< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometry of the entropy region - I

Laszlo Csirmaz

Central European University, Budapest

IHP, Paris, February 16, 2016

Outline

- 2 Shannon inequalities
- 3 Case studies
- 4 The "Ringing Bells" distribution
- 5 Common information the Ingleton inequality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entropy

Let A be a random variable taking k values with probability

$$p_1, p_2, \ldots, p_k, \quad (p_1 + p_2 + \cdots + p_k = 1).$$

The **entropy** of A is

$$H(A) \stackrel{\text{def}}{=} \sum_{i=1}^{k} - p_i \log_2(p_i).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Entropy

Let A be a random variable taking k values with probability

$$p_1, p_2, \ldots, p_k, \quad (p_1 + p_2 + \cdots + p_k = 1).$$

The **entropy** of A is

$$\boldsymbol{H}(A) \stackrel{\text{def}}{=} \sum_{i=1}^{k} - p_i \log_2(p_i).$$

The outcome of A can be described by H(A) bits; this is the **information content** of the event A.

Coin-flipping is 1 bit:
$$-\frac{1}{2}\log_2 \frac{1}{2} - \frac{1}{2}\log_2 \frac{1}{2} = 1.$$

Conditional entropy, mutual information

Let *A*, *B* and *C* be random variables. The **conditional entropy** of *A* given *B* is the *average entropy of the conditional distributions* $A \mid b$

$$\boldsymbol{H}(A \mid B) \stackrel{\mathrm{def}}{=} \sum_{b \in B} \boldsymbol{p}_b \cdot \boldsymbol{H}(A \mid b) = \boldsymbol{H}(AB) - \boldsymbol{H}(B) \geq 0.$$

The **mutual information** of A and B is

$$I(A, B) \stackrel{\text{def}}{=} H(A) - H(A \mid B) = H(B) - H(B \mid A)$$
$$= H(A) + H(B) - H(AB) \ge 0.$$

The conditional mutual information of A and B given C is

$$I(A, B | C) \stackrel{\text{def}}{=} \sum_{c \in C} p_c \cdot I(A | c, B | c)$$
$$= H(AC) + H(BC) - H(C) - H(ABC) \ge 0.$$

Outline

- 2 Shannon inequalities
 - 3 Case studies
- 4 The "Ringing Bells" distribution
- 5 Common information the Ingleton inequality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Before '98

Let A and B be collection of random variables.

Shannon inequalities • $H(A) \ge 0, H(\emptyset) = 0$ - positive, • $H(B) \ge H(A)$ whenever $B \supseteq A$ - monotone, • $H(A) + H(B) \ge H(A \cup B) + H(A \cap B)$ - subadditive.

Subadditivity is equivalent to $I(A, B|C) \ge 0$.

Before '98

Let A and B be collection of random variables.

Shannon inequalities

$$\textbf{2} \quad \boldsymbol{H}(B) \geq \boldsymbol{H}(A) \text{ whenever } B \supseteq A \\ - \text{ monotone,}$$

$$H(A) + H(B) \ge H(A \cup B) + H(A \cap B)$$

- subadditive.

Subadditivity is equivalent to $I(A, B|C) \ge 0$.

Are there more?

Outline

2 Shannon inequalities

3 Case studies

- 4 The "Ringing Bells" distribution
- 5 Common information the Ingleton inequality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

8 / 22

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The case of one variable

Question

What values can take the entropy of a single variable?

The case of one variable

Question

What values can take the entropy of a single variable?

Answer

Any non-negative real value.

If
$$\operatorname{Prob}(\xi = 0) = \alpha$$
, $\operatorname{Prob}(\xi = 1) = 1 - \alpha$, then

moreover $H(\xi\eta) = H(\xi) + H(\eta)$ when ξ and η are independent.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

9 / 22

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The case of two variables

Question

How does look like the three entropies of two variables?

The case of two variables

Question

How does look like the three entropies of two variables?

Answer

Anything is possible allowed by the Shannon-inequalities.

