Exploring the Entropic Region

Laszlo Csirmaz
Rényi Institute, Budapest and UTIA, Prague

October 2021

Outline

(1) Motivation

(2) Entropy and polymatroids

3 Operations on polymatroids
4. Maximum entropy and Copy Lemma
(5) The Ahlswede-Körner lemma
(6) Summary

Secret sharing

How to share the lock code among three people I don't trust?

Secret sharing

How to share the lock code among three people I don't trust?

Alice	472
Bob	156
Charlie	621
Code	149

Secret sharing

How to share the lock code among three people I don't trust?

Alice	472	$4+1+6=11$
Bob	156	$7+5+2=14$
Charlie	621	$2+6+1=9$
Code	149	

Even if two of them colludes, they have no information.

Secret sharing

How to share the lock code among three people I don't trust?

Even if two of them colludes, they have no information.
Easily generalizes for n shares.
More difficult structures, e.g., any pair is qualified?

Theorem (Ito-Shaito-Nishizeki, 1987)

Every structure is realizable by a perfect secret sharing scheme.
The price: share size could be exponentially large.

A secret sharing example

Four participants: a, b, c, d; qualified subsets: $a b, b c, c d$.
The secret $s_{1} s_{2}$ is two bits; x, y, z, t are independent random bits.

The complexity of this scheme is

$$
\frac{\text { maximal share size }}{\text { secret size }}=\frac{3}{2} \text {. }
$$

A secret sharing example

Four participants: a, b, c, d; qualified subsets: $a b, b c, c d$.
The secret $s_{1} s_{2}$ is two bits; x, y, z, t are independent random bits.

The complexity of this scheme is

$$
\frac{\text { maximal share size }}{\text { secret size }}=\frac{3}{2} \text {. }
$$

Can we do better?

Using entropies to show that "no"

ξ and η are independent iff $\boldsymbol{H}(\xi \eta)=\boldsymbol{H}(\xi)+\boldsymbol{H}(\eta)$.
ξ determines η iff $\boldsymbol{H}(\xi \eta)=\boldsymbol{H}(\xi)$.
So we have
unqualified

$$
\begin{array}{ll}
\boldsymbol{H}(a s)=\boldsymbol{H}(a)+\boldsymbol{H}(s) & \boldsymbol{H}(a b s)=\boldsymbol{H}(a b) \\
\boldsymbol{H}(b s)=\boldsymbol{H}(b)+\boldsymbol{H}(s) & \boldsymbol{H}(b c s)=\boldsymbol{H}(b c) \\
\boldsymbol{H}(a c s)=\boldsymbol{H}(a c)+\boldsymbol{H}(s) & \boldsymbol{H}(a b c s)=\boldsymbol{H}(a b c) \\
\ldots & \ldots \\
\boldsymbol{H}(b d s)=\boldsymbol{H}(b d)+\boldsymbol{H}(s) & \boldsymbol{H}(a b c d s)=\boldsymbol{H}(a b c d)
\end{array}
$$

plus all Shannon inequalities, e.g., $\boldsymbol{H}(b)+\boldsymbol{H}(c) \geq \boldsymbol{H}(b c)$, and derive from them that

$$
\text { one of } \boldsymbol{H}(a), \boldsymbol{H}(b), \boldsymbol{H}(c), \boldsymbol{H}(d) \text { is at least } \frac{3}{2} \boldsymbol{H}(s) .
$$

What is the problem?

The Shannon inequalities do not capture the entropy region.
the entropy region Γ^{*}

Shannon inequalities \equiv polymatroids

What is the problem?

The Shannon inequalities do not capture the entropy region.

Find new bounds on 「*

Outline

(1) Motivation
(2) Entropy and polymatroids

3 Operations on polymatroids

4 Maximum entropy and Copy Lemma
(5) The Ahlswede-Körner lemma
(6) Summary

Entropy

Let A be a random variable taking k values with probability

$$
p_{1}, p_{2}, \ldots, p_{k}, \quad\left(p_{1}+p_{2}+\cdots+p_{k}=1\right) .
$$

The entropy of A is

$$
\boldsymbol{H}(A) \stackrel{\text { def }}{=} \sum_{i=1}^{k}-p_{i} \log _{2}\left(p_{i}\right) .
$$

Entropy

Let A be a random variable taking k values with probability

$$
p_{1}, p_{2}, \ldots, p_{k}, \quad\left(p_{1}+p_{2}+\cdots+p_{k}=1\right) .
$$

The entropy of A is

$$
\boldsymbol{H}(A) \stackrel{\text { def }}{=} \sum_{i=1}^{k}-p_{i} \log _{2}\left(p_{i}\right)
$$

The outcome of A can be described by $\boldsymbol{H}(A)$ bits. $\boldsymbol{H}(A)$ is the information content of the event A.

