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1 Introduction

We write K or Kd for the set of convex bodies in R
d, that is, compact convex

sets with nonempty interior in R
d. Assume K ∈ K and x1, . . . , xn are random,

independent points chosen according to the uniform distribution in K. The
convex hull of these points, to be denoted by Kn, is called a random polytope

inscribed in K. Thus Kn = [x1, . . . , xn] where [S] stands for the convex hull
of the set S. The study of random polytopes began in 1864 with Sylvester’s
famous “four-point question” [73].

Starting with the work of Rényi and Sulanke in 1964 [56] there has been a lot
of research to understand the asymptotic behaviour of random polytopes. Most
of it has been concentrated on the expectation of various functionals associated
with Kn. For instance the number of vertices, f0(Kn), or more generally, the
number of k-dimensional faces, fk(Kn), of Kn, or the volume missed by Kn,
that is vol(K \ Kn). The latter quantity measures how well Kn approximates
K. As usual we will denote the expectation of fk(Kn) by Efk(Kn), and that of
vol(K \ Kn) by E(K, n).

We write K1 for the set of those K ∈ K that have unit volume: volK = 1.
This is convenient since then the Lebesgue measure and the uniform probability
measure on K ∈ K1 coincide. The boundary of K is denoted by bdK. We write
aff S for the affine hull of S.

Assume a ∈ R
d is a unit vector and t ∈ R. Then the halfspace H = H(a ≤ t)

is defined as
H(a ≤ t) = {x ∈ R

d : a · x ≤ t},
where a · x is the scalar product of a and x. The bounding hyperplane of this
halfspace is denoted by H(a = t).

We will use often the Brunn-Minkowski theorem which says the following.
If K, L ⊂ R

d are convex sets, then

vol(K + L)1/d ≥ (volK)1/d + (volL)1/d

where K + L is the set of all k + l with k ∈ K and l ∈ L. For a proof see
Schneider’s book [64]

The Brunn-Minkowski theorem has an important consequence. Suppose
K ∈ Kd, define h(t) = vol d−1K ∩H(a = t) and assume that h(t) is positive on
an interval I.

Lemma 1.1. The function t → h1/(d−1)(t) is concave on I.
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2 A general result on E(K, n)

A cap of K ∈ K is simply a set of the form C = K ∩ H where H is a closed
halfspace. The width of the cap, w(C) is the usual width of C in the normal
direction of H. We define the function v : K → R by

v(x) = min{vol(K ∩ H) : x ∈ H, and H is a halfspace},

This function is going to play a central role in what follows. The minimal cap

belonging to x ∈ K is a cap C(x) with x ∈ C(x) and volC(x) = v(x). The
minimal cap C(x) need not be unique, so our notation is a little ambiguous but
this will not cause any trouble.

The level sets of v are defined as

K(v ≥ t) = {x ∈ K : v(x) ≥ t}.

The wet part of K with parameter t > 0 is

K(t) = K(v ≤ t) = {x ∈ K : v(x) ≤ t}.

The name comes from the mental picture when K is a three dimensional convex
body containing t units of water. We call K(v ≥ t) the floating body of K
with parameter t > 0 as, in a similar picture, this is the part of K that floats
above water (cf [14] and [44]). The floating body is the intersection of halfspaces
so it is convex.

The wet part K(t) = K(v ≤ t) is a kind of inner parallel body to the
boundary of K. We note that the function v : K → R is invariant (or rather
equivariant) under non-degenerate linear transformations A : R

d → R
d. Pre-

cisely, with notation v(x) = vK(x), we have

vAK(Ax) = |detA|vK(x)

since CAK(Ax) = A(CK(x)). This also shows that the quantity

volK(v ≤ t volK)

volK
(2.1)

is invariant under non-degenerate linear transformations.
The following theorem describes the general behaviour of E(K, n): The

expected missed volume is of the same order of magnitude as the volume of the
wet part with t = 1/n. This works for general convex bodies K ∈ K, not only
when K is smooth or is a polytope. Precisely, we have

Theorem 2.1. For every d ≥ 2 there are constants c0, c1, c2 > 0 such that for
every K ∈ K1 and n ≥ c0

c1 volK(1/n) ≤ E(K, n) ≤ c2 volK(1/n).

