Continuos submodular optimization

Laszlo Csirmaz

Renyi Institute, UTIA
November 13, 2020

Submodular functions

f is submodular over any lattice:

$$
f(A)+f(B) \geq f(A \wedge B)+f(A \vee B)
$$

In \mathbb{R}^{n} this is the min and max, coordinatewise.
Diminishing return property (coordinatewise):

$$
f\left(x+\varepsilon e_{i}\right)-f(x) \geq f\left(y+\varepsilon e_{i}\right)-f(y)
$$

if $y=x+\lambda e_{i}, \lambda>0$, and $\varepsilon>0$.
(Investing the same amount of resouce, if you have more of that resource then the return is smaller.)

Entropy-like function

(a) f is defined on $\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}$
(b) $f(0)=0$ (pointed)
(c) non-decreasing: $0 \leq x \leq y \Rightarrow f(x) \leq f(y)$
(d) submodular: $f(x)+f(y) \geq f(x \wedge y)+f(x \vee y)$
(e) has the diminishing return property

Motivation: secret sharing of n groups.
Symmetric for any permutation fixing all groups.
$f\left(x_{1}, \ldots x_{n}\right)$ is the scaled entropy of the shares given to $x_{i} \cdot N$ people from the i-th group

Left and right partial derivatives

Left i-th partial derivative (if exists)

$$
f_{i}^{-}(x)=\lim _{\varepsilon \rightarrow+0} \frac{f(x)-f\left(x-\varepsilon e_{i}\right)}{\varepsilon}
$$

Right i-th partial derivative (if exists)

$$
f_{i}^{+}(x)=\lim _{\varepsilon \rightarrow+0} \frac{f\left(x+\varepsilon e_{i}\right)-f(x)}{\varepsilon}
$$

Basic properties

(1) f is continuous
(2) concave along any positive direction: for $0 \leq x \leq y$

$$
\lambda f(x)+(1-\lambda) f(y) \leq f(\lambda x)+(1-\lambda) y)
$$

3 D.R. property holds for any $x \leq y$ (not only coordinatewise)
(4) f has left and right partial derivatives everywhere inside
(5) partial derivatives are ≥ 0 and decreasing along positive directions.

Proof of (2)

Concave along any coordinate by continuity and DR property. By induction for points $(c, x, a) \leq(d, y, a)$:

$$
\begin{aligned}
& \lambda f(c \phi d, x, a)+(1-\lambda) f(c \phi d, y, a) \leq f(c \phi d, x \phi y, a), \\
& \lambda^{2} f(c, x, a)+\lambda(1-\lambda) f(d, x, a) \leq \lambda f(c \phi d, x, a), \\
& \lambda(1-\lambda) f(c, y, a)+(1-\lambda)^{2} f(d, y, a) \leq(1-\lambda) f(c \phi d, y, a), \\
& \frac{\lambda f(c, x, a)+(1-\lambda) f(d, y, a)}{} \leq f(c \phi d, x \phi y, a)
\end{aligned}
$$

Use submodularity $\lambda(1-\lambda)$ times:

$$
f(c, x, a)+f(d, y, a) \leq f(c, y, a)+f(d, x, a)
$$

A 2-dimensional example

The optimization problem

f is feasible for the n-1-dimensional surface S if in each point $x \in S$ the partial derivatives drop by at least 1 :

$$
f_{i}^{-}(x)-f_{i}^{+}(x) \geq 1 \quad(1 \leq i \leq n)
$$

The cost of f is

$$
\operatorname{Cost}(f)=\max \left\{f_{1}^{+}(0), f_{2}^{+}(0), \ldots, f_{n}^{+}(0)\right\},
$$

and the optimization problem is:
$\begin{cases}\text { minimize: } & \operatorname{Cost}(f) \\ \text { subject to: } & f \text { is an } S \text {-feasible EL function. }\end{cases}$

Linear constraints

S is a hyperplane $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=M$. Search an optimal function among $k>0$:

$$
f(y)=k \cdot \min \left\{\sum c_{i} y_{i}, M\right\} .
$$

Here $f_{i}^{-}(x)-f_{i}^{+}=k \cdot c_{i}$ at points of S (f is linear), so $k \geq 1 / \min \left\{c_{i}\right\}$. Also, $\operatorname{Cost}(f)=k \cdot \max \left\{c_{i}\right\}$, thus

$$
\mathrm{OPT}(S) \leq \frac{\max \left\{c_{i}\right\}}{\min \left\{c_{i}\right\}}
$$

Theorems

Theorem (Lower bound)

For every s-surface S, inner point $x \in S$ and $1 \leq i, j \leq n$ the following inequality holds:

$$
\operatorname{OPT}(S) \geq \frac{\nabla S_{j}(x)}{\nabla S_{i}(x)}
$$

where $\nabla S(x)$ is the outward normal of S at $x \in S$.

Theorem (Existence)

Suppose S is smooth and $\operatorname{OPT}(S)<+\infty$. Then the optimal value is taken by some S-feasible function f, that is, $\operatorname{Cost}(f)=\operatorname{OPT}(S)$.

2-dimensional case

S is a strictly decreasing continuous curve.

$$
S=\{(x, \alpha(x)): 0 \leq x \leq a\}, \text { and } S=\{(\beta(y), y): 0 \leq y \leq b\} .
$$

S is either convex or concave $\Rightarrow \nabla S_{i}(x) / \nabla S_{j}(x)$ is increasing or decreasing along the curve \Rightarrow attains its maximal value at one of the endpoints.

For strictly convex S the lower bound is tight

$$
f(x, y)= \begin{cases}C+\min \{y-\alpha(x), 0\} & \text { if } x \geq t_{x}, \\ C+\min \{x-\beta(y), 0\} & \text { if } y \geq t_{y}, \\ x+y & \text { otherwise }\end{cases}
$$

For strictly concave S the lower bound in tight

$$
f(x, y)= \begin{cases}y+\min \{x, \beta(y)\} & \text { if } x \geq t_{x} \\ x+\min \{y, \alpha(x)\} & \text { if } y \geq t_{y}, \\ x+y & \text { otherwise }\end{cases}
$$

Questions

Problem (1)

For every smooth S with bounded normal there is a feasible function f.

Problem (1a)

Show that there a feasible function with finite cost.

Problem (2)

Find an S where the lower bound is not tight.

Problem (3)

Determine the cost of convex surfaces in dimensions >2.

