Geometry of the entropy region - I

Laszlo Csirmaz

Central European University, Budapest
IHP, Paris, February 16, 2016

Outline

(1) Information and entropy
(2) Shannon inequalities
(3) Case studies

4 The "Ringing Bells" distribution
(5) Common information - the Ingleton inequality

Entropy

Let A be a random variable taking k values with probability

$$
p_{1}, p_{2}, \ldots, p_{k}, \quad\left(p_{1}+p_{2}+\cdots+p_{k}=1\right) .
$$

The entropy of A is

$$
\boldsymbol{H}(A) \stackrel{\text { def }}{=} \sum_{i=1}^{k}-p_{i} \log _{2}\left(p_{i}\right) .
$$

Entropy

Let A be a random variable taking k values with probability

$$
p_{1}, p_{2}, \ldots, p_{k}, \quad\left(p_{1}+p_{2}+\cdots+p_{k}=1\right) .
$$

The entropy of A is

$$
\boldsymbol{H}(A) \stackrel{\text { def }}{=} \sum_{i=1}^{k}-p_{i} \log _{2}\left(p_{i}\right) .
$$

The outcome of A can be described by $\boldsymbol{H}(A)$ bits; this is the information content of the event A.

Coin-flipping is 1 bit: $-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{2} \log _{2} \frac{1}{2}=1$.

Conditional entropy, mutual information

Let A, B and C be random variables. The conditional entropy of A given B is the average entropy of the conditional distributions $A \mid b$

$$
\boldsymbol{H}(A \mid B) \stackrel{\text { def }}{=} \sum_{b \in B} p_{b} \cdot \boldsymbol{H}(A \mid b)=\boldsymbol{H}(A B)-\boldsymbol{H}(B) \geq 0 .
$$

The mutual information of A and B is

$$
\begin{aligned}
\boldsymbol{I}(A, B) & \stackrel{\text { def }}{=} \boldsymbol{H}(A)-\boldsymbol{H}(A \mid B)=\boldsymbol{H}(B)-\boldsymbol{H}(B \mid A) \\
& =\boldsymbol{H}(A)+\boldsymbol{H}(B)-\boldsymbol{H}(A B) \geq 0 .
\end{aligned}
$$

The conditional mutual information of A and B given C is

$$
\begin{aligned}
\boldsymbol{I}(A, B \mid C) & \stackrel{\text { def }}{=} \sum_{c \in C} p_{c} \cdot \boldsymbol{I}(A|c, B| c) \\
& =\boldsymbol{H}(A C)+\boldsymbol{H}(B C)-\boldsymbol{H}(C)-\boldsymbol{H}(A B C) \geq 0
\end{aligned}
$$

Outline

(1) Information and entropy
(2) Shannon inequalities
(3) Case studies

4 The "Ringing Bells" distribution
(5) Common information - the Ingleton inequality

Before '98

Let A and B be collection of random variables.

Shannon inequalities

(1) $\boldsymbol{H}(A) \geq 0, \boldsymbol{H}(\emptyset)=0$

- positive,
(2) $\boldsymbol{H}(B) \geq \boldsymbol{H}(A)$ whenever $B \supseteq A$
- monotone,
(3) $\boldsymbol{H}(A)+\boldsymbol{H}(B) \geq \boldsymbol{H}(A \cup B)+\boldsymbol{H}(A \cap B)$
- subadditive.

Subadditivity is equivalent to $I(A, B \mid C) \geq 0$.

Before '98

Let A and B be collection of random variables.

Shannon inequalities

(1) $\boldsymbol{H}(A) \geq 0, \boldsymbol{H}(\emptyset)=0$

- positive,
(2) $\boldsymbol{H}(B) \geq \boldsymbol{H}(A)$ whenever $B \supseteq A$
- monotone,
(3) $\boldsymbol{H}(A)+\boldsymbol{H}(B) \geq \boldsymbol{H}(A \cup B)+\boldsymbol{H}(A \cap B)$
- subadditive.

Subadditivity is equivalent to $I(A, B \mid C) \geq 0$.

Are there more?

Outline

(1) Information and entropy
(2) Shannon inequalities
(3) Case studies

4 The "Ringing Bells" distribution
(5) Common information - the Angleton inequality

The case of one variable

Question

What values can take the entropy of a single variable?

The case of one variable

Question

What values can take the entropy of a single variable?

Answer

Any non-negative real value.
If $\operatorname{Prob}(\xi=0)=\alpha, \operatorname{Prob}(\xi=1)=1-\alpha$, then

moreover $\boldsymbol{H}(\xi \eta)=\boldsymbol{H}(\xi)+\boldsymbol{H}(\eta)$ when ξ and η are independent.

The case of two variables

Question

How does look like the three entropies of two variables?

The case of two variables

Question

How does look like the three entropies of two variables?

