely related to entropy (S. Fujishige, 1978)

Definition

The pair $\langle f, N\rangle$ is a polymatroid, if f assigns non-negative real numbers to the non-empty subsets of N such that
(1) non-negative: $f(I) \geq 0$;
(2) monotonic: if $I \subseteq J \subseteq N$ then $f(I) \leq f(J)$;
(3) submodular: for subsets $I, J \subseteq N$,

$$
f(I)+f(J) \geq f(I \cup J)+f(I \cap J)
$$

N is the ground set, and f is the rank function.
Polymatroids are identified with the rank function which is a sequence of length $2^{N}-1$ indexed by the non-empty subsets of N.

Entropy expressions

For $I \subseteq N, \delta_{I}$ is the vector of length $2^{N}-1$ which is 0 everywhere, except at the index l, where it is 1 .

Definition (special entropy expressions)

For disjoint non-empty subsets $I, J, K \subseteq N$ define

- $(I \mid J) \stackrel{\text { def }}{=} \delta_{I \cup J}-\delta_{I}$;
- $(I, J) \stackrel{\text { def }}{=} \delta_{I}+\delta_{J}-\delta_{I \cup J}$;
- $(I, J \mid K) \stackrel{\text { def }}{=} \delta_{I \cup K}+\delta_{J \cup K}-\delta_{I \cup J \cup K}-\delta_{K}$.

Definition

$\delta_{I} \cdot f$ is the scalar product of these two vectors, the value is $f(I)$.
Monotonicity can be expressed as $(I \mid J) f \geq 0$;
Submodularity can be expressed as $(I, J \mid K) f \geq 0$.

Geometry of polymatroids

Claim

Polymatroids on the ground set N form a pointed convex polyhedral cone Γ_{N} in the 2^{N} - 1-dimensional Euclidean space.

Proof.

The collection of polymatroids is the intersection of finitely many closed half-spaces corresponding to the Shannon inequalities

$$
(I \mid J) f \geq 0, \quad \text { and } \quad(I, J \mid K) f \geq 0
$$

The all-zero point is on the bounding hyperplanes, thus the intersection is a pointed cone.

Actually, the following set defines all facets of the cone:

$$
\begin{aligned}
(a \mid N-\{a\}) f \geq 0 & \text { for all } a \in N, \text { and } \\
\quad(a, b \mid K) f \geq 0 & \text { for all } a \neq b \in N-K, K \subset N .
\end{aligned}
$$

Outline

(1) Polymatroids

(2) Entropic polymatroids

3 Geometry of the entropic region
4 Search for new entropy inequalities

Entropic polymatroids

Let $\left\langle\xi_{i}: i \in N\right\rangle$ be random variables with some joint distribution. Define f on the non-empty subsets of N by

$$
f(J) \stackrel{\text { def }}{=} \boldsymbol{H}\left(\left\langle\xi_{i}: i \in J\right\rangle\right)
$$

where $\boldsymbol{H}(\cdot)$ is the entropy function. Then f is a polymatroid.

Definition

A polymatroid is entropic if it can be written as the entropy of some collection of random variables.
The polymatroid is almost entropic (aent) if it is in the closure (in the usual Euclidean topology) of entropic polymatroids.

Remark

The collection of entropic polymatroids is not closed when $|N| \geq 3$.

A special entropic polymatroid

Fix the ground set N. For non-empty $S \subseteq N$ define $\left\langle\boldsymbol{r}_{S}, N\right\rangle$ as

$$
r_{S}(I)=1 \text { if } I \cap S \neq \emptyset, \text { and } 0 \text { otherwise. }
$$

Claim

The polymatroid \boldsymbol{r}_{S} is entropic.

Proof.

Define a probability table with two lines, each with probability $1 / 2$. In the top line all entries are

1	2	3		4	Prob
0	0	0	0	\ldots	$1 / 2$
0	1	1	0	\ldots	$1 / 2$

More entropic polymatroids

Claim

Let $\lambda>0$. Then the polymatroid λr_{S} is entropic.

Proof.

Let ξ be a single random variable with $\boldsymbol{H}(\xi)=\lambda$. Columns in $i \in S$ contain identical copies of ξ, columns not in S contain a fixed value.