Coin-flipping is 1 bit: $-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{2} \log _{2} \frac{1}{2}=1$.

The entropy region 「*

$f: 2^{N} \rightarrow \mathbb{R}$ is entropic if there are discrete random variables $\xi=\left\langle\xi_{i}: i \in N\right\rangle$ such that for each marginal $\xi_{A}=\left\langle\xi_{i}: i \in A\right\rangle$

$$
f(A)=\boldsymbol{H}\left(\xi_{A}\right) \quad A \subseteq N .
$$

- The entropy region $\Gamma^{*} \subset \mathbb{R}^{2^{N}-1}$ is the set all entropic f on subsets of N.
- The almost entropic - aent region $\bar{\Gamma}^{*}$ is the closure of Γ^{*} in the usual Euclidean topology.

An entropic function f is a polymatroid since it satisfies
(1) $f(\emptyset)=0$
(2) $f(B) \geq f(A)$ whenever $B \supseteq A$ monotone
(3) $f(A C)+f(B C) \geq f(C)+f(A B C)$ submodular (Shannon)

The entropy region 「*

$f: 2^{N} \rightarrow \mathbb{R}$ is entropic if there are discrete random variables
$\xi=\left\langle\xi_{i}: i \in N\right\rangle$ such that for each marginal $\xi_{A}=\left\langle\xi_{i}: i \in A\right\rangle$

$$
f(A)=\boldsymbol{H}\left(\xi_{A}\right) \quad A \subseteq N .
$$

- The entropy region $\Gamma^{*} \subset \mathbb{R}^{2^{N}-1}$ is the set all entropic f on subsets of N.
- The almost entropic - aent region $\bar{\Gamma}^{*}$ is the closure of Γ^{*} in the usual Euclidean topology.

An entropic function f is a polymatroid since it satisfies
(1) $f(\emptyset)=0$
(2) $f(B) \geq f(A)$ whenever $B \supseteq A$
(3) $f(A, B \mid C) \geq 0$
pointed
monotone
submodular (Shannon)

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_{1}	ξ_{2}	\ldots	ξ_{n}	Prob
u_{1}	v_{1}	\ldots	z_{1}	p_{1}
u_{2}	v_{1}	\ldots	z_{1}	p_{2}
u_{1}	v_{2}	\ldots	z_{1}	p_{3}
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	p_{s}

The probabilities sum to 1 : $\sum p_{i}=1$.

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_{1}	ξ_{2}	\ldots	ξ_{n}	Prob
u_{1}	v_{1}	\ldots	z_{1}	p_{1}
u_{2}	v_{1}	\ldots	z_{1}	p_{2}
u_{1}	v_{2}	\ldots	z_{1}	p_{3}
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	p_{s}

An example: the ringing bells

How to define a distribution?

Simplest method: list the values and the probabilities.

ξ_{1}	ξ_{2}	\ldots	ξ_{n}	Prob
u_{1}	v_{1}	\ldots	z_{1}	p_{1}
u_{2}	v_{1}	\ldots	z_{1}	p_{2}
u_{1}	v_{2}	\ldots	z_{1}	p_{3}
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	p_{s}

An example: the ringing bells
We have two ropes, c and d. When any of them is pulled, a rings, when both are pulled, b rings. Pull each rope independently with $1 / 2$ probability.

a	b	c	d	Prob
0	0	0	0	1/4
1	0	0	1	1/4
1	0	1	0	1/4
1	1	1	1	1/4

Marginals

To get the marginal for a subset of variables: take their columns, merge identical rows, and sum the probabilities.
Original (abcd)

a	b	c	d	Prob
0	0	0	0	$1 / 4$
1	0	0	1	$1 / 4$
1	0	1	0	$1 / 4$
1	1	1	1	$1 / 4$

Marginal (bc)

b	c	Prob
0	0	$1 / 2$
0	1	$1 / 4$
1	1	$1 / 4$

	b	Prob
0	0	$1 / 4$
1	0	$1 / 2$
1	1	$1 / 4$

The entropy is $\boldsymbol{H}=\sum_{i}-p_{i} \log _{2}\left(p_{i}\right)$. Since
$-(1 / 4) \log _{2}(1 / 4)=1 / 2, \quad-(1 / 2) \log _{2}(1 / 2)=1 / 2$, thus we have

$$
\boldsymbol{H}(a b c d)=2, \quad \boldsymbol{H}(b c)=3 / 2, \quad \boldsymbol{H}(a b)=3 / 2 .
$$