Answer

Anything is possible allowed by the Shannon-inequalities.

$$
\begin{aligned}
& 0 \leq A \leq A B \\
& 0 \leq B \leq A B \\
& A+B \geq A B
\end{aligned}
$$

The case of two variables

Normalize this way: $A B=1$

Let ξ, η, ζ be independent variables such that

$$
\begin{aligned}
& \boldsymbol{H}(\xi)=A B-B \geq 0 \\
& \boldsymbol{H}(\eta)=A B-A \geq 0 \\
& \boldsymbol{H}(\zeta)=A+B-A B \geq 0 .
\end{aligned}
$$

Then
$\boldsymbol{H}(\xi \zeta)=A, \quad \boldsymbol{H}(\eta \zeta)=B$,
and
$\boldsymbol{H}(\xi \zeta, \eta \zeta)=A B$.

The case of three variables

Question

How does look like the seven entropies of three variables?

The case of three variables

Question

How does look like the seven entropies of three variables?

Answer
\mathcal{C} is the 7-dimensional cone bounded by the Shannon inequalities. The answer is \mathcal{C} with some boundary points missing.

Research \& PhD - problem
Describe the boundary of the cone \mathcal{C}.

The case of three variables

Question

How does look like the seven entropies of three variables?

Answer

\mathcal{C} is the 7-dimensional cone bounded by the Shannon inequalities.
The answer is \mathcal{C} with some boundary points missing.
Research \& PhD - problem
Describe the boundary of the cone \mathcal{C}.

$$
\begin{gathered}
a, b, c, d, e, f \geq 0, \quad g \text { can be }<0 . \\
d+g, e+g, f+g \geq 0 . \\
\text { E.g., } a=A B C-B C=(A \mid B C) \\
d=A C+B C-C-A B C= \\
=(A, B \mid C) .
\end{gathered}
$$

The case of three variables

Normalize this way: $A B C=1$.

(1) Take away the private info from A, B, C, i.e., set $a=b=c=0$.
(2) Introduce the barycentric coordinates (d, e, f, g) as $d+e+f+g=1$.
(3) Visualize the possibilities

The case of three variables

Normalize this way: $A B C=1$.

(1) Take away the private info from A, B, C, i.e., set $a=b=c=0$.
(2) Introduce the barycentric coordinates (d, e, f, g) as $d+e+f+g=1$.
(3) Visualize the possibilities

Every achievable point is a convex linear combination of these five extreme distributions - plus three accounting for the taken away private info.

The case of three variables

Alternate visualization:

(1) Normalize as before: $A B C=1$.
(2) Look at the symmetric core

$$
\alpha=a+b+c, \beta=d+e+f .
$$

(3) Use the barycentric coordinates (α, β, g) as $\alpha+\beta+g=1$.

g is negative here

The case of four variables

Question

How does look like the fifteen entropies of four variables?

The case of four variables

Question

How does look like the fifteen entropies of four variables?

Answer

No one knows exactly.
Some partial results:

- its closure is a convex cone, and only boundary points are missing - Zhang and Yeung (1997); Matus (2007)
- It is a proper subset of the cone determined by the Shannon inequalities - Zhang and Yeung (1998)
- It has a polyhedral inner core - the Ingleton base, which is surrounded by six isomorphic protrusions - Matus and Studeny (1999)
- The closure is not polyhedral, thus no finite set of inequalities determines it - Matus (2007)

The case of five and more variables

Question

How does look like the $2^{N}-1$ entropies of $N \geq 5$ random variables?

The case of five and more variables

Question

How does look like the $2^{N}-1$ entropies of $N \geq 5$ random variables?

Answer

Much less is known than even for 4 variables.
Lower bound on the share size in perfect secret sharing schemes is an optimization problem on the entropies of N random variables.
Conjecture: the best lower bound is exponential in N Best known lower bound is sublinear, it's $N / \log N$, but exponential lower bound for linear schemes (A. Gál)

Research problem

Improve the log factor in the above estimate.

Outline

(1) Information and entropy

(2) Shannon inequalities
(3) Case studies

4 The "Ringing Bells" distribution
(5) Common information - the Ingleton inequality

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_{1}	ξ_{2}	\ldots	ξ_{n}	Prob
u_{1}	v_{1}	\ldots	z_{1}	p_{1}
u_{2}	v_{1}	\ldots	z_{1}	p_{2}
u_{1}	v_{2}	\ldots	z_{1}	p_{3}
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	p_{s}

The probabilities sum to 1 : $\sum p_{i}=1$.

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_{1}	ξ_{2}	\ldots	ξ_{n}	Prob
u_{1}	v_{1}	\ldots	z_{1}	p_{1}
u_{2}	v_{1}	\ldots	z_{1}	p_{2}
u_{1}	v_{2}	\ldots	z_{1}	p_{3}
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	p_{s}

An example: the ringing bells

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_{1}	ξ_{2}	\ldots	ξ_{n}	Prob
u_{1}	v_{1}	\ldots	z_{1}	p_{1}
u_{2}	v_{1}	\ldots	z_{1}	p_{2}
u_{1}	v_{2}	\ldots	z_{1}	p_{3}
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	p_{s}

An example: the ringing bells
We have two ropes, c and d. When any of them is pulled, a rings, when both are pulled, b rings. Pull each rope independently with $1 / 2$ probability.
a

	b	c	d	Prob
0	0	0	0	$1 / 4$
1	0	0	1	$1 / 4$
1	0	1	0	$1 / 4$
1	1	1	1	$1 / 4$

Entropies of the marginal

To get the marginal for a subset of variables: take their columns, merge identical rows, and sum the probabilities.