It will be convenient to use the ≪, ≫ and ≈ notation. For instance, f(n) ≪
g(n) means that there is a constant b such that f(n) ≤ bg(n) for all values of
n. This notation always hides a constant which, as a rule, does not depend on
n but may depend on dimension. With this notation, the above theorem can
be formulated this way:

2



Theorem 2.2. For large enough n and for every K ∈ K1

volK(1/n) ≪ E(K, n) ≪ volK(1/n).

The content of Theorem 2.2 is that, instead of determining E(K, n), one can
determine the volume of the wet part (which is usually simpler) and obtain the
order of magnitude of E(K, n). The reader will have no difficulty understanding
that for the unit ball Bd in R

d the wet part Bd(v ≤ t) is the annulus Bd \ (1−
h)Bd where h is of order t2/(d+1). Thus

E(Bd, n) ≈ volBd(1/n) ≈ n−2/(d+1).

Similarly, for the unit cube Qd in R
d the floating body with parameter t (in the

subcube [0, 1/2]d) is bounded by the hypersurface {x ∈ R
d :

∏

xi = ddt/d!}.
From this the volume of the wet part can be determined easily:

E(Qd, n) ≈ volQd(1/n) ≈ (lnn)d−1

n
.

This shows that the behaviour of E(K, n) can be very different for different
convex bodies: the volume of the wet part varies heavily depending on the
boundary structure of K.

3 Economic cap covering of K(v ≤ ε)

Everything interesting that can happen to a convex body happens near its
boundary. The technique of cap-coverings and M -regions is a powerful method
to deal with the boundary structure of convex bodies. The proof of the economic
cap covering theorem (see [14] and [7]) is based on this technique. It says the
following

Theorem 3.1. Assume K ∈ K1 and 0 < ε < ε0 = (d2d)−1. Then there are
caps C1, . . . , Cm and pairwise disjoint convex sets C ′

i, . . . , C
′
m such that C ′

i ⊂ Ci

for each i and

(i)
⋃m

1 C ′
i ⊂ K(ε) ⊂ ⋃m

1 Ci,

(ii) volC ′
i ≫ ε and volCi ≪ ε for each i,

(iii) for each cap C with C ∩ K(v > ε) = ∅ there is a Ci containing C.

The meaning is that the caps Ci cover the wet part, but do not “over cover”
it. In particular,

mε ≪ volK(ε) ≪ mε. (3.1)

The next corollary expresses a certain concavity property of the function
ε → volK(ε). It says that, apart from the constant implied by the ≫ nota-
tion, volK(ε) is a concave function near ε = 0. This will be sufficient for our
purposes, that is, for the proof of Theorem 2.2.
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Corollary 3.2. If K ∈ K1, ε ≤ ε0, and λ ≥ 1, then

volK(ε) ≫ λ−1 volK(λε). (3.2)

The proof of the above results relies heavily on the Macbeath-regions and
their properties. They are defined, with their properties explained, in the next
section.

4 Macbeath-regions

Macbeath-regions, or M -regions, for short, were introduced in 1952 by A. M.
Macbeath: given a convex body K ∈ Kd, and a point x ∈ K, the corresponding
M -region is, by definition,

M(x) = MK(x) = K ∩ (2x − K).

So M(x) is, again, a convex set. It is centrally symmetric with centre x. We
define the blown-up version of the M -region as follows

M(x, λ) = MK(x, λ) = x + λ [(K − x) ∩ (x − K)] .

This is just a blown-up copy of M(x) from its center x with scalar λ > 0.
We define the function u : K → R by

u(x) = volM(x).

The level sets of u are defined the same way as those of v:

K(u ≤ t) = {x ∈ K : u(x) ≤ t}, K(u ≥ t) = {x ∈ K : u(x) ≥ t}.

We note that the function u : K → R, just like v, is invariant (or rather
equivariant) under non-degenerate linear transformations A : R

d → R
d. That

is,
uAK(Ax) = |detA|uK(x)

since MAK(Ax) = A(MK(x)). This also shows that the quantity,

volK(u ≤ t volK)

volK
(4.1)

is invariant under non-degenerate linear transformations, cf (2.1).
M -regions have an important property that can often be used with induction

on dimension. Namely, assume H is a hyperplane and x ∈ K ∩ H. Then, as it
is very easy to see,

MK∩H(x) = MK(x) ∩ H. (4.2)

The convexity of K(u ≥ t) is not as simple as that of K(v ≥ t). It was
proved by Macbeath [47]. We state it as a separate lemma.

