Secret Sharing and Duality

Laszlo Csirmaz
Central European University
UTIA, Prague
CECC 2019
June 12-14, Telč, Czech Republic

Contents

(1) Duals of \ldots
(2) Linear spaces and linear codes
(3) Secret sharing basics

4 Secret sharing duality - the problem
(5) Matroids and polymatroids

6 Reduction and conclusion

List of players

Mathematical objects with duals (in order of their appearence):
(1) linear subspace L of the vector space \mathbb{F}^{n} dual space L^{\perp} is the set of vectors orthogonal to L
(2) linear code \mathcal{C} with codewords in \mathbb{F}^{n} dual code \mathcal{C}^{\perp} is the orthogonal subspace
(3) access structure $\mathcal{A} \subseteq 2^{P}$ for a secret sharing scheme with participants P
A is qualified in \mathcal{A}^{\perp} iff its complement is unqualified in \mathcal{A}
(4) matroid M
C is a circuit in M^{\perp} iff $M-C$ is a base in M
(5) polymatroid f on ground set M
$f^{\perp}(A)=f(A)+\sum_{i \in A} f(i)-f(M)$

List of players

Mathematical objects with duals (in order of their appearence):
(1) linear subspace L of the vector space \mathbb{F}^{n}
dual space L^{\perp} is the set of vectors orthogonal to L
(2) linear code \mathcal{C} with codewords in \mathbb{F}^{n}
dual code \mathcal{C}^{\perp} is the orthogonal subspace
(3) access structure $\mathcal{A} \subseteq 2^{P}$ for a secret sharing scheme with participants P
A is qualified in \mathcal{A}^{\perp} iff its complement is unqualified in \mathcal{A}
(4) matroid M
C is a circuit in M^{\perp} iff $M-C$ is a base in M
(5) polymatroid f on ground set M

$$
f^{\perp}(A)=f(A)+\sum_{i \in A} f(i)-f(M)
$$

List of players

Mathematical objects with duals (in order of their appearence):
(1) linear subspace L of the vector space \mathbb{F}^{n}
dual space L^{\perp} is the set of vectors orthogonal to L
(2) linear code \mathcal{C} with codewords in \mathbb{F}^{n}
dual code \mathcal{C}^{\perp} is the orthogonal subspace
(3) access structure $\mathcal{A} \subseteq 2^{P}$ for a secret sharing scheme with participants P
A is qualified in \mathcal{A}^{\perp} iff its complement is unqualified in \mathcal{A}
(4) matroid M
C is a circuit in M^{\perp} iff $M-C$ is a base in M
(5) polymatroid f on ground set M $f^{\perp}(A)=f(A)+\sum_{i \in A} f(i)-f(M)$

Contents

(1) Duals of
(2) Linear spaces and linear codes
(3) Secret sharing basics

4 Secret sharing duality - the problem
(5) Matroids and polymatroids

6 Reduction and conclusion

Duality for linear spaces

\mathbb{F} is a finite field.
L is a linear subspace of \mathbb{F}^{n} if L is closed for addition and multiplication by scalars from \mathbb{F}.

Vectors \mathbf{v} and \mathbf{w} are orthogonal if $\mathbf{v} \cdot \mathbf{w}=0$ (usual inner product) $\mathbf{w} \in L^{\perp}$ if \mathbf{w} is orthogonal to all elements of L

Facts

- L^{\perp} is a linear subspace
- $\left(L^{\perp}\right)^{\perp}=L$
- $\operatorname{dim}(L)+\operatorname{dim}\left(L^{\perp}\right)=n$
- $L \oplus L^{\perp}$ is not necessarily a decomposition of \mathbb{F}^{n};
$L=L^{\perp}$ may occur.

Duality for linear codes

Linear code \mathcal{C} is a linear subspace of \mathbb{F}^{n}

- generated by the $k \times n$ matrix $G: \mathcal{C}=\left\{\mathbf{x} \cdot G: \mathbf{x} \in \mathbb{F}^{k}\right\}$, or
- checked by the $n \times n-k$ matrix $E: \mathcal{C}=\left\{\mathbf{v} \in \mathbb{F}^{n}: E \cdot \mathbf{v}=0\right\}$.

Non-trivial: $0<k<n$, and neither G nor E contains the all-zero column.

The dual code \mathcal{C}^{\perp} is:

- the dual of the linear space \mathcal{C}, or
- generated by $E: \mathcal{C}^{\perp}=\left\{\mathbf{x} \cdot E: \mathbf{x} \in \mathbb{F}^{n-k}\right\}$, or
- checked by $G: \mathcal{C}^{\perp}=\left\{\mathbf{v} \in \mathbb{F}^{n}: G \cdot \mathbf{v}=0\right\}$.