Claim

If f and g are entropic, then so is $f+g$.

Proof.

If $\vec{\xi}$ represents f, and $\vec{\eta}$ represents g, then take independent copies of $\vec{\xi}$ and $\vec{\eta}$ (the number of rows will multiply). In this case entropies add up.

A useful corollary

Claim

Every point in the cone $\mathcal{C}=\left\{\sum_{S \subseteq N} \lambda_{S} \boldsymbol{r}_{S}: \lambda_{S} \geq 0\right\}$ is entropic. The cone \mathcal{C} is full dimensional.

Proof.

We need to show that the $2^{N}-1$ vectors $r_{S} \in \mathbb{R}^{2^{N}-1}$ are linearly independent. Do it by induction on N. Fix $a \in N ; J, S$ are nonempty subsets of $N-a ; \operatorname{rank}(\mathcal{M})=2^{N-1}-1$ by induction, so

Outline

(1) Polymatroids

(2) Entropic polymatroids
(3) Geometry of the entropic region

4 Search for new entropy inequalities

The set of entropic polymatroids is almost closed

Definition

Γ_{N}^{*} is the collection of entropic polymatroids, and $\bar{\Gamma}_{N}^{*}$ is the closure: the pointwise limits of entropic polymatroids.

Theorem (Yeung, Matus)
 Internal points of $\bar{\Gamma}_{N}^{*}$ are entropic: $\operatorname{int}\left(\bar{\Gamma}_{N}^{*}\right) \subset \Gamma_{N}^{*}$.

Proof.

Let g be an internal point of $\bar{\Gamma}_{N}^{*}$. \mathcal{C} is the cone from the previous page.

The set of entropic polymatroids is almost closed

Definition

Γ_{N}^{*} is the collection of entropic polymatroids, and $\bar{\Gamma}_{N}^{*}$ is the closure: the pointwise limits of entropic polymatroids.

Theorem (Yeung, Matus)
 Internal points of $\bar{\Gamma}_{N}^{*}$ are entropic: $\operatorname{int}\left(\bar{\Gamma}_{N}^{*}\right) \subset \Gamma_{N}^{*}$.

Proof.

Let g be an internal point of $\bar{\Gamma}_{N}^{*}$. \mathcal{C} is the cone from the previous page.
Entropic points are dense around g.

The set of entropic polymatroids is almost closed

Definition

Γ_{N}^{*} is the collection of entropic polymatroids, and $\bar{\Gamma}_{N}^{*}$ is the closure: the pointwise limits of entropic polymatroids.

Theorem (Yeung, Matus)
 Internal points of $\bar{\Gamma}_{N}^{*}$ are entropic: $\operatorname{int}\left(\bar{\Gamma}_{N}^{*}\right) \subset \Gamma_{N}^{*}$.

Proof.

Let g be an internal point of $\bar{\Gamma}_{N}^{*}$.
\mathcal{C} is the cone from the previous page.
Entropic points are dense around g.
Pick an entropic point h inside $g-\mathcal{C}$.

The set of entropic polymatroids is almost closed

Definition

Γ_{N}^{*} is the collection of entropic polymatroids, and $\bar{\Gamma}_{N}^{*}$ is the closure: the pointwise limits of entropic polymatroids.

Theorem (Yeung, Matus)

Internal points of $\bar{\Gamma}_{N}^{*}$ are entropic: $\operatorname{int}\left(\bar{\Gamma}_{N}^{*}\right) \subset \Gamma_{N}^{*}$.

Proof.

Let g be an internal point of $\bar{\Gamma}_{N}^{*}$.
\mathcal{C} is the cone from the previous page.
Entropic points are dense around g.
Pick an entropic point h inside $g-\mathcal{C}$.
Every point in $h+\mathcal{C}$ is entropic,
g is an internal point of $h+\mathcal{C} \Rightarrow$
a neighbor of g (and g) is entropic.

Outline

(1) Polymatroids

(2) Entropic polymatroids
(3) Geometry of the entropic region

4 Search for new entropy inequalities

Methods

Presently known methods to get new entropy inequalities are:
(1) Zhang-Yeung method (1998)
(2) Makarychev et al. technique (2002)
(3) Matúś' polymatroid convolution (2007)
(4) Maximum entropy extension (2014)

Equivalence of \#1 and \#2 for balanced inequalities (see later) was shown by Tarik Kaced (2013).

