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What is entropy?

Entropy is a measure of information content.

Originating from physics, Claude Shannon made it the central
notion in information theory in late 1940’s.

~X is a collection of discrete random variables taking k possible
configurations with probability

p1, p2, . . . , pk ≥ 0, where p1 + · · ·+ pk = 1.

The entropy of the collection ~X in bits is defined as

H(~X )
def
=

k∑
i=1

−pi log2 pi .

This is just right: random coin flipping has entropy 1 bit.
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The entropy vector

~X is a collection of n jointly distributed random variables. For each
subset A of {1, 2, . . . , n}, H(A) denotes the entropy of the
marginal distribution 〈xi : i ∈ A〉.

The entropy vector of ~X is the 2n − 1 dimensional vector 〈H(A) 〉
indexed by the non-empty subsets A.

Analogy

Entropy behaves like an
asset.
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Supporting facts for the analogy

1 Larger group has more entropy:

if A ⊆ B then 0 ≤H(A) ≤H(B).

2 Independent information adds up:

if A and B are independent, then H(A ∪ B) = H(A) + H(B).

3 One can identify “private” and “joint” information:

A B

private infojoint info

=

H(A ∪ B)−H(A)

=

H(A)+H(B)−H(A ∪ B)



L. Csirmaz: Applied Vector Optimization 6 / 22

But the analogy breaks down . . .

1 One cannot always “extract” the joint knowledge of A and B
(no further random variable can be added which would act as
their joint information)

A
Bjoint info of A and B

2 With three subsets A, B, and C ,

A B

C

conditional joint info

private info of B

but this can be negative!

3 And many-many more subtle problems . . .



L. Csirmaz: Applied Vector Optimization 7 / 22

Outline

1 Information and entropy

2 Exploring the entropy region

3 Vector optimization enters the scene

4 Dual Benson algorithm using Vertex Separation Oracle

5 Results and conclusion



L. Csirmaz: Applied Vector Optimization 8 / 22

Tools – Shannon (1949) and Zhang-Yeung (1998)

1 Shannon inequalities: 1) The private info is non-negative: if
A ⊆ B then H(A) ≤H(B).

2) Conditional joint info is non-negative: for any three subsets

H(A ∪ C ) + H(B ∪ C )−H(A ∪ B ∪ C )−H(C ) ≥ 0.

The minimal set has n + n(n − 1)2n−3 inequalities.

2 Creating an independent copy A′ of A over B:

B

A A′
a) (A, B) and (A′, B) are identically distributed;

b) A and A′ are independent given B, that is

H(A ∪ B) + H(A′ ∪ B)−H(A ∪ A′ ∪ B)−H(B) = 0.

3 Iterate step 2 by splitting the variable set again and again.
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An example

Start with variables a, b, c, d , their entropy vector is x ∈ R15.

(a′, b′) is a copy of (a, b) over (c, d). The entropy vector of
a, b, c , d , a′, b′ is (x, y) ∈ R63.

The 246× 64 matrix M gives all Shannon inequalities for the
six variables a, b, c , d , a′, b′:

(1) M · (x, y) ≥ 0.

The 13× 63 matrix A describes that abcd and a′b′cd are
identical; and ab and a′b′ are independent over cd :

(2) A · (x, y) = 0.

This comes from H(a) = H(a′), H(ac) = H(a′c), . . . , and
H(abcd) + H(a′b′cd)−H(aba′b′cd)−H(cd) = 0.

Consider the linear constraints in (1) and (2). Do they have
any consequence on x beyond the Shannon inequalities?
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YES! – the Zhang–Yeung inequality

YES!

3H(ac) + 3H(ad) + 3H(cd) + H(bc) + H(bd)−
−H(a)− 2H(c)− 2H(d)−H(ab)− 4H(acd)−H(bcd) ≥ 0

and 12 other similar inequalities (by permuting a, b, c, d).
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A recipe for getting new entropy inequalities

1 Start with four variables and entropy vector x ∈ R15.
2 In several steps create a copy of a subset of the variables over

the remaining ones.
The entropy vector of the final set of variables is (x, y).

3 Collect the Shannon inequalities for the final set of variables:

(1) M · (x, y) ≥ 0.