More on linear codes

Fix the linear code $\mathcal{C} \subseteq \mathbb{F}^{n}$ with generator G and parity check matrix E. The set of columns is M; for any $A \subseteq M$ let
(1) $f(A)$ be the rank of the submatrix G_{A} cut by columns in A,
(2) $f^{\perp}(A)$ be the rank of the same submatrix E_{A} of E,
(3) a maximal A with $f(A)=|A|$ is an f-base (f^{\perp}-base),
(4) a minimal A with $f(A)<|A|$ is an f-circuit (f^{\perp}-circuit).

Facts:

- $f^{\perp}(A)=f(M-A)+|A|-f(M)$,
- A is an f-base if and only if $M-A$ is an f^{\perp} circuit,
- A is an f-circuit if and only if $M-A$ is an f^{\perp}-base.

Contents

(1) Duals of
(2) Linear spaces and linear codes
(3) Secret sharing basics

4 Secret sharing duality - the problem
(5) Matroids and polymatroids
(6) Reduction and conclusion

Perfect secret sharing scheme

Specified by:

(1) $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$, the set of participants,
(2) $\mathcal{A} \subset 2^{\mathcal{P}}$ - the family of qualified subsets,
(3) X_{s} - the set of possible secrets,
(4) X_{i} - for each participant $i \in \mathcal{P}$ the possible shares,
(5) ξ - a joint probability distribution on $X_{s} \times X_{1} \times \cdots \times X_{n}$.

Perfect scheme:
(1) A is qualified $-\xi_{s}$ is determined by $\xi_{A}=\left\langle\xi_{i}: i \in A\right\rangle$,
(2) A is not qualified $-\xi_{s}$ is independent from ξ_{A}.

Almost perfect scheme:

tolerate negligible (in secret size) error in (1) and (2).

Perfect scheme from a linear code \mathcal{C}

Fix the non-trivial linear code $\mathcal{C} \subseteq \mathbb{F}^{n+1}$ with generator G and $f(A)=\operatorname{rank}\left(G_{A}\right)$, where G_{A} is the submatrix with columns in A.
(1) pick $\mathbf{v} \in \mathcal{C}$ randomly with uniform distribution
(2) parse \mathbf{v} as $\left\langle x_{s}, x_{1}, \ldots, x_{n}\right\rangle$.
(3) x_{s} is the secret, and x_{i} is the share of participant P_{i}.

Perfect scheme from a linear code \mathcal{C}

Fix the non-trivial linear code $\mathcal{C} \subseteq \mathbb{F}^{n+1}$ with generator G and $f(A)=\operatorname{rank}\left(G_{A}\right)$, where G_{A} is the submatrix with columns in A.
(1) pick $\mathbf{v} \in \mathcal{C}$ randomly with uniform distribution
(2) parse \mathbf{v} as $\left\langle x_{s}, x_{1}, \ldots, x_{n}\right\rangle$.
(3) x_{s} is the secret, and x_{i} is the share of participant P_{i}.

Facts:

- $A \subseteq\{1, \ldots, n\}$ determines the secret if $f(s A)=f(A)$. Reason: in this case column s in the generator matrix is a linear combination of columns of A
- the secret is independent of the shares if $f(s A)>f(A)$.

Reason: actually, $f(s A)=f(A)+f(s)=f(A)+1$.

Perfect scheme from a linear code \mathcal{C}

Fix the non-trivial linear code $\mathcal{C} \subseteq \mathbb{F}^{n+1}$ with generator G and $f(A)=\operatorname{rank}\left(G_{A}\right)$, where G_{A} is the submatrix with columns in A.
(1) pick $\mathbf{v} \in \mathcal{C}$ randomly with uniform distribution
(2) parse \mathbf{v} as $\left\langle x_{s}, x_{1}, \ldots, x_{n}\right\rangle$.
(3) x_{s} is the secret, and x_{i} is the share of participant P_{i}.

Facts:

- $A \subseteq\{1, \ldots, n\}$ determines the secret if $f(s A)=f(A)$. Reason: in this case column s in the generator matrix is a linear combination of columns of A
- the secret is independent of the shares if $f(s A)>f(A)$.

Reason: actually, $f(s A)=f(A)+f(s)=f(A)+1$.

The collection of qualified subsets is $\mathcal{A}=\{A: f(s A)=f(A)\}$.

Secret sharing scheme from the dual code \mathcal{C}^{\perp}

$\Rightarrow \quad$ The collection of qualified subsets from code \mathcal{C} is

$$
\mathcal{A}=\{A: f(s A)=f(A)\} .
$$

The collection of qualified subsets from the dual code \mathcal{C}^{\perp} is

$$
\mathcal{A}^{\perp}=\left\{A: f^{\perp}(s A)=f^{\perp}(A)\right\} .
$$

Reminder

- $f^{\perp}(A)=f(M-A)+|A|-f(M)$,
- $f^{\perp}(A s)=f(M-A s)+|A s|-f(M),|A s|=|A|+1$,
- $A \in \mathcal{A}^{\perp} \Longleftrightarrow f(M-A s) \neq f(M-A) \Longleftrightarrow P-A \notin \mathcal{A}$.