Redefining a distribution

Variables: $\quad \vec{a}, \vec{c}, \vec{b}$
Probabilities: $\quad P=(\vec{a} \vec{c} \vec{b})$
Marginals: $\quad(\vec{a} \vec{c})=\sum_{\vec{b}}(\vec{a} \vec{c} \vec{b})$

$$
(\vec{c} \vec{b})=\sum_{\vec{c}}(\vec{a} \vec{c} \vec{b})
$$

New probabilities: $\quad P^{*}=\frac{(\vec{a} \vec{c})(\vec{c} \vec{b})}{(\vec{c})}$

$\vec{a} \quad \vec{c} \quad \vec{b}$

$$
(\vec{c})=\sum_{\vec{a}, \vec{b}}(\vec{a} \vec{c} \vec{b})
$$

Marginals of P and P^{*} on $\vec{a} \vec{c}$ and $\vec{c} \vec{b}$ are the same.
The entropy change is

$$
\begin{aligned}
\boldsymbol{H}\left(P^{*}\right)-\boldsymbol{H}(P) & =-\sum \frac{(\vec{a} \vec{c})(\vec{c} \vec{b})}{(\vec{c})} \log \frac{(\vec{a} \vec{c})(\vec{c} \vec{b})}{(\vec{c})}+\sum(\vec{a} \vec{c} \vec{b}) \log (\vec{a} \vec{c} \vec{b}) \\
& =\boldsymbol{H}(\vec{a}, \vec{b} \mid \vec{c}) \geq 0 .
\end{aligned}
$$

Zero iff \vec{a} and \vec{b} are independent given \vec{c}, and then $P=P^{*}$

Merging two distributions

Variables:
Probabilities:

$$
\begin{aligned}
& \vec{a} \vec{c} \text { and } \vec{c} \vec{b} \\
& (\vec{a} \vec{c}) \text { and }(\vec{c} \vec{b})
\end{aligned}
$$

$\vec{a} \quad \vec{c} \quad \vec{b}$

Marginals are the same on (\vec{c}):

$$
\sum_{\vec{a}}(\vec{a} \vec{c})=\sum_{\vec{b}}(\vec{c} \vec{b})
$$

$$
\text { Joint probabilities: } \quad P^{*}=\frac{(\vec{a} \vec{c})(\vec{c} \vec{b})}{(\vec{c})}
$$

After merging, \vec{a} and \vec{b} become independent given \vec{c}, that is,

$$
\boldsymbol{H}(\vec{a}, \vec{b} \mid \vec{c})=0 .
$$

A structural property of entropic polymatroids
Any two entropic polymatroids on $X M$ and $M Y$ with the same distribution on M have an amalgam on $X M Y$ with $(X, Y \mid M)=0$.

Merging two distributions

Variables:
Probabilities:

$$
\begin{aligned}
& \vec{a} \vec{c} \text { and } \vec{c} \vec{b} \\
& (\vec{a} \vec{c}) \text { and }(\vec{c} \vec{b})
\end{aligned}
$$

$\vec{a} \quad \vec{c} \quad \vec{b}$

Marginals are the same on (\vec{c}):

$$
\sum_{\vec{a}}(\vec{a} \vec{c})=\sum_{\vec{b}}(\vec{c} \vec{b})
$$

$$
\text { Joint probabilities: } \quad P^{*}=\frac{(\vec{a} \vec{c})(\vec{c} \vec{b})}{(\vec{c})}
$$

After merging, \vec{a} and \vec{b} become independent given \vec{c}, that is, not the same entropies

$$
\vec{b} \mid \vec{c})=0
$$

A structura! property of entropic polymatroids

Any two entropic polymatroids on $X M$ and $M Y$ with the same distribution on M have an amalgam on $X M Y$ with $(X, Y \mid M)=0$.

