Applied Vector Optimization: Hunt for New Entropy Inequalities

Laszlo Csirmaz
Central European University, Budapest

Glasgow, July 14, 2015

Outline

(1) Information and entropy
(2) Exploring the entropy region
(3) Vector optimization enters the scene

4 Dual Benson algorithm using Vertex Separation Oracle
(5) Results and conclusion

What is entropy?

Entropy is a measure of information content.
Originating from physics, Claude Shannon made it the central notion in information theory in late 1940's.
\vec{X} is a collection of discrete random variables taking k possible configurations with probability

$$
p_{1}, p_{2}, \ldots, p_{k} \geq 0, \quad \text { where } p_{1}+\cdots+p_{k}=1
$$

The entropy of the collection \vec{X} in bits is defined as

$$
\boldsymbol{H}(\vec{X}) \stackrel{\text { def }}{=} \sum_{i=1}^{k}-p_{i} \log _{2} p_{i}
$$

This is just right: random coin flipping has entropy 1 bit.

The entropy vector

\vec{X} is a collection of n jointly distributed random variables. For each subset A of $\{1,2, \ldots, n\}, \boldsymbol{H}(A)$ denotes the entropy of the marginal distribution $\left\langle x_{i}: i \in A\right\rangle$.

The entropy vector of \vec{X} is the $2^{n}-1$ dimensional vector $\langle\boldsymbol{H}(A)\rangle$ indexed by the non-empty subsets A.

The entropy vector

\vec{X} is a collection of n jointly distributed random variables. For each subset A of $\{1,2, \ldots, n\}, \boldsymbol{H}(A)$ denotes the entropy of the marginal distribution $\left\langle x_{i}: i \in A\right\rangle$.

The entropy vector of \vec{X} is the $2^{n}-1$ dimensional vector $\langle\boldsymbol{H}(A)\rangle$ indexed by the non-empty subsets A.

Analogy

Entropy behaves like an asset.

Supporting facts for the analogy

(1) Larger group has more entropy:

$$
\text { if } A \subseteq B \text { then } 0 \leq \boldsymbol{H}(A) \leq \boldsymbol{H}(B)
$$

(2) Independent information adds up:
if A and B are independent, then $\boldsymbol{H}(A \cup B)=\boldsymbol{H}(A)+\boldsymbol{H}(B)$.
3 One can identify "private" and "joint" information:

But the analogy breaks down ...

(1) One cannot always "extract" the joint knowledge of A and B (no further random variable can be added which would act as their joint information)
joint info of A and B

(2) With three subsets A, B, and C, conditional joint info

(3) And many-many more subtle problems...

Outline

(1) Information and entropy

(2) Exploring the entropy region
(3) Vector optimization enters the scene

4 Dual Benson algorithm using Vertex Separation Oracle
(5) Results and conclusion

Tools - Shannon (1949) and Zhang-Yeung (1998)

(1) Shannon inequalities: 1) The private info is non-negative: if $A \subseteq B$ then $\boldsymbol{H}(A) \leq \boldsymbol{H}(B)$.
2) Conditional joint info is non-negative: for any three subsets

$$
\boldsymbol{H}(A \cup C)+\boldsymbol{H}(B \cup C)-\boldsymbol{H}(A \cup B \cup C)-\boldsymbol{H}(C) \geq 0
$$

The minimal set has $n+n(n-1) 2^{n-3}$ inequalities.

Tools - Shannon (1949) and Zhang-Yeung (1998)

(1) Shannon inequalities: 1) The private info is non-negative: if $A \subseteq B$ then $\boldsymbol{H}(A) \leq \boldsymbol{H}(B)$.
2) Conditional joint info is non-negative: for any three subsets

$$
\boldsymbol{H}(A \cup C)+\boldsymbol{H}(B \cup C)-\boldsymbol{H}(A \cup B \cup C)-\boldsymbol{H}(C) \geq 0 .
$$

The minimal set has $n+n(n-1) 2^{n-3}$ inequalities.
(2) Creating an independent copy A^{\prime} of A over B :
a) (A, B) and $\left(A^{\prime}, B\right)$ are identically distributed;
b) A and A^{\prime} are independent given B, that is

$$
\boldsymbol{H}(A \cup B)+\boldsymbol{H}\left(A^{\prime} \cup B\right)-\boldsymbol{H}\left(A \cup A^{\prime} \cup B\right)-\boldsymbol{H}(B)=0 .
$$

Tools - Shannon (1949) and Zhang-Yeung (1998)