Original				
a	b	c	d	Prob
0	0	0	0	$1 / 4$
1	0	0	1	$1 / 4$
1	0	1	0	$1 / 4$
1	1	1	1	$1 / 4$

Marginal on bc

b	c	Prob
0	0	$1 / 2$
0	1	$1 / 4$
1	1	$1 / 4$

Marginal on $a b$

a	b	Prob
0	0	$1 / 4$
1	0	$1 / 2$
1	1	$1 / 4$

The entropy is $\boldsymbol{H}=\sum_{i}-p_{i} \log _{2}\left(p_{i}\right)$. Since
$-(1 / 4) \log _{2}(1 / 4)=1 / 2, \quad-(1 / 2) \log _{2}(1 / 2)=1 / 2$, thus we have $\boldsymbol{H}(a b c d)=2$,

$$
\boldsymbol{H}(b c)=3 / 2
$$

$$
\boldsymbol{H}(a b)=3 / 2
$$

Outline

(1) Information and entropy

(2) Shannon inequalities
(3) Case studies
4) The "Ringing Bells" distribution
(5) Common information - the Ingleton inequality

Common information

Definition

For random variables ξ and η their common information is another random variable c such that
(1) both ξ and η determines c, that is

$$
\boldsymbol{H}(c \xi)=\boldsymbol{H}(\xi), \text { and } \boldsymbol{H}(c \eta)=\boldsymbol{H}(\eta) ;
$$

(2) any information present both in ξ and η can be extracted from c alone: $\boldsymbol{I}(\xi, \eta)=\boldsymbol{H}(c)$, or, equivalently, $\boldsymbol{I}(\xi, \eta \mid c)=0$.

Typically, common information does not need to exist. If it does, it has important consequences on the entropy structure.

Consequence of common information

Theorem

Suppose a, b, c, d are random variables; a and b have common information. Then

$$
\boldsymbol{I}(a, b) \leq \boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d)
$$

Proof.

For five random variables a, b, c, d, e this is a Shannon inequality*:

$$
\boldsymbol{H}(e) \leq 2 \boldsymbol{H}(e \mid a)+2 \boldsymbol{H}(e \mid b)+\boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d) .
$$

If e is the common information for a and b, then $\boldsymbol{H}(e)=\boldsymbol{I}(a, b)$, $\boldsymbol{H}(e \mid a)=\boldsymbol{H}(e \mid b)=0$, and we are done.

[^0]
Consequence of common information

Theorem

Suppose a, b, c, d are random variables; a and b have common information. Then

$$
\boldsymbol{I}(a, b) \leq \boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d) .
$$

Proof.

For five random variables a, b, c, d, e this is a Shannon inequality*:

$$
\boldsymbol{H}(e) \leq 2 \boldsymbol{H}(e \mid a)+2 \boldsymbol{H}(e \mid b)+\boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d) .
$$

If e is the common information for a and b, then $\boldsymbol{H}(e)=\boldsymbol{I}(a, b)$, $\boldsymbol{H}(e \mid a)=\boldsymbol{H}(e \mid b)=0$, and we are done.

This is the Ingleton inequality.

[^1]
The Ingleton score

For the "bells" distribution

$$
\begin{aligned}
\boldsymbol{H}(a)=\boldsymbol{H}(b) & =0.8112 \ldots \\
\boldsymbol{H}(c)=\boldsymbol{H}(d) & =1 \\
\boldsymbol{H}(a b) & =1.5 \\
\boldsymbol{I}(a, b) & =0.1225 \ldots \\
\boldsymbol{I}(a, b \mid c)=\boldsymbol{I}(a, b \mid d) & =0
\end{aligned} \quad \begin{array}{ll|l|l|l|r|}
a & b & c & d & \text { Prob } \\
1 & 0 & 0 & 0 & 1 / 4 \\
1 & 0 & 0 & 1 & 1 / 4 \\
1 & 0 & 1 & 0 & 1 / 4 \\
1 & 1 & 1 & 1 / 4 \\
\hline
\end{array}
$$

The Ingleton score for this distribution is

$$
\frac{-\boldsymbol{I}(a, b)+\boldsymbol{I}(a, b \mid c)+\boldsymbol{I}(a, b \mid d)+\boldsymbol{I}(c, d)}{\boldsymbol{H}(a b c d)}=-0.0612 \ldots
$$

Research problem

Give better lower and upper bounds on the Ingleton score.
Presently they are -0.15789 and -0.09243 .

[^0]: *http://xitip.epfl.ch or https://github.com/lcsirmaz/minitip

[^1]: *http://xitip.epfl.ch or https://github.com/lcsirmaz/minitip