Outline

(1) Motivation
(2) Entropy and polymatroids

3 Operations on polymatroids
4. Maximum entropy and Copy Lemma
(5) The Ahlswede-Körner lemma
(6) Summary

Operations

(1) Polymatroids are vectors \Rightarrow linear combination.
(2) Direct union with rank $f\left(A \cap N_{f}\right)+g\left(A \cap N_{g}\right)$.
(3) Discard the subset $T \subseteq N \Rightarrow$ contract
(4) Factor over an equivalence on $N \Rightarrow$ factoring
(5) Restrict to $N-T \Rightarrow$ restriction
(0) Tightening (next slide)
(1) Principal extension, and many more ...

Operations

(1) Polymatroids are vectors \Rightarrow linear combination.
(2) Direct union with rank $f\left(A \cap N_{f}\right)+g\left(A \cap N_{g}\right)$.
(3) Discard the subset $T \subseteq N \Rightarrow$ contract
(4) Factor over an equivalence on $N \Rightarrow$ factoring
(5) Restrict to $N-T \Rightarrow$ restriction
(0) Tightening (next slide)
(1) Principal extension, and many more ...

The general idea

Find operations which preserve entropic (or aent) polymatroids but don't preserve general polymatroids.

Tightening

$\lambda \boldsymbol{r}_{A}$ is entropic polymatroid for $A \subseteq N$ and $\lambda \geq 0$, where

$$
r_{A}: J \rightarrow \begin{cases}0 & \text { if } A \cap J=\emptyset \\ 1 & \text { if } A \cap J \neq \emptyset\end{cases}
$$

$f+\lambda \boldsymbol{r}_{a} \Rightarrow a \in N$ gets λ information
$f-\lambda \boldsymbol{r}_{a} \Rightarrow$ take away λ information from a

Definition (Tightening)

Take away as much private information as possible:

$$
f \downarrow a=f-\lambda \boldsymbol{r}_{a} \text { for maximal } \lambda \text { such that } f-\lambda \boldsymbol{r}_{a} \geq 0 .
$$

To get $f \downarrow$, tighten at every $a \in N$.
Clearly, if f is polymatroid, then so is $f \downarrow$.

Theorem (Frantisek Matúš)

If f is almost entropic, then so is $f \downarrow$.

Operation
Sum $f+g$
Direct union $f \oplus g$
Scaling λf
Conic $\sum \lambda_{i} f_{i}$
Factoring f / \sim
Restriction $f \backslash T$
Contraction f / T
Tightening $f \downarrow$
Principal extension polymatroid entropic aent

None of them works! Fortunately

Operation
Sum $f+g$
Direct union $f \oplus g$
Scaling λf
Conic $\sum \lambda_{i} f_{i}$
Factoring f / \sim
Restriction $f \backslash T$
Contraction f / T
Tightening $f \downarrow$
Principal extension
M.E.P. embedding

Copy lemma
Ahlswede-Körner

polymatroid entropic aent

Outline

(1) Motivation
(2) Entropy and polymatroids
(3) Operations on polymatroids

4 Maximum entropy and Copy Lemma
(5) The Ahlswede-Körner lemma
(6) Summary

Maximum entropy principle

We have random variables with unknown joint probabilities, but

ξ_{1}	ξ_{2}	\ldots	ξ_{M}	Prob
u_{1}	v_{1}	\ldots	z_{1}	$?$
u_{2}	v_{1}	\ldots	z_{1}	$?$
u_{1}	v_{2}	\ldots	z_{1}	$?$
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	$?$

\Rightarrow linear constraints on the unknown probabilities
$\Rightarrow \mathcal{Q}=$ all distributions satisfying these constraints.

Maximum entropy principle

We have random variables with unknown joint probabilities, but

ξ_{1}	ξ_{2}	\ldots	ξ_{M}	Prob
u_{1}	v_{1}	\ldots	z_{1}	$?$
u_{2}	v_{1}	\ldots	z_{1}	$?$
u_{1}	v_{2}	\ldots	z_{1}	$?$
\ldots	\ldots	\ldots	\ldots	\ldots
u_{j}	v_{k}	\ldots	z_{ℓ}	$?$

\Rightarrow linear constraints on the unknown probabilities
$\Rightarrow \mathcal{Q}=$ all distributions satisfying these constraints.