(1) Shannon inequalities: 1) The private info is non-negative: if $A \subseteq B$ then $\boldsymbol{H}(A) \leq \boldsymbol{H}(B)$.
2) Conditional joint info is non-negative: for any three subsets

$$
\boldsymbol{H}(A \cup C)+\boldsymbol{H}(B \cup C)-\boldsymbol{H}(A \cup B \cup C)-\boldsymbol{H}(C) \geq 0
$$

The minimal set has $n+n(n-1) 2^{n-3}$ inequalities.
(2) Creating an independent copy A^{\prime} of A over B :
a) (A, B) and $\left(A^{\prime}, B\right)$ are identically distributed;
b) A and A^{\prime} are independent given B, that is

$$
\boldsymbol{H}(A \cup B)+\boldsymbol{H}\left(A^{\prime} \cup B\right)-\boldsymbol{H}\left(A \cup A^{\prime} \cup B\right)-\boldsymbol{H}(B)=0 .
$$

(3) Iterate step 2 by splitting the variable set again and again.

An example

- Start with variables a, b, c, d, their entropy vector is $\mathbf{x} \in \mathbb{R}^{15}$.
- $\left(a^{\prime}, b^{\prime}\right)$ is a copy of (a, b) over (c, d). The entropy vector of $a, b, c, d, a^{\prime}, b^{\prime}$ is $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{63}$.
- The 246×64 matrix M gives all Shannon inequalities for the six variables $a, b, c, d, a^{\prime}, b^{\prime}$:
(1) $M \cdot(\mathbf{x}, \mathbf{y}) \geq 0$.
- The 13×63 matrix A describes that $a b c d$ and $a^{\prime} b^{\prime} c d$ are identical; and $a b$ and $a^{\prime} b^{\prime}$ are independent over $c d$:
(2) $A \cdot(\mathbf{x}, \mathbf{y})=0$.

This comes from $\boldsymbol{H}(a)=\boldsymbol{H}\left(a^{\prime}\right), \boldsymbol{H}(a c)=\boldsymbol{H}\left(a^{\prime} c\right), \ldots$, and

$$
\boldsymbol{H}(a b c d)+\boldsymbol{H}\left(a^{\prime} b^{\prime} c d\right)-\boldsymbol{H}\left(a b a^{\prime} b^{\prime} c d\right)-\boldsymbol{H}(c d)=0 .
$$

- Consider the linear constraints in (1) and (2). Do they have any consequence on \mathbf{x} beyond the Shannon inequalities?

YES!

$$
\begin{aligned}
& 3 \boldsymbol{H}(a c)+3 \boldsymbol{H}(a d)+3 \boldsymbol{H}(c d)+\boldsymbol{H}(b c)+\boldsymbol{H}(b d)- \\
& -\boldsymbol{H}(a)-2 \boldsymbol{H}(c)-2 \boldsymbol{H}(d)-\boldsymbol{H}(a b)-4 \boldsymbol{H}(a c d)-\boldsymbol{H}(b c d) \geq 0
\end{aligned}
$$

and 12 other similar inequalities (by permuting a, b, c, d).

A recipe for getting new entropy inequalities

(1) Start with four variables and entropy vector $\mathbf{x} \in \mathbb{R}^{15}$.
(2) In several steps create a copy of a subset of the variables over the remaining ones.
The entropy vector of the final set of variables is (\mathbf{x}, \mathbf{y}).
(3) Collect the Shannon inequalities for the final set of variables:
(1) $M \cdot(\mathbf{x}, \mathbf{y}) \geq 0$.
(4) Collect the equations which describe that copied variables have identical distribution, and are conditionally independent:
(2) $A \cdot(\mathbf{x}, \mathbf{y})=0$.
(5) Project the convex polytope determined by the linear constrains (1) and (2) to the first 15 coordinate to get the polytope \mathcal{Q}.
(6) Determine the facets of \mathcal{Q} different from the (15 dimensional) Shannon inequalities: the equation of these facets give the new entropy inequalities.

Outline

(1) Information and entropy
(2) Exploring the entropy region
(3) Vector optimization enters the scene

4 Dual Benson algorithm using Vertex Separation Oracle
(5) Results and conclusion

Revisiting the recipe

(1) Take the dual view: we need the vertices of the projection.
(2) Get rid of the homogeneity by using a well-chosen crosssection (and reduce the problem to 14 dimensions).
(3) Take a new "smart" coordinate system in \mathbb{R}^{14} such that a) the cross-section is in the non-negative orthant of \mathbb{R}^{14}; b) if $\mathbf{x} \leq \mathbf{x}^{\prime}, \mathbf{x} \in \mathbb{R}^{14}$ is in the cross-section then so is x^{\prime}.

The vertices are just the extremal points of the Pareto front.