Research problem

Show that methods \#3 and \#4 are actually stronger than the other two.

Zhang-Yeung method

Zhang - Yeung, 1998
\vec{X}, \vec{Y}, Z are (collections of) random variables.

Copy-variable method

(A) If we have an information inequality of the form

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z)+\lambda I(Z, \vec{X} \mid \vec{Y}) \geq 0
$$

for some $\lambda \geq 0$,
(B) then the following stronger inequality also holds:

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z) \geq 0
$$

Example: This is a Shannon inequality (checked by itip*):

$$
\begin{aligned}
& \boldsymbol{I}(a, b) \leq \boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d)+ \\
& +\boldsymbol{I}(a, b \mid z)+\boldsymbol{I}(z, a \mid b)+\boldsymbol{I}(z, b \mid a)+3 \boldsymbol{I}(z, c d \mid a b)
\end{aligned}
$$

[^0]
Zhang-Yeung method

Zhang - Yeung, 1998
\vec{X}, \vec{Y}, Z are (collections of) random variables.

Copy-variable method

(A) If we have an information inequality of the form

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z)+\lambda I(Z, \vec{X} \mid \vec{Y}) \geq 0
$$

for some $\lambda \geq 0$,
(B) then the following stronger inequality also holds:

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z) \geq 0
$$

Example: This is a new entropy inequality:

$$
\begin{gathered}
\boldsymbol{I}(a, b) \leq \boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d)+ \\
+\boldsymbol{I}(a, b \mid z)+\boldsymbol{I}(z, a \mid b)+\boldsymbol{I}(z, b \mid a)
\end{gathered}
$$

[^1]
Makarychev et al. technique

Makarychev - Makarychev - Romashchenko - Vereschagin, 2002
\vec{X}, \vec{Y}, Z are (collections of) random variables.

Makarychev technique

(A) If we have an information inequality of the form

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z) \geq 0
$$

where $v()$ is a linear combination of entropies,
(B) then the following inequality also holds:

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z)-\lambda \boldsymbol{H}(Z \mid \vec{Y}) \geq 0
$$

where λ is the sum of coefficients in v involving Z.
Example: This is a Shannon inequality:

$$
\begin{aligned}
\boldsymbol{H}(z) \leq & 2 \boldsymbol{H}(z \mid a)+2 \boldsymbol{H}(z \mid b) \\
& +\boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d)
\end{aligned}
$$

Makarychev et al. technique

Makarychev - Makarychev - Romashchenko - Vereschagin, 2002

\vec{X}, \vec{Y}, Z are (collections of) random variables.

Makarychev technique

(A) If we have an information inequality of the form

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z) \geq 0
$$

where $v()$ is a linear combination of entropies,
(B) then the following inequality also holds:

$$
u(\vec{X}, \vec{Y})+v(\vec{Y}, Z)-\lambda \boldsymbol{H}(Z \mid \vec{Y}) \geq 0
$$

where λ is the sum of coefficients in v involving Z.
Example: This is a new entropy inequality:

$$
\begin{aligned}
\boldsymbol{H}(z) \leq & 2 \boldsymbol{H}(z \mid a)+2 \boldsymbol{H}(z \mid b)-3 \boldsymbol{H}(z \mid a b) \\
& +\boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d) .
\end{aligned}
$$

Frantisek Matúš' convolution method

Matúš, 2007

Let $\langle g, N\rangle$ be a polymatroid, $a \in N$, and $0<t$. Define the polymatroids $g \downarrow_{t}^{a}$ and $g \uparrow_{t}^{a}$ as

$$
\begin{aligned}
g \downarrow_{t}^{a}(J) & =\min \{g(a J)-t, g(J)\}, \\
g \uparrow_{t}^{a}(J) & =\min \{g(a J), g(J)+t\},
\end{aligned} \quad \text { for all } J \subseteq N
$$