Choose $P \in \mathcal{Q}$ with maximum entropy

As the entropy is strictly convex, there is a unique solution.
M.E.P. (in physics, statistics, philosophy, etc.) If you face uncertainty, your best bet is to take the distribution with the largest entropy - the one with maximum uncertainty.

The M.E.P. heuristics

- $\left\langle\xi_{i}: i \in M\right\rangle$ is the M.E. extension using the marginal distributions on $J_{1}, J_{2}, \cdots \subset M$.
- $f(A)=\boldsymbol{H}\left(\xi_{A}\right)$ for $A \subseteq M$.

Claim

Let $A \cup C \cup B=M$ be a partition of M such that for each J_{i}, either $J_{i} \subseteq A \cup C$ or $J_{i} \subseteq C \cup B$. Then $f(A, B \mid C)=0$.

Proof.

If not, you can redefine the distribution with larger entropy and the same marginals on each J_{i}.

M.E.P. heuristics

Entropic polymatroids can be embedded into (entropic) polymatroids with this additional structural property.

The Zhang-Yeung inequality from M.E.P.

1. Take an entropic polymatroid on abcd.

Embed it into $z a^{*} b^{*} c^{*} d^{*}$ so that

- za* b^{*} has the same distribution as $c a b$

- $a^{*} b^{*} c^{*} d^{*}$ has the same distribution as abcd
- with these constraints $z a^{*} b^{*} c^{*} d^{*}$ has maximum entropy.

2. The partition $z \cup a^{*} b^{*} \cup c^{*} d^{*}$ satisfies the requirement that each fixed marginal is either in $A C$ or in $C B$, thus $\left(z, c^{*} d^{*} \mid a^{*} b^{*}\right)=0$.
3. The following inequality holds in every polymatroid ${ }^{1}$:

$$
\begin{aligned}
& -\left(a^{*}, b^{*}\right)+\left(a^{*}, b^{*} \mid c^{*}\right)+\left(a^{*}, b^{*} \mid d^{*}\right)+\left(c^{*}, d^{*}\right)+ \\
& \quad+\left(a^{*}, b^{*} \mid z\right)+\left(a^{*}, z \mid b^{*}\right)+\left(b^{*}, z \mid a^{*}\right) \geq-3\left(z, c^{*} d^{*} \mid a^{*} b^{*}\right)
\end{aligned}
$$

${ }^{1}$ See https://www.personal.ceu.edu/witip

The Zhang-Yeung inequality from M.E.P.

1. Take an entropic polymatroid on abcd.

Embed it into $z a^{*} b^{*} c^{*} d^{*}$ so that

- za* b^{*} has the same distribution as cab

- $a^{*} b^{*} c^{*} d^{*}$ has the same distribution as abcd
- with these constraints $z a^{*} b^{*} c^{*} d^{*}$ has maximum entropy.

2. The partition $z \psi a^{*} b^{*} \cup c^{*} d^{*}$ satisfies the requirement that each fixed marginal is either in $A C$ or in $C B$, thus $\left(z, c^{*} d^{*} \mid a^{*} b^{*}\right)=0$.
3. The following inequality holds in every polymatroid ${ }^{1}$:

$$
\begin{aligned}
& -\left(a^{*}, b^{*}\right)+\left(a^{*}, b^{*} \mid c^{*}\right)+\left(a^{*}, b^{*} \mid d^{*}\right)+\left(c^{*}, d^{*}\right)+ \\
& \quad+\left(a^{*}, b^{*} \mid z\right)+\left(a^{*}, z \mid b^{*}\right)+\left(b^{*}, z \mid a^{*}\right) \geq-3\left(z, c^{*} d^{*} \mid a^{*} b^{*}\right)
\end{aligned}
$$

4. Because corresponding marginals are equal, abcd satisfies
$-(a, b)+(a, b \mid c)+(a, b \mid d)+(c, d)+(a, b \mid c)+(a, c \mid b)+(b, c \mid a) \geq 0$.
${ }^{1}$ See https://www.personal.ceu.edu/witip