Secret sharing scheme from the dual code \mathcal{C}^{\perp}

\Rightarrow The collection of qualified subsets from code \mathcal{C} is

$$
\mathcal{A}=\{A: f(s A)=f(A)\} .
$$

The collection of qualified subsets from the dual code \mathcal{C}^{\perp} is

$$
\mathcal{A}^{\perp}=\left\{A: f^{\perp}(s A)=f^{\perp}(A)\right\} .
$$

Reminder

- $f^{\perp}(A)=f(M-A)+|A|-f(M)$,
- $f^{\perp}(A s)=f(M-A s)+|A s|-f(M),|A s|=|A|+1$,
- $A \in \mathcal{A}^{\perp} \Longleftrightarrow f(M-A s) \neq f(M-A) \Longleftrightarrow P-A \notin \mathcal{A}$.

Definition - dual access structure

For an access structure $\mathcal{A} \subset 2^{P}$, its dual is

$$
\mathcal{A}^{\perp}=\{A \subseteq P: P-A \notin \mathcal{A}\} .
$$

Contents

(1) Duals of
(2) Linear spaces and linear codes
(3) Secret sharing basics

4 Secret sharing duality - the problem
(5) Matroids and polymatroids

6 Reduction and conclusion

Dual of an access structure

Definition - dual access structure

$$
\mathcal{A}^{\perp}=\{A \subseteq P: P-A \notin \mathcal{A}\} .
$$

$A \subseteq P$ is qualified for \mathcal{A}^{\perp} iff its complement is unqualified for \mathcal{A}

Facts:

- sound definition, \mathcal{A}^{\perp} is upwards closed
- $\left(\mathcal{A}^{\perp}\right)^{\perp}=\mathcal{A}$, as expected
- if \mathcal{A} is realized by any (multi)linear scheme, then \mathcal{A}^{\perp} is realized by another (multi)linear shceme with exactly the same share size / secret size ratio (complexity)
- \mathcal{A} and \mathcal{A}^{\perp} has exactly the same Shannon-type lower bound on their complexity, $\kappa(\mathcal{A})=\kappa\left(\mathcal{A}^{\perp}\right)$ using Carles Padro's notation

The question

Secret sharing duality problem

Do \mathcal{A} and \mathcal{A}^{\perp} always have the same complexity?

\mathcal{A} is ideal if its complexity is 1 (e.g., generated from linear code) A particularly important special case is

Ideal secret sharing duality problem

$$
\text { If } \mathcal{A} \text { is ideal, so is its dual } \mathcal{A}^{\perp} \text { ? }
$$

The question

Secret sharing duality problem

Do \mathcal{A} and \mathcal{A}^{\perp} always have the same complexity?

\mathcal{A} is ideal if its complexity is 1 (e.g., generated from linear code) A particularly important special case is

Ideal secret sharing duality problem

$$
\text { If } \mathcal{A} \text { is ideal, so is its dual } \mathcal{A}^{\perp} \text { ? }
$$

Pro: true for linear schemes and all known schemes with optimal complexity are linear no counterexample is known
Contra: no plausible reason why it should be true

Contents

(1) Duals of
(2) Linear spaces and linear codes
(3) Secret sharing basics

4 Secret sharing duality - the problem
(5) Matroids and polymatroids

6 Reduction and conclusion

Definitions: matroids and polymatroids

Matroid: as a rank function f on subsets of the gound set M
(1) pointed: $f(\emptyset)=0$,
(2) non-negative and monoton: $0 \leq f(A) \leq f(B)$ for $A \subseteq B \subseteq M$,
(3) submodular: $f(A)+f(B) \geq f(A \cap B)+f(A \cup B)$,
(4) integer valued; and $f(A) \leq|A|$.

Polymatroid: satisfy 1 + $2+3$ only.
Connected: $f(A)+F(M-A)>f(M)$ for all non-empty $A \subset M$.
Entropic: there is a distribution $\left\langle\xi_{i}: i \in M\right\rangle$ and a constant $c>0$ such that $f(A)=c \cdot \mathbf{H}\left(\xi_{A}\right)$.
Almost entropic: there are entropic polymatroids arbitrarily close to f.
Matroid port: for $i \in M$ this is the access structure on $M-\{i\}$ defined as $\mathcal{P}(i, f)=\{A \subseteq M-\{i\}: f(\{i\} \cup A)=f(A)\}$.