4 Collect the equations which describe that copied variables
have identical distribution, and are conditionally independent:

(2) A · (x, y) = 0.

5 Project the convex polytope determined by the linear
constrains (1) and (2) to the first 15 coordinate to get the
polytope Q.

6 Determine the facets of Q different from the (15 dimensional)
Shannon inequalities: the equation of these facets give the
new entropy inequalities.
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Revisiting the recipe

1 Take the dual view: we need the vertices of the projection.

2 Get rid of the homogeneity by using a well-chosen cross-
section (and reduce the problem to 14 dimensions).

3 Take a new “smart” coordinate system in R14 such that
a) the cross-section is in the non-negative orthant of R14;
b) if x ≤ x′, x ∈ R14 is in the cross-section then so is x ′.

The vertices are just the extremal points of the Pareto front.
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A revised recipe for getting new entropy inequalities

From the description of the copy steps generate the matrix M
and the vector b such that

P = {(x, y) : x ≥ 0, y ≥ 0, M · (x, y) = b }

defines the set of feasible solutions.

Use vector optimization to find all extremal solutions of the
following linear vector optimization problem:

solve miny{x ∈ R14 : (x, y) ∈ P }.

The extremal solutions yield the minimal independent set of
new entropy inequalities which generate any other inequality
derivable from the same set of copy steps.

The objective space can be reduced to R10: I can prove that in
every extremal solution the last four coordinates must be zero.
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The Vertex Separation Oracle
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The Vertex Separation Oracle for Vector Optimization

Let Q be the convex hull of all extremal solutions of the linear
vector optimization problem

solve miny{x ∈ R10 : (x, y) ∈ P }.

Q can be reached by inquiring the

Vertex Separation Oracle VSO

Q: (the equation of) a closed halfspace H ⊆ R10.
A: if Q ⊆ H then the answer is inside,

if A 6⊆ H, then the answer is a vertex of Q not in H.

The VSO can be implemented by returning the lexicographically
minimal solution in x of the scalar LP

solve minx,y{h · x : (x, y) ∈ P },

where the halfspace has equation h · x ≥ c .
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Inner approximation using double description

Double Description method for vertex enumeration with VSO

To enumerate the vertices of Q generate the approximating
sequence Q1 ⊆ Q2 ⊆ · · · ⊆ Q maintaining in each step

1 all vertices and facets of Qj ,

2 for each facet of Qj whether it is know to be a facet of Q.

To get Qj+1 form Qj pick a facet f of Qj which is not known to
be a facet of Q. Call the VSO with the half-space f ≥ 0.

1 If the answer is inside, mark f as a facet of Q, and continue.

2 Otherwise let Qj+1 be the convex hull of Qj and the vertex
returned.

Stop when all facets of Qj are facets of Q: you are done!

Q has “ideal” vertices along the positive direction of the
coordinate axes – these vertices plus any internal point can serve
as the initial Q1 simplex approximation.
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It works!

The algorithm was used successfully for combinatorial optimization
problems with ten objectives. In the representative results n is the
dimension of y, and m is the number of rows in the matrix M:

m n Vertices Facets Running time

4055×370 19 58 1:10:10
4009×370 40 103 3:24:37
3891×358 30 102 3:34:31
3963×362 167 235 9:20:19
4007×370 318 356 13:20:08
4007×370 318 356 14:34:42
4007×370 297 648 22:02:39
3913×362 779 1269 37:15:33
3987×362 4510 7966 427:43:30
3893×362 10387 13397 716:36:32

Altogether over 400 new entropy inequalities were obtained.
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Conclusions

Vector optimization approach was used successfully solving
ten dimensional vector optimization problems with about 400
dimensional problem space and 4000 constraints.

A new optimization paradigm has been identified: the
objective is defined indirectly by separation oracle: When
inquired whether can an existing solution be improved in a
certain direction, it answers either no, or gives an extremal
solution improving along the given direction. A dual version
of Benson’s algorithm is proposed solving an optimization
problem given by a Vertex Separation Oracle.

All problems are highly degenerate which required special
attention on numerical stability.

More background work is required for obtaining entropy
inequalities involving five random variables. The objective
space has 27 dimensions, which is beyond the reach of the
present technique.
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Thank you for your attention
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