Witip

wITIP

This is wITIP, a web based Information Theoretic Inequality Prover.
Please specify your session ID to start working. The ID should start with a letter or hash tag; your name or your e-mail address is a good choice.


```
wITIP config macros constraints check
```


true - (a,b)+(a,b|c)+(a,b|d)+(c,d)+(a,b|z)+(a,z|b)+(b,z|a)>=-3(z,cd|ab)

 true z '<=(a,b|c)+(a,b|d)+(c,d)+2{az'+bz'-a-b}
 z'<=(a,b|c)+(a,b|d)+(c,d)+2{az'+bz' -a-b}
 check

```

\section*{A special case: the Copy Lemma}
\(f\) is a polymatroid on \(N\), and \(N=X \cup M\) is a partition.

\section*{Lemma (Copy Lemma)}
if \(f\) is entropic, then there is an entropic extension \(g\) to \(X^{\prime} \cup X \cup M\) such that
(i) \(g \upharpoonright\left(X^{\prime} \cup M\right)\) is isomorphic to \(f=g \upharpoonright(X \cup M)\), and
(ii) \(g\left(X^{\prime}, X \mid M\right)=0\).

Proof Take the maximum entropy extension on \(X^{\prime} X M\) which satisfies (i).

Remark As \(g\) is also entropic, the Copy Lemma can be iterated \(\Longleftrightarrow\) \(g\) satisfies additional inequalities generated by the Copy Lemma

\section*{Outline}
(1) Motivation
(2) Entropy and polymatroids

3 Operations on polymatroids

4 Maximum entropy and Copy Lemma
(5) The Ahlswede-Körner lemma

6 Summary

\section*{What is it?}

An intermediate result in an Ahlswede-Körner paper was extracted and used by MMRV, and finally formulated by Kaced:

\section*{Lemma (Ahlswede-Körner lemma)}

Suppose \(f\) is entropic on \(M X \cup\{z\}\). There is an almost entropic extension to \(M X \cup\left\{z, z^{\prime}\right\}\) such that \(f\left(z^{\prime} M\right)=f(M)\), and \(f\left(z^{\prime} A\right)=f(z A)-f(z M)+f(M)\) for all \(A \subseteq M\).
R. Ahlswede, J. Körner (1975) Source coding with side information and a converse for degraded broadcast channels. IEEE trans. on Inf Theory 21(6) 629-637.
围 K. Makarychev, Yu. Makarychev, A. Romashchenko, N. Vereshchagin (2002) A new class of non-Shannon-type inequalities for entropies. Comm. in Inf. and Systems 2(2) 147-166.
國 T. Kaced (2013) Equivalence of two proof techniques for non-Shannon-type inequalities. Proceedings of the 2013 IEEE ISIT, Istanbul, Turkey, July 7-12, 236-240.

\section*{Ahlswede-Körner lemma in action}

\section*{Lemma (Repeated)}

Suppose \(f\) is entropic on \(M X \cup\{z\}\). There is an almost entropic extension to \(M X \cup\left\{z, z^{\prime}\right\}\) such that \(f\left(z^{\prime} M\right)=f(M)\), and \(f\left(z^{\prime} A\right)=f(z A)-f(z M)+f(M)\) for all \(A \subseteq M\).

Use \(M=\{a, b\}, X=\{d\}\), and \(z=c\). In the \(z^{\prime} a b c d\) extension \({ }^{1}\)
\[
\begin{aligned}
& f\left(z^{\prime}\right) \leq f(a, b \mid c)+f(a, b \mid d)+f(c, d)+ \\
& \quad+2\left(f\left(a z^{\prime}\right)+f\left(z^{\prime} b\right)-f(a)-f(b)\right) .
\end{aligned}
\]

Using that
\[
f\left(z^{\prime} J\right)=f(c J)-f(a b c)+f(a b) \text { for } J \subseteq\{a, b\},
\]
this rewrites to the Zhang-Yeung inequality
\(-(a, b)+(a, b \mid c)+(a, b \mid d)+(c, d)+(a, b \mid c)+(a, c \mid b)+(b, c \mid a) \geq 0\).
\({ }^{1}\) See http://www.personal.ceu.edu/witip

\section*{Proof of the A-K lemma}

\section*{Lemma (Repeated)}

Suppose \(f\) is entropic on \(M X \cup\{z\}\). There is an almost entropic extension to \(M X \cup\left\{z, z^{\prime}\right\}\) such that \(f\left(z^{\prime} M\right)=f(M)\), and \(f\left(z^{\prime} A\right)=f(z A)-f(z M)+f(M)\) for all \(A \subseteq M\).

\section*{Proof}
(1) Extend \(f\) to \(M \cup X z \cup X^{\prime} z^{\prime}\) using the Copy Lemma. Then
\[
g\left(X z, X^{\prime} z^{\prime} \mid M\right)=0 \Rightarrow g\left(X z, z^{\prime} \mid M\right)=0
\]
