# Applied Vector Optimization: Hunt for New Entropy Inequalities

Laszlo Csirmaz

Central European University, Budapest

Glasgow, July 14, 2015

- 1 Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- **6** Results and conclusion

## What is entropy?

**Entropy** is a measure of information content.

Originating from physics, Claude Shannon made it the central notion in **information theory** in late 1940's.

 $ec{X}$  is a collection of discrete random variables taking k possible configurations with probability

$$p_1, p_2, \dots, p_k \ge 0$$
, where  $p_1 + \dots + p_k = 1$ .

The **entropy** of the collection  $\vec{X}$  in *bits* is defined as

$$H(\vec{X}) \stackrel{\text{def}}{=} \sum_{i=1}^k -p_i \log_2 p_i.$$

This is just right: random coin flipping has entropy 1 bit.

#### The entropy vector

 $\vec{X}$  is a collection of n jointly distributed random variables. For each subset A of  $\{1, 2, ..., n\}$ ,  $\boldsymbol{H}(A)$  denotes the entropy of the marginal distribution  $\langle x_i : i \in A \rangle$ .

The **entropy vector** of  $\vec{X}$  is the  $2^n-1$  dimensional vector  $\langle \boldsymbol{H}(A) \rangle$  indexed by the non-empty subsets A.

#### The entropy vector

 $\vec{X}$  is a collection of n jointly distributed random variables. For each subset A of  $\{1, 2, ..., n\}$ , H(A) denotes the entropy of the marginal distribution  $\langle x_i : i \in A \rangle$ .

The **entropy vector** of  $\vec{X}$  is the  $2^n-1$  dimensional vector  $\langle \boldsymbol{H}(A) \rangle$  indexed by the non-empty subsets A.

#### **Analogy**

Entropy behaves like an asset.



## Supporting facts for the analogy

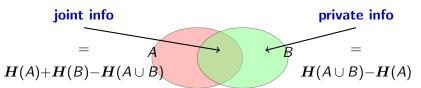
Larger group has more entropy:

if 
$$A \subseteq B$$
 then  $0 \le H(A) \le H(B)$ .

2 Independent information adds up:

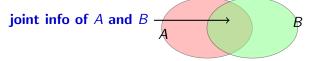
if A and B are independent, then 
$$H(A \cup B) = H(A) + H(B)$$
.

3 One can identify "private" and "joint" information:



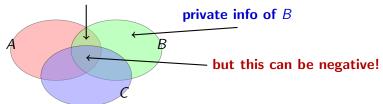
## But the analogy breaks down . . .

① One cannot always "extract" the joint knowledge of A and B (no further random variable can be added which would act as their joint information)



2 With three subsets A, B, and C,

#### conditional joint info



③ And many-many more subtle problems ...



- 1 Information and entropy
- Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- 5 Results and conclusion

## Tools – Shannon (1949) and Zhang-Yeung (1998)

- **1** Shannon inequalities: 1) The private info is non-negative: if  $A \subseteq B$  then  $H(A) \le H(B)$ .
  - 2) Conditional joint info is non-negative: for any three subsets

$$H(A \cup C) + H(B \cup C) - H(A \cup B \cup C) - H(C) \ge 0.$$

The minimal set has  $n + n(n-1)2^{n-3}$  inequalities.

## Tools – Shannon (1949) and Zhang-Yeung (1998)

- **1** Shannon inequalities: 1) The private info is non-negative: if  $A \subseteq B$  then  $H(A) \le H(B)$ .
  - 2) Conditional joint info is non-negative: for any three subsets

$$H(A \cup C) + H(B \cup C) - H(A \cup B \cup C) - H(C) \ge 0.$$

The minimal set has  $n + n(n-1)2^{n-3}$  inequalities.

- 2 Creating an independent copy A' of A over B:
  - a) (A, B) and (A', B) are identically distributed;
  - b) A and A' are independent given B, that is



$$H(A \cup B) + H(A' \cup B) - H(A \cup A' \cup B) - H(B) = 0.$$

## Tools – Shannon (1949) and Zhang-Yeung (1998)

- **1** Shannon inequalities: 1) The private info is non-negative: if  $A \subseteq B$  then  $H(A) \le H(B)$ .
  - 2) Conditional joint info is non-negative: for any three subsets

$$H(A \cup C) + H(B \cup C) - H(A \cup B \cup C) - H(C) \ge 0.$$

The minimal set has  $n + n(n-1)2^{n-3}$  inequalities.