The case of two variables

Normalize this way: AB = 1

Let ξ , η , ζ be independent variables such that $H(\xi) = AB - B \ge 0$, $H(\eta) = AB - A \ge 0$, $H(\zeta) = A + B - AB \ge 0$. Then $H(\xi\zeta) = A$, $H(\eta\zeta) = B$, and $H(\xi\zeta, \eta\zeta) = AB$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The case of three variables

Question

How does look like the seven entropies of three variables?

Question

How does look like the seven entropies of three variables?

Answer

 ${\cal C}$ is the 7-dimensional cone bounded by the Shannon inequalities. The answer is ${\cal C}$ with some boundary points missing.

Research & PhD – problem

Describe the **boundary** of the cone C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

How does look like the seven entropies of three variables?

Answer

 ${\cal C}$ is the 7-dimensional cone bounded by the Shannon inequalities. The answer is ${\cal C}$ with some boundary points missing.

Research & PhD – problem

Describe the **boundary** of the cone C.

a, b, c, d, e,
$$f \ge 0$$
, g can be < 0.
d + g, e + g, f + g ≥ 0 .
E.g., $a = ABC - BC = (A | BC)$,
 $d = AC + BC - C - ABC =$
 $= (A, B | C)$.

Normalize this way: ABC=1.

 Take away the private info from A, B, C, i.e., set a=b=c=0.

- Introduce the barycentric coordinates (d, e, f, g) as d + e + f + g = 1.
- O Visualize the possibilities

Normalize this way: ABC=1.

- Take away the private info from A, B, C, i.e., set a=b=c=0.
- Introduce the barycentric coordinates (d, e, f, g) as d + e + f + g = 1.
- O Visualize the possibilities

() Normalize as before: ABC = 1.

- 2 Look at the symmetric core $\alpha = a + b + c$, $\beta = d + e + f$.
- Use the barycentric coordinates
 (α, β, g) as α + β + g = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The case of four variables

Question

How does look like the fifteen entropies of four variables?

The case of four variables

Question

How does look like the fifteen entropies of four variables?

Answer No one knows exactly.

Some partial results:

- its closure is a convex cone, and only boundary points are missing – Zhang and Yeung (1997); Matus (2007)
- It is a proper subset of the cone determined by the Shannon inequalities – Zhang and Yeung (1998)
- It has a polyhedral inner core the Ingleton base, which is surrounded by six isomorphic protrusions – Matus and Studeny (1999)
- The closure is **not** polyhedral, thus no finite set of inequalities determines it – Matus (2007)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The case of five and more variables

Question

How does look like the $2^N - 1$ entropies of $N \ge 5$ random variables?

The case of five and more variables

Question

How does look like the $2^N - 1$ entropies of $N \ge 5$ random variables?

Answer

Much less is known than even for 4 variables.

Lower bound on the share size in perfect secret sharing schemes is an optimization problem on the entropies of N random variables. **Conjecture:** the best lower bound is **exponential** in N**Best known lower bound** is **sublinear**, it's $N/\log N$, but exponential lower bound for **linear schemes** (*A. Gál*)

Research problem

Improve the log factor in the above estimate.

Outline

- 2 Shannon inequalities
- 3 Case studies
- 4 The "Ringing Bells" distribution
 - 5 Common information the Ingleton inequality

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_1	ξ2	 ξn	Prob
<i>u</i> ₁	v_1	 <i>z</i> 1	p_1
<i>u</i> ₂	v_1	 <i>z</i> 1	<i>p</i> ₂
<i>u</i> ₁	<i>v</i> ₂	 <i>z</i> 1	<i>p</i> 3
иj	Vk	 Z_ℓ	p _s

The probabilities sum to 1: $\sum p_i = 1.$

・ロト・日本・モート モー うへぐ

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ1	ξ2	 ξn	Prob
<i>u</i> ₁	v_1	 <i>z</i> 1	p_1
<i>u</i> ₂	v_1	 <i>z</i> 1	<i>p</i> ₂
<i>u</i> ₁	<i>v</i> ₂	 <i>z</i> 1	<i>p</i> 3
иj	Vk	 Z_ℓ	p _s