(2) Restrict the extension to \(M \cup X z \cup z^{\prime}\). Then \(g\left(z^{\prime} A\right)=f(z A)\) for \(A \subseteq M\), and independence gives
\[
g\left(M X z z^{\prime}\right)-g(M X z)=g\left(M z^{\prime}\right)-g(M)=f(z M)-f(M)
\]
(3) Tighten \(g\) at \(z^{\prime}\) by \(\lambda=\). This \(g \downarrow_{z^{\prime}}\) extends \(f\) and
\[
g \downarrow_{z^{\prime}}\left(z^{\prime} A\right)=g\left(z^{\prime} A\right)-\lambda=f(z A)-\lambda,
\]
thus \(g \downarrow_{z^{\prime}}\) is a good A-K extension.

\section*{Direct proof of the A-K lemma}
(1) Use typical sequences to make \(M \times\{z\}\) to be quasi-uniform: each non-zero cell has the same probability; rows, columns have equal number of \(x\)-es

(2) Make \(|M|\) and \(|z|\) large.
(3) Choose rows randomly so that each column contains exactly one non-zero cell (except for \(\varepsilon|M|\) columns).
(4) \(z^{\prime}\) is determined by \(M\) via the chosen rows.

Then
- \(\boldsymbol{H}\left(z^{\prime} M\right)=\boldsymbol{H}(M)\) as \(M\) determines \(z^{\prime}\).
- \(\boldsymbol{H}\left(z^{\prime} A\right)-\boldsymbol{H}(z A)\) is constant as each row contains the same number of non-empty cells even in columns corresponding to the subset \(A\).

\section*{Outline}
(1) Motivation
(2) Entropy and polymatroids

3 Operations on polymatroids
4. Maximum entropy and Copy Lemma
(5) The Ahlswede-Körner lemma
(6) Summary

\section*{The methods}
(1) Maximum entropy method

Given an entropic polymatroid on \(N\), label elements of \(M\) by \(N\), and choose \(\mathcal{J} \subset 2^{N}\) with each \(J \in \mathcal{J}\) has different labels. Require all \(J \in \mathcal{J}\) to be isomorphic to its labels. Compute all conditional independences, and compute the consequences on \(N\).
(2) Copy Lemma

A simple version of MaxEnt: choose a subset of \(N\), and take a copy of the rest. Compute all consequences.
(3) Ahlswede-Körner method

Take the A-K extension of \(N\) and compute its consequences.
All methods can be iterated, which is the same as using established knowledge on the larger (almost) entropic polymatroid.
None of the methods distinguishes entropic and almost entropic polymatroids.

\section*{Ahlswede-Körner method}

\section*{Theorem}
(a) All results provided by the A-K method are also given by a single application of the Copy Lemma.
(b) There is a single application of the Copy Lemma which is stronger than two iterations of the \(A-K\) method.

Actually, we have an exact characterization of the strength of the A-K method: it is equivalent to a restricted application of the Copy Lemma, which, in turn, is weaker than the full strength Copy Lemma.

\section*{Maximum Entropy method}

Clearly, the Copy Lemma is a special case of MaxEnt. The iterated Copy Lemma uses local manipulation, while MaxEnt applies to a global arrangement.

\section*{Maximum Entropy method}

Clearly, the Copy Lemma is a special case of MaxEnt.
The iterated Copy Lemma uses local manipulation, while MaxEnt applies to a global arrangement.

\section*{Theorem (L. Csirmaz, 2021)}

The MaxEnt method is equivalent to the iterated usage of the Copy Lemma.

The easy direction is a simulation of the iterated Copy lemma using some complicated MaxEnt arrangement.
The hard direction uses induction on the number of conditional independences used in the MaxEnt method.

\section*{And the winner is ...}

No other methods are known which work for a wide range of polymatroids (and not for a sporadic set only). By these results, everything which can be proved using these methods, can be proved using the Copy Lemma only.

By exploiting the underlying symmetry provided by the Copy Lemma, several otherwise untractable problems can be solved numerically.

So our winner is the
Copy Lemma



\section*{Děkuji za pozornost}```