Duals of matroids and polymatroids

Dual of the matroid (f, M) is $\left(f^{\perp}, M\right)$ where

$$
f^{\perp}(A)=f(M-A)+|A|-f(M) .
$$

Dual of the polymatroid (f, M) is $\left(f^{\perp}, M\right)$ where

$$
f^{\perp}(A)=f(M-A)+\sum_{i \in A} f(i)-f(M)
$$

Facts:

(1) \mathcal{C} is a non-trivial linear code with generator matrix $G ; f(A)$ is the rank of the submatrix G_{A}. $(f$, columns) is a matroid.
(2) The dual of this matroid is generated by the dual code \mathcal{C}^{\perp}.

Ideal structures, matroids, and duals

The access structure $\mathcal{A} \subset 2^{P}$ is connected if every participant is important (for each $i \in P$ there is a qualified $A \in \mathcal{A}$ such that $A-i$ is not qualified).

Theorem (G. R. Blakley and G.A. Kabatianski)

Statements (1) and (2) below are equivalent.
(1) $\mathcal{A} \subset 2^{P}$ is connected, (almost) ideal access structure.
(2) There is a unique connected and (almost) entropic matroid $(f, s P)$ such that \mathcal{A} is the matroid port $\mathcal{P}(s, f)$.
If $\mathcal{A} \subset 2^{P}$ is connected, then \mathcal{A}^{\perp} is also connected, and if it is (almost) ideal, then the corresponding unique matroid is the dual matroid ($f^{\perp}, s P$).

Ideal structures, matroids, and duals

The access structure $\mathcal{A} \subset 2^{P}$ is connected if every participant is important (for each $i \in P$ there is a qualified $A \in \mathcal{A}$ such that A - i is not qualified).

Theorem (G. R. Blakley and G.A. Kabatianski)

Statements (1) and (2) below are equivalent.
(1) $\mathcal{A} \subset 2^{P}$ is connected, (almost) ideal access structure.
(2) There is a unique connected and (almost) entropic matroid $(f, s P)$ such that \mathcal{A} is the matroid port $\mathcal{P}(s, f)$.
If $\mathcal{A} \subset 2^{P}$ is connected, then \mathcal{A}^{\perp} is also connected, and if it is (almost) ideal, then the corresponding unique matroid is the dual matroid $\left(f^{\perp}, s P\right)$.

The ideal secret sharing duality problem is equivalent to
If a connected matroid is (almost) entropic, so is its dual.

Contents

(1) Duals of
(2) Linear spaces and linear codes

3 Secret sharing basics

4 Secret sharing duality - the problem
(5) Matroids and polymatroids
(6) Reduction and conclusion

From matroids to polymatroids

\Rightarrow Problem
If a connected matroid is (almost) entropic, so is its dual.

We have learned from Tarik Kaced (2018) . . .

Information Inequalities are Not Closed Under Polymatroid Duality, IEEE Transactions on Information Theory (Volume 64, Issue 6, June 2018) There is a connected entropic polymatroid whose dual is not almost entropic.

From matroids to polymatroids

\Rightarrow Problem

If a connected matroid is (almost) entropic, so is its dual.

We have learned from Tarik Kaced (2018) ...

Information Inequalities are Not Closed Under Polymatroid Duality, IEEE Transactions on Information Theory (Volume 64, Issue 6, June 2018) There is a connected entropic polymatroid whose dual is not almost entropic.

and from Frantisek Matúš (2007)

Two Constructions on Limits of Entropy Functions,
IEEE Transactions on Information Theory (Volume 53, Issue 1, January 2007)
Every (connected) integer polymatroid is a factor of (can be extended to) a (connected) matroid. If the polymatroid is almost entropic, so is the matroid. The extension preserves duality.

Therefore

\Rightarrow Problem
If a connected matroid is (almost) entropic, so is its dual.

Kaced + Matúš

There is a connected almost entropic matroid whose dual is not almost entropic.

Therefore

\Rightarrow Problem
If a connected matroid is (almost) entropic, so is its dual.

Kaced + Matúš

There is a connected almost entropic matroid whose dual is not almost entropic.

Adding all together:

Theorem

There is an almost ideal access structure \mathcal{A} whose duals is not almost ideal.

That is, in the scheme realizing \mathcal{A} we tolarate negligible information leaks and negligible failure in secret recovery. For \mathcal{A}^{\perp} even such a relaxed scheme requires strictly larger than secret size shares.

From "almost" to "full"

The "almost" comes from Matúš' extension theorem: even if the integer polymatroid is entropic (which it is in Kaced's construction) the extension is only almost entropic.

Open problem

Find a connected entropic matroid whose dual is not almost entropic.

Thank your for your attention