An example: the ringing bells

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_1	ξ2	 ξn	Prob	_
<i>u</i> ₁	v_1	 <i>z</i> 1	p_1	
<i>u</i> ₂	v_1	 <i>z</i> 1	<i>p</i> ₂	
<i>u</i> ₁	<i>v</i> ₂	 <i>z</i> 1	<i>p</i> 3	
иj	Vk	 Z_ℓ	<i>p</i> s	

The probabilities sum to 1: $\sum p_i = 1.$

An example: the ringing bells

We have two ropes, c and d. When any of them is pulled, a rings, when both are pulled, b rings. Pull each rope independently with 1/2probability.

a	b	С	d	Prob
0	0	0	0	1/4
1	0	0	1	1/4
1	0	1	0	1/4
1	1	1	1	1/4

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To get the marginal for a subset of variables: take their columns, merge identical rows, and sum the probabilities.

The entropy is $H = \sum_{i} -p_{i} \log_{2}(p_{i})$. Since -(1/4) $\log_{2}(1/4) = 1/2$, -(1/2) $\log_{2}(1/2) = 1/2$, thus we have H(abcd) = 2, H(bc) = 3/2, H(ab) = 3/2.

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Outline

- Information and entropy
- 2 Shannon inequalities
- 3 Case studies
- 4 The "Ringing Bells" distribution
- 5 Common information the Ingleton inequality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Common information

Definition

For random variables ξ and η their **common information** is another random variable *c* such that

1 both ξ and η determines c, that is

$$H(c\xi) = H(\xi)$$
, and $H(c\eta) = H(\eta)$;

2 any information present both in ξ and η can be extracted from c alone: $I(\xi, \eta) = H(c)$, or, equivalently, $I(\xi, \eta | c) = 0$.

Typically, common information does not need to exist. If it does, it has important consequences on the entropy structure.

Consequence of common information

Theorem

Suppose a, b, c, d are random variables; a and b have common information. Then

$$I(a,b) \leq I(a,b \mid c) + I(a,b \mid d) + I(c,d).$$

Proof.

For five random variables a, b, c, d, e this is a Shannon inequality^{*}:

$$H(e) \le 2H(e | a) + 2H(e | b) + I(a, b | c) + I(a, b | d) + I(c, d).$$

If e is the common information for a and b, then H(e) = I(a, b), H(e | a) = H(e | b) = 0, and we are done.

*http://xitip.epfl.ch or https://github.com/lcsirmaz/minitip

Consequence of common information

Theorem

Suppose a, b, c, d are random variables; a and b have common information. Then

$$I(a,b) \leq I(a,b | c) + I(a,b | d) + I(c,d).$$

Proof.

For five random variables a, b, c, d, e this is a Shannon inequality^{*}:

$$\boldsymbol{H}(\boldsymbol{e}) \leq 2\boldsymbol{H}(\boldsymbol{e} \mid \boldsymbol{a}) + 2\boldsymbol{H}(\boldsymbol{e} \mid \boldsymbol{b}) + \boldsymbol{I}(\boldsymbol{a}, \boldsymbol{b} \mid \boldsymbol{c}) + \boldsymbol{I}(\boldsymbol{a}, \boldsymbol{b} \mid \boldsymbol{d}) + \boldsymbol{I}(\boldsymbol{c}, \boldsymbol{d}).$$

If e is the common information for a and b, then H(e) = I(a, b), $H(e \mid a) = H(e \mid b) = 0$, and we are done.

This is the **Ingleton inequality**.

^{*}http://xitip.epfl.ch or https://github.com/lcsirmaz/minitip

The Ingleton score

For the "bells" distribution

$$H(a) = H(b) = 0.8112...$$

 $H(c) = H(d) = 1$
 $H(ab) = 1.5$
 $I(a, b) = 0.1225...$
 $I(a, b | c) = I(a, b | d) = 0$

а	b	С	d	Prob
0	0	0	0	1/4
1	0	0	1	1/4
1	0	1	0	1/4
1	1	1	1	1/4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Ingleton score for this distribution is

$$rac{-I(a,b)+I(a,b|c)+I(a,b|d)+I(c,d)}{H(abcd)}=-0.0612\ldots$$

Research problem

Give better lower and upper bounds on the Ingleton score.

Presently they are -0.15789 and -0.09243.