A revised recipe for getting new entropy inequalities

- From the description of the copy steps generate the matrix M and the vector \mathbf{b} such that

$$
\mathcal{P}=\{(\mathbf{x}, \mathbf{y}): \mathbf{x} \geq 0, \mathbf{y} \geq 0, M \cdot(\mathbf{x}, \mathbf{y})=\mathbf{b}\}
$$

defines the set of feasible solutions.

- Use vector optimization to find all extremal solutions of the following linear vector optimization problem:

$$
\text { solve } \min _{\mathbf{y}}\left\{\mathbf{x} \in \mathbb{R}^{14}:(\mathbf{x}, \mathbf{y}) \in \mathcal{P}\right\}
$$

- The extremal solutions yield the minimal independent set of new entropy inequalities which generate any other inequality derivable from the same set of copy steps.

The objective space can be reduced to \mathbb{R}^{10} : I can prove that in every extremal solution the last four coordinates must be zero.

Outline

(1) Information and entropy
(2) Exploring the entropy region
(3) Vector optimization enters the scene

4 Dual Benson algorithm using Vertex Separation Oracle
(5) Results and conclusion

The Vertex Separation Oracle

The Vertex Separation Oracle for Vector Optimization

Let \mathcal{Q} be the convex hull of all extremal solutions of the linear vector optimization problem

$$
\text { solve } \min _{\mathbf{y}}\left\{\mathbf{x} \in \mathbb{R}^{10}:(\mathbf{x}, \mathbf{y}) \in \mathcal{P}\right\}
$$

\mathcal{Q} can be reached by inquiring the

Vertex Separation Oracle VSO

Q: (the equation of) a closed halfspace $H \subseteq \mathbb{R}^{10}$.
A : if $\mathcal{Q} \subseteq H$ then the answer is inside,
if $\mathcal{A} \nsubseteq H$, then the answer is a vertex of \mathcal{Q} not in H.
The VSO can be implemented by returning the lexicographically minimal solution in x of the scalar LP

$$
\text { solve } \min _{\mathbf{x}, \mathbf{y}}\{\mathbf{h} \cdot \mathbf{x}:(\mathbf{x}, \mathbf{y}) \in \mathcal{P}\}
$$

where the halfspace has equation $\mathbf{h} \cdot \mathbf{x} \geq c$.

Inner approximation using double description

Double Description method for vertex enumeration with VSO

To enumerate the vertices of \mathcal{Q} generate the approximating sequence $\mathcal{Q}_{1} \subseteq \mathcal{Q}_{2} \subseteq \cdots \subseteq \mathcal{Q}$ maintaining in each step
(1) all vertices and facets of \mathcal{Q}_{j},
(2) for each facet of \mathcal{Q}_{j} whether it is know to be a facet of \mathcal{Q}.

To get \mathcal{Q}_{j+1} form \mathcal{Q}_{j} pick a facet f of \mathcal{Q}_{j} which is not known to be a facet of \mathcal{Q}. Call the $\boldsymbol{V S O}$ with the half-space $f \geq 0$.
(1) If the answer is inside, mark f as a facet of \mathcal{Q}, and continue.
(2) Otherwise let \mathcal{Q}_{j+1} be the convex hull of \mathcal{Q}_{j} and the vertex returned.

Stop when all facets of \mathcal{Q}_{j} are facets of \mathcal{Q} : you are done!
\mathcal{Q} has "ideal" vertices along the positive direction of the coordinate axes - these vertices plus any internal point can serve as the initial \mathcal{Q}_{1} simplex approximation.

Outline

(1) Information and entropy
(2) Exploring the entropy region
(3) Vector optimization enters the scene

4 Dual Benson algorithm using Vertex Separation Oracle
(5) Results and conclusion

It works!

The algorithm was used successfully for combinatorial optimization problems with ten objectives. In the representative results n is the dimension of \mathbf{y}, and m is the number of rows in the matrix M :

| m | n | Vertices | Facets |
| :---: | ---: | ---: | ---: | Running time

Altogether over 400 new entropy inequalities were obtained.

Conclusions

- Vector optimization approach was used successfully solving ten dimensional vector optimization problems with about 400 dimensional problem space and 4000 constraints.
- A new optimization paradigm has been identified: the objective is defined indirectly by separation oracle: When inquired whether can an existing solution be improved in a certain direction, it answers either no, or gives an extremal solution improving along the given direction. A dual version of Benson's algorithm is proposed solving an optimization problem given by a Vertex Separation Oracle.
- All problems are highly degenerate which required special attention on numerical stability.
- More background work is required for obtaining entropy inequalities involving five random variables. The objective space has 27 dimensions, which is beyond the reach of the present technique.

Thank you for your attention