Matúš method

(A) If we have an entropy inequality $u(g) \geq 0$
(B) then for all $a \in N$ and $0 \leq t \leq g(a), u\left(g \downarrow_{t}^{a}\right) \geq 0$ is also an information inequality;
(B') for all $a \in N, u\left(g \uparrow_{t}^{a}\right) \geq 0$ is also an information inequality.
Example: This is a Shannon inequality:

$$
\begin{aligned}
\boldsymbol{H}(z) & \leq 2 \boldsymbol{H}(z \mid a) \quad+2 \boldsymbol{H}(z \mid b) \\
+ & \boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d)
\end{aligned}
$$

Frantisek Matúš' convolution method

Matúš, 2007

Let $\langle g, N\rangle$ be a polymatroid, $a \in N$, and $0<t$. Define the polymatroids $g \downarrow_{t}^{a}$ and $g \uparrow_{t}^{a}$ as

$$
\begin{aligned}
g \downarrow_{t}^{a}(J) & =\min \{g(a J)-t, g(J)\}, \\
g \uparrow_{t}^{a}(J) & =\min \{g(a J), g(J)+t\},
\end{aligned} \quad \text { for all } J \subseteq N
$$

Matúš method

(A) If we have an entropy inequality $u(g) \geq 0$
(B) then for all $a \in N$ and $0 \leq t \leq g(a), u\left(g \downarrow_{t}^{a}\right) \geq 0$ is also an information inequality;
(B') for all $a \in N, u\left(g \uparrow_{t}^{a}\right) \geq 0$ is also an information inequality.
Example: This is a new inequality using $g \downarrow_{t}^{z}$ with $t \leq \boldsymbol{H}(z \mid a b)$:

$$
\begin{aligned}
& \boldsymbol{H}(z)- t \leq 2 \boldsymbol{H}(z \mid a)-2 t+2 \boldsymbol{H}(z \mid b)-2 t \\
&+\boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d) .
\end{aligned}
$$

Maximum entropy method

Csirmaz - Matus, 2013

\vec{U} is a collection of random variables, $\vec{X}_{k}, \vec{Y}_{k} \vec{Z}_{k}$ are subsets of \vec{U}.

Maximum entropy method

(A) Suppose we have an information inequality of the form

$$
u(\vec{U})+v\left(\left(\vec{X}_{1}, \vec{Y}_{1} \mid \vec{Z}_{1}\right),\left(\vec{X}_{2}, \vec{Y}_{2} \mid \vec{Z}_{2}\right) \ldots\right) \geq 0
$$

where no term in $u()$ intersects both X_{k} and Y_{k} at the same time.
(B) Then the following stronger inequality also holds:

$$
u(\vec{U})+v(0,0, \ldots) \geq 0
$$

Example: This is a Shannon inequality:

$$
\begin{aligned}
(u, v) \leq & (u, v \mid y)+(u, v \mid t)+(y, v \mid x)+(t, v \mid z)+ \\
& +(u, y \mid v)+(u, z \mid v)+(v, z \mid u)+(x, u)+4(x y, z t \mid u v)
\end{aligned}
$$

Maximum entropy method

Csirmaz - Matus, 2013

\vec{U} is a collection of random variables, $\vec{X}_{k}, \vec{Y}_{k} \vec{Z}_{k}$ are subsets of \vec{U}.

Maximum entropy method

(A) Suppose we have an information inequality of the form

$$
u(\vec{U})+v\left(\left(\vec{X}_{1}, \vec{Y}_{1} \mid \vec{Z}_{1}\right),\left(\vec{X}_{2}, \vec{Y}_{2} \mid \vec{Z}_{2}\right) \ldots\right) \geq 0
$$

where no term in $u()$ intersects both X_{k} and Y_{k} at the same time.
(B) Then the following stronger inequality also holds:

$$
u(\vec{U})+v(0,0, \ldots) \geq 0
$$

Example: This is a new entropy inequality:

$$
\begin{aligned}
(u, v) \leq & (u, v \mid y)+(u, v \mid t)+(y, v \mid x)+(t, v \mid z)+ \\
& +(u, y \mid v)+(u, z \mid v)+(v, z \mid u)+(x, u)
\end{aligned}
$$

[^0]: *http://xitip.epfl.ch, or https://github.com/lcsirmaz/minitip

[^1]: *http://xitip.epfl.ch, or https://github.com/lcsirmaz/minitip

