Applied Vector Optimization: Hunt for New Entropy Inequalities

Laszlo Csirmaz

Central European University, Budapest

Glasgow, July 14, 2015

- 1 Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- **6** Results and conclusion

What is entropy?

Entropy is a measure of information content.

Originating from physics, Claude Shannon made it the central notion in **information theory** in late 1940's.

 $ec{X}$ is a collection of discrete random variables taking k possible configurations with probability

$$p_1, p_2, \dots, p_k \ge 0$$
, where $p_1 + \dots + p_k = 1$.

The **entropy** of the collection \vec{X} in *bits* is defined as

$$H(\vec{X}) \stackrel{\text{def}}{=} \sum_{i=1}^k -p_i \log_2 p_i.$$

This is just right: random coin flipping has entropy 1 bit.

The entropy vector

 \vec{X} is a collection of n jointly distributed random variables. For each subset A of $\{1, 2, ..., n\}$, $\boldsymbol{H}(A)$ denotes the entropy of the marginal distribution $\langle x_i : i \in A \rangle$.

The **entropy vector** of \vec{X} is the 2^n-1 dimensional vector $\langle \boldsymbol{H}(A) \rangle$ indexed by the non-empty subsets A.

The entropy vector

 \vec{X} is a collection of n jointly distributed random variables. For each subset A of $\{1, 2, ..., n\}$, H(A) denotes the entropy of the marginal distribution $\langle x_i : i \in A \rangle$.

The **entropy vector** of \vec{X} is the 2^n-1 dimensional vector $\langle \boldsymbol{H}(A) \rangle$ indexed by the non-empty subsets A.

Analogy

Entropy behaves like an asset.

Supporting facts for the analogy

Larger group has more entropy:

if
$$A \subseteq B$$
 then $0 \le H(A) \le H(B)$.

2 Independent information adds up:

if A and B are independent, then
$$H(A \cup B) = H(A) + H(B)$$
.

3 One can identify "private" and "joint" information:

But the analogy breaks down . . .

① One cannot always "extract" the joint knowledge of A and B (no further random variable can be added which would act as their joint information)

2 With three subsets A, B, and C,

conditional joint info

③ And many-many more subtle problems ...

- 1 Information and entropy
- Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- 5 Results and conclusion

Tools – Shannon (1949) and Zhang-Yeung (1998)

- **1** Shannon inequalities: 1) The private info is non-negative: if $A \subseteq B$ then $H(A) \le H(B)$.
 - 2) Conditional joint info is non-negative: for any three subsets

$$H(A \cup C) + H(B \cup C) - H(A \cup B \cup C) - H(C) \ge 0.$$

The minimal set has $n + n(n-1)2^{n-3}$ inequalities.

Tools – Shannon (1949) and Zhang-Yeung (1998)

- **1** Shannon inequalities: 1) The private info is non-negative: if $A \subseteq B$ then $H(A) \le H(B)$.
 - 2) Conditional joint info is non-negative: for any three subsets

$$H(A \cup C) + H(B \cup C) - H(A \cup B \cup C) - H(C) \ge 0.$$

The minimal set has $n + n(n-1)2^{n-3}$ inequalities.

- 2 Creating an independent copy A' of A over B:
 - a) (A, B) and (A', B) are identically distributed;
 - b) A and A' are independent given B, that is

$$H(A \cup B) + H(A' \cup B) - H(A \cup A' \cup B) - H(B) = 0.$$

Tools – Shannon (1949) and Zhang-Yeung (1998)

- **1** Shannon inequalities: 1) The private info is non-negative: if $A \subseteq B$ then $H(A) \le H(B)$.
 - 2) Conditional joint info is non-negative: for any three subsets

$$H(A \cup C) + H(B \cup C) - H(A \cup B \cup C) - H(C) \ge 0.$$

The minimal set has $n + n(n-1)2^{n-3}$ inequalities.

- 2 Creating an independent copy A' of A over B:
 - a) (A, B) and (A', B) are identically distributed;
 - b) A and A' are independent given B, that is

$$H(A \cup B) + H(A' \cup B) - H(A \cup A' \cup B) - H(B) = 0.$$

3 Iterate step 2 by splitting the variable set again and again.

An example

- Start with variables a, b, c, d, their entropy vector is $\mathbf{x} \in \mathbb{R}^{15}$.
- (a', b') is a copy of (a, b) over (c, d). The entropy vector of a, b, c, d, a', b' is $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{63}$.
- The 246 \times 64 matrix M gives all Shannon inequalities for the six variables a, b, c, d, a', b':
- (1) $M \cdot (\mathbf{x}, \mathbf{y}) \geq 0$.
 - The 13 × 63 matrix A describes that abcd and a'b'cd are identical; and ab and a'b' are independent over cd:
- (2) $A \cdot (\mathbf{x}, \mathbf{y}) = 0.$
 - This comes from H(a) = H(a'), H(ac) = H(a'c), ..., and H(abcd) + H(a'b'cd) H(aba'b'cd) H(cd) = 0.
 - Consider the linear constraints in (1) and (2). Do they have any consequence on **x** beyond the Shannon inequalities?

YES! - the Zhang-Yeung inequality

YES!

$$3H(ac) + 3H(ad) + 3H(cd) + H(bc) + H(bd) -$$

$$-H(a) - 2H(c) - 2H(d) - H(ab) - 4H(acd) - H(bcd) \ge 0$$

and 12 other similar inequalities (by permuting a, b, c, d).

A recipe for getting new entropy inequalities

- **①** Start with four variables and entropy vector $\mathbf{x} \in \mathbb{R}^{15}$.
- ② In several steps create a copy of a subset of the variables over the remaining ones.