- 2 Creating an independent copy A' of A over B:
  - a) (A, B) and (A', B) are identically distributed;
  - b) A and A' are independent given B, that is



$$H(A \cup B) + H(A' \cup B) - H(A \cup A' \cup B) - H(B) = 0.$$

3 Iterate step 2 by splitting the variable set again and again.

## An example

- Start with variables a, b, c, d, their entropy vector is  $\mathbf{x} \in \mathbb{R}^{15}$ .
- (a', b') is a copy of (a, b) over (c, d). The entropy vector of a, b, c, d, a', b' is  $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{63}$ .
- The 246  $\times$  64 matrix M gives all Shannon inequalities for the six variables a, b, c, d, a', b':
- (1)  $M \cdot (\mathbf{x}, \mathbf{y}) \geq 0$ .
  - The 13 × 63 matrix A describes that abcd and a'b'cd are identical; and ab and a'b' are independent over cd:
- (2)  $A \cdot (\mathbf{x}, \mathbf{y}) = 0.$ 
  - This comes from H(a) = H(a'), H(ac) = H(a'c), ..., and H(abcd) + H(a'b'cd) H(aba'b'cd) H(cd) = 0.
  - Consider the linear constraints in (1) and (2). Do they have any consequence on **x** beyond the Shannon inequalities?

## YES! - the Zhang-Yeung inequality

## YES!

$$3H(ac) + 3H(ad) + 3H(cd) + H(bc) + H(bd) -$$

$$-H(a) - 2H(c) - 2H(d) - H(ab) - 4H(acd) - H(bcd) \ge 0$$

and 12 other similar inequalities (by permuting a, b, c, d).

## A recipe for getting new entropy inequalities

- **①** Start with four variables and entropy vector  $\mathbf{x} \in \mathbb{R}^{15}$ .
- ② In several steps create a copy of a subset of the variables over the remaining ones.

The entropy vector of the final set of variables is (x, y).

- Ocllect the Shannon inequalities for the final set of variables:
- (1)  $M \cdot (\mathbf{x}, \mathbf{y}) \geq 0$ .
  - 4 Collect the equations which describe that copied variables have identical distribution, and are conditionally independent:
- (2)  $A \cdot (\mathbf{x}, \mathbf{y}) = 0.$ 
  - **5** Project the convex polytope determined by the linear constrains (1) and (2) to the first 15 coordinate to get the polytope Q.
  - Determine the facets of Q different from the (15 dimensional) Shannon inequalities: the equation of these facets give the new entropy inequalities.

- 1 Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- 6 Results and conclusion

## Revisiting the recipe



- Take the dual view: we need the *vertices* of the projection.
- ② Get rid of the homogeneity by using a well-chosen cross-section (and reduce the problem to 14 dimensions).
- 3 Take a new "smart" coordinate system in  $\mathbb{R}^{14}$  such that a) the cross-section is in the non-negative orthant of  $\mathbb{R}^{14}$ ; b) if  $\mathbf{x} < \mathbf{x}'$ ,  $\mathbf{x} \in \mathbb{R}^{14}$  is in the cross-section then so is  $\mathbf{x}'$ .

#### The vertices are just the extremal points of the Pareto front.

#### A **revised** recipe for getting new entropy inequalities

From the description of the copy steps generate the matrix M
and the vector b such that

$$\mathcal{P} = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \ge 0, \mathbf{y} \ge 0, M \cdot (\mathbf{x}, \mathbf{y}) = \mathbf{b} \}$$

defines the set of feasible solutions.

 Use vector optimization to find all extremal solutions of the following linear vector optimization problem:

solve 
$$\min_{\mathbf{y}} \{ \mathbf{x} \in \mathbb{R}^{14} : (\mathbf{x}, \mathbf{y}) \in \mathcal{P} \}.$$

 The extremal solutions yield the minimal independent set of new entropy inequalities which generate any other inequality derivable from the same set of copy steps.

The *objective space* can be reduced to  $\mathbb{R}^{10}$ : I can *prove* that in every extremal solution the last four coordinates must be zero.

- Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- 6 Results and conclusion

## The Vertex Separation Oracle



## The Vertex Separation Oracle for Vector Optimization

Let  $\mathcal Q$  be the convex hull of all extremal solutions of the **linear** vector optimization problem

solve 
$$\min_{\mathbf{y}} \{ \mathbf{x} \in \mathbb{R}^{10} : (\mathbf{x}, \mathbf{y}) \in \mathcal{P} \}.$$

 ${\cal Q}$  can be reached by inquiring the

#### Vertex Separation Oracle VSO

Q: (the equation of) a closed halfspace  $H \subseteq \mathbb{R}^{10}$ .

A: if  $Q \subseteq H$  then the answer is **inside**,

if  $\mathcal{A} \not\subseteq \mathcal{H}$ , then the answer is a **vertex** of  $\mathcal{Q}$  not in  $\mathcal{H}$ .

The VSO can be implemented by returning the lexicographically minimal solution in  $\mathbf{x}$  of the scalar LP

solve 
$$\min_{\mathbf{x},\mathbf{y}} \{ \mathbf{h} \cdot \mathbf{x} : (\mathbf{x},\mathbf{y}) \in \mathcal{P} \},$$

where the halfspace has equation  $\mathbf{h} \cdot \mathbf{x} \geq c$ .

## Inner approximation using double description

#### Double Description method for vertex enumeration with VSO

To enumerate the vertices of Q generate the approximating sequence  $Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q$  maintaining in each step

- **1** all vertices and facets of  $Q_j$ ,
- 2 for each *facet* of  $Q_j$  whether it is know to be a facet of Q.

To get  $Q_{j+1}$  form  $Q_j$  pick a facet f of  $Q_j$  which is not known to be a facet of Q. Call the VSO with the half-space  $f \ge 0$ .

- **1** If the answer is **inside**, mark f as a facet of Q, and continue.
- ② Otherwise let  $Q_{j+1}$  be the convex hull of  $Q_j$  and the vertex returned.

Stop when all facets of  $Q_j$  are facets of Q: you are done!

 $\mathcal{Q}$  has "ideal" vertices along the positive direction of the coordinate axes – these vertices plus any internal point can serve as the initial  $\mathcal{Q}_1$  simplex approximation.

- 1 Information and entropy
- 2 Exploring the entropy region
- 3 Vector optimization enters the scene
- 4 Dual Benson algorithm using Vertex Separation Oracle
- Results and conclusion

#### It works!

The algorithm was used successfully for combinatorial optimization problems with **ten** objectives. In the representative results n is the dimension of  $\mathbf{y}$ , and m is the number of rows in the matrix M:

| m             | n   | Vertices | Facets | Running time |
|---------------|-----|----------|--------|--------------|
| 4055×         | 370 | 19       | 58     | 1:10:10      |
| 4009×         | 370 | 40       | 103    | 3:24:37      |
| $3891 \times$ | 358 | 30       | 102    | 3:34:31      |
| 3963×         | 362 | 167      | 235    | 9:20:19      |
| 4007×         | 370 | 318      | 356    | 13:20:08     |
| 4007×         | 370 | 318      | 356    | 14:34:42     |
| 4007×         | 370 | 297      | 648    | 22:02:39     |
| $3913 \times$ | 362 | 779      | 1269   | 37:15:33     |
| 3987×         | 362 | 4510     | 7966   | 427:43:30    |
| 3893×         | 362 | 10387    | 13397  | 716:36:32    |

Altogether over 400 new entropy inequalities were obtained.

#### Conclusions

- Vector optimization approach was used successfully solving ten dimensional vector optimization problems with about 400 dimensional problem space and 4000 constraints.
- A new optimization paradigm has been identified: the objective is defined indirectly by separation oracle: When inquired whether can an existing solution be improved in a certain direction, it answers either no, or gives an extremal solution improving along the given direction. A dual version of Benson's algorithm is proposed solving an optimization problem given by a Vertex Separation Oracle.
- All problems are highly degenerate which required special attention on numerical stability.
- More background work is required for obtaining entropy inequalities involving **five** random variables. The objective space has 27 dimensions, which is beyond the reach of the present technique.



Thank you for your attention