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Submodular functions

f is submodular over any lattice:

f (A) + f (B) ≥ f (A ∧ B) + f (A ∨ B).

In Rn this is the min and max, coordinatewise.

Diminishing return property (coordinatewise):

f (x + εei )− f (x) ≥ f (y + εei )− f (y)

if y = x + λei , λ > 0, and ε > 0.

(Investing the same amount of resouce, if you have more of that
resource then the return is smaller.)
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Entropy-like function

(a) f is defined on {x ∈ Rn : x ≥ 0}
(b) f (0) = 0 (pointed)

(c) non-decreasing: 0 ≤ x ≤ y ⇒ f (x) ≤ f (y)

(d) submodular: f (x) + f (y) ≥ f (x ∧ y) + f (x ∨ y)

(e) has the diminishing return property

Motivation: secret sharing of n groups.
Symmetric for any permutation fixing all groups.
f (x1, . . . xn) is the scaled entropy of the shares given to xi · N
people from the i-th group
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Left and right partial derivatives

Left i-th partial derivative (if exists)

f −i (x) = lim
ε→+0

f (x)− f (x − εei )

ε

Right i-th partial derivative (if exists)

f +
i (x) = lim

ε→+0

f (x + εei )− f (x)

ε
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Basic properties

1 f is continuous

2 concave along any positive direction: for 0 ≤ x ≤ y

λf (x) + (1− λ)f (y) ≤ f (λx) + (1− λ)y).

3 D.R. property holds for any x ≤ y (not only coordinatewise)

4 f has left and right partial derivatives everywhere inside

5 partial derivatives are ≥ 0 and decreasing along positive
directions.
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Proof of (2)

Concave along any coordinate by continuity and DR property.
By induction for points (c , x , a) ≤ (d , y , a):

λf (c |◦ d , x , a) + (1− λ)f (c |◦ d , y , a) ≤ f (c |◦ d , x |◦ y , a),

λ2f (c , x , a) + λ(1− λ)f (d , x , a) ≤ λf (c |◦ d , x , a),

λ(1− λ)f (c , y , a) + (1− λ)2f (d , y , a) ≤ (1− λ)f (c |◦ d , y , a),

λf (c , x , a) + (1− λ)f (d , y , a) ≤ f (c |◦ d , x |◦ y , a)

Use submodularity λ(1− λ) times:

f (c, x , a) + f (d , y , a) ≤ f (c, y , a) + f (d , x , a)
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A 2-dimensional example

•T
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The optimization problem

f is feasible for the n − 1-dimensional surface S if in each point
x ∈ S the partial derivatives drop by at least 1:

f −i (x)− f +
i (x) ≥ 1 (1 ≤ i ≤ n).

The cost of f is

Cost(f ) = max{f +
1 (0), f +

2 (0), . . . , f +
n (0) },

and the optimization problem is:{
minimize: Cost(f )

subject to: f is an S-feasible EL function.
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Linear constraints

S is a hyperplane c1x1 + c2x2 + · · ·+ cnxn = M. Search an optimal
function among k > 0:

f (y) = k ·min
{∑

ciyi ,M
}
.

Here f −i (x)− f +
i = k · ci at points of S (f is linear), so

k ≥ 1/min{ci}. Also, Cost(f ) = k ·max{ci}, thus

OPT(S) ≤ max{ci}
min{ci}

.
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Theorems

Theorem (Lower bound)

For every s-surface S, inner point x ∈ S and 1 ≤ i , j ≤ n the
following inequality holds:

OPT(S) ≥
∇Sj(x)

∇Si (x)
,

where ∇S(x) is the outward normal of S at x ∈ S.

Theorem (Existence)

Suppose S is smooth and OPT(S) < +∞. Then the optimal value
is taken by some S-feasible function f , that is, Cost(f ) = OPT(S).
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2-dimensional case

S is a strictly decreasing continuous curve.
S = {(x , α(x)) : 0 ≤ x ≤ a}, and S = {(β(y), y) : 0 ≤ y ≤ b}.

•Tty

0 tx a

b

α(x)

β(y)

S is either convex or concave ⇒ ∇Si (x)/∇Sj(x) is increasing or
decreasing along the curve ⇒ attains its maximal value at one
of the endpoints.
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For strictly convex S the lower bound is tight

f (x , y) =


C + min{y − α(x), 0} if x ≥ tx ,
C + min{x − β(y), 0} if y ≥ ty ,
x + y otherwise,

•T
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For strictly concave S the lower bound in tight

f (x , y) =


y + min{x , β(y)} if x ≥ tx ,
x + min{y , α(x)} if y ≥ ty ,
x + y otherwise.

• T
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Questions

Problem (1)

For every smooth S with bounded normal there is a feasible
function f .

Problem (1a)

Show that there a feasible function with finite cost.

Problem (2)

Find an S where the lower bound is not tight.

Problem (3)

Determine the cost of convex surfaces in dimensions > 2.