The entropy vector of the final set of variables is (x, y).

- Ocllect the Shannon inequalities for the final set of variables:
- (1) $M \cdot (\mathbf{x}, \mathbf{y}) \geq 0$.
 - 4 Collect the equations which describe that copied variables have identical distribution, and are conditionally independent:
- (2) $A \cdot (\mathbf{x}, \mathbf{y}) = 0.$
 - **5** Project the convex polytope determined by the linear constrains (1) and (2) to the first 15 coordinate to get the polytope Q.
 - Determine the facets of Q different from the (15 dimensional) Shannon inequalities: the equation of these facets give the new entropy inequalities.

- 1 Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- 6 Results and conclusion

Revisiting the recipe

- Take the dual view: we need the *vertices* of the projection.
- ② Get rid of the homogeneity by using a well-chosen cross-section (and reduce the problem to 14 dimensions).
- 3 Take a new "smart" coordinate system in \mathbb{R}^{14} such that a) the cross-section is in the non-negative orthant of \mathbb{R}^{14} ; b) if $\mathbf{x} < \mathbf{x}'$, $\mathbf{x} \in \mathbb{R}^{14}$ is in the cross-section then so is \mathbf{x}' .

The vertices are just the extremal points of the Pareto front.

A **revised** recipe for getting new entropy inequalities

From the description of the copy steps generate the matrix M
and the vector b such that

$$\mathcal{P} = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \ge 0, \mathbf{y} \ge 0, M \cdot (\mathbf{x}, \mathbf{y}) = \mathbf{b} \}$$

defines the set of feasible solutions.

 Use vector optimization to find all extremal solutions of the following linear vector optimization problem:

solve
$$\min_{\mathbf{y}} \{ \mathbf{x} \in \mathbb{R}^{14} : (\mathbf{x}, \mathbf{y}) \in \mathcal{P} \}.$$

 The extremal solutions yield the minimal independent set of new entropy inequalities which generate any other inequality derivable from the same set of copy steps.

The *objective space* can be reduced to \mathbb{R}^{10} : I can *prove* that in every extremal solution the last four coordinates must be zero.

- Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- 6 Results and conclusion

The Vertex Separation Oracle

The Vertex Separation Oracle for Vector Optimization

Let $\mathcal Q$ be the convex hull of all extremal solutions of the **linear** vector optimization problem

solve
$$\min_{\mathbf{y}} \{ \mathbf{x} \in \mathbb{R}^{10} : (\mathbf{x}, \mathbf{y}) \in \mathcal{P} \}.$$

 ${\cal Q}$ can be reached by inquiring the

Vertex Separation Oracle VSO

Q: (the equation of) a closed halfspace $H \subseteq \mathbb{R}^{10}$.

A: if $Q \subseteq H$ then the answer is **inside**,

if $\mathcal{A} \not\subseteq \mathcal{H}$, then the answer is a **vertex** of \mathcal{Q} not in \mathcal{H} .

The VSO can be implemented by returning the lexicographically minimal solution in \mathbf{x} of the scalar LP

solve
$$\min_{\mathbf{x},\mathbf{y}} \{ \mathbf{h} \cdot \mathbf{x} : (\mathbf{x},\mathbf{y}) \in \mathcal{P} \},$$

where the halfspace has equation $\mathbf{h} \cdot \mathbf{x} \geq c$.

Inner approximation using double description

Double Description method for vertex enumeration with VSO

To enumerate the vertices of Q generate the approximating sequence $Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q$ maintaining in each step

- **1** all vertices and facets of Q_j ,
- 2 for each *facet* of Q_j whether it is know to be a facet of Q.

To get Q_{j+1} form Q_j pick a facet f of Q_j which is not known to be a facet of Q. Call the VSO with the half-space $f \ge 0$.

- **1** If the answer is **inside**, mark f as a facet of Q, and continue.
- ② Otherwise let Q_{j+1} be the convex hull of Q_j and the vertex returned.

Stop when all facets of Q_j are facets of Q: you are done!

 \mathcal{Q} has "ideal" vertices along the positive direction of the coordinate axes – these vertices plus any internal point can serve as the initial \mathcal{Q}_1 simplex approximation.

- 1 Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- Results and conclusion

It works!

The algorithm was used successfully for combinatorial optimization problems with **ten** objectives. In the representative results n is the dimension of \mathbf{y} , and m is the number of rows in the matrix M:

m	n	Vertices	Facets	Running time
4055×	370	19	58	1:10:10
4009×	370	40	103	3:24:37
$3891 \times$	358	30	102	3:34:31
3963×	362	167	235	9:20:19
4007×	370	318	356	13:20:08
4007×	370	318	356	14:34:42
4007×	370	297	648	22:02:39
$3913 \times$	362	779	1269	37:15:33
3987×	362	4510	7966	427:43:30
3893×	362	10387	13397	716:36:32

Altogether over 400 new entropy inequalities were obtained.

Conclusions

- Vector optimization approach was used successfully solving ten dimensional vector optimization problems with about 400 dimensional problem space and 4000 constraints.
- A new optimization paradigm has been identified: the objective is defined indirectly by separation oracle: When inquired whether can an existing solution be improved in a certain direction, it answers either no, or gives an extremal solution improving along the given direction. A dual version of Benson's algorithm is proposed solving an optimization problem given by a Vertex Separation Oracle.
- All problems are highly degenerate which required special attention on numerical stability.
- More background work is required for obtaining entropy inequalities involving **five** random variables. The objective space has 27 dimensions, which is beyond the reach of the present technique.

Thank you for your attention