Lemma 4.1. The function u1/d : K → R is concave. Consequently, the set
K(u ≥ t) is convex.
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Proof. We check first that 1
2(M(x) + M(y)) ⊂ M(1

2(x + y)). So assume
a ∈ M(x), that is a ∈ K and a ∈ 2x − K, or a = 2x − k1 for some k1 ∈ K.
Similarly b ∈ M(y) implies b ∈ K and b = 2y − k2 for some k2 ∈ K. Then, by
the convexity of K, (a + b)/2 ∈ K and

a + b

2
= x + y − k1 + k2

2
∈ 2

x + y

2
− K,

implying the claim. Now the Brunn-Minkowski inequality together with the
containment 1

2(M(x) + M(y)) ⊂ M(1
2(x + y)) implies that the function u1/d is

concave in the following way.

1

2
u(x)1/d +

1

2
u(y)1/d =

1

2

(

volM(x)1/d + volM(y)1/d
)

≤ 1

2
vol

(

M(x) + M(y)
)1/d

= vol

(

M(x) + M(y)

2

)1/d

≤ volM

(

x + y

2

)1/d

= u

(

x + y

2

)1/d

.

Thus, in particular, the level sets K(u ≥ t) are convex.
We need another property of the function u, proved first by S. Stein [72]

Lemma 4.2. Given K ∈ K1, max{u(x) : x ∈ K} > 2−d.

Proof. The basic observation is that the average of u(x) on K ∈ K1 equals
2−d. From this the Lemma follows immediately. In order to determine the
average of u(x), let K∗ be the set of pairs (x, y) with x ∈ K and y ∈ M(x).
Since K∗ is convex (right?), Fubini’s theorem applies:

∫

K
u(x)dx =

∫ ∫

K∗

dydx =

∫ ∫

K∗

dxdy.

For fixed y ∈ K, y ∈ M(x) if and only if y ∈ 2x − K, or, equivalently, x ∈
y + 1

2(K − y). Thus for fixed y ∈ K,
∫

K∗ dx = 2−d volK = 2−d.

The computation of u(x) is simpler than that of v(x) since one does not have
to minimize. It turns out that v(x) ≈ u(x), when x is close to the boundary
of K. A word of warning is in place here: closeness to the boundary is to be
expressed equivariantly, that is, in terms of how small v(x) or u(x) is as both
u and v are affinely equivariant.

We now list several properties of these functions and their interrelations.
The proofs are technical and will be given in the next section which can be
skipped on first reading. In each one of these lemmas we assume that K is a
convex body in K1 and ε0 = (d2d)−1.

Lemma 4.3. For all x ∈ K, u(x) ≤ 2v(x).

Lemma 4.4. If x, y ∈ K and M(x, 1/2) ∩ M(y, 1/2) 6= ∅, then

M(y, 1) ⊂ M(x, 5).
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Lemma 4.5. If x ∈ K and v(x) ≤ ε0, then

C(x) ⊂ M(x, 2d).

Lemma 4.6. If x ∈ K and v(x) ≤ ε0, then v(x) ≤ (2d)du(x).

Lemma 4.7. If x ∈ K and u(x) ≤ (2d)−dε0, then v(x) ≤ (2d)du(x).

Lemma 4.8. When ε > 0, K(v ≥ ε) contains no line segment on its boundary.

Lemma 4.9. Assume C is a cap of K and C ∩K(v ≥ ε) = {x}, a single point.
If ε ≤ ε0, then volC ≤ dε and

C ⊂ M(x, 2d).

Lemma 4.10. Every y ∈ K(ε) is contained in a minimal cap C(x) with
volC(x) = ε and x ∈ bdK(v ≥ ε), provided ε ≤ ε0.

Lemma 4.11. If ε ≤ ε0, then for every y ∈ K(ε) there is an x ∈ bdK(v ≥ ε)
with y ∈ M(x).

Lemma 4.12. For all ε ≥ 0, K(v ≤ ε) ⊂ K(u ≤ 2ε). If ε ≤ (2d)−dε0, then
K(u ≤ (2d)−dε) ⊂ K(v ≤ ε).

The importance of these lemmas lies in the fact that they show u ≈ v
near the boundary of K in a strong sense. Namely, under the conditions of
Lemma 4.5 the minimal cap is contained in a blown up copy of the Macbeath
region. On the other hand, “half” of the Macbeath region is contained in the
minimal cap. Precisely, if C = K ∩ H(a ≤ t) is a minimal cap, then

M(x) ∩ H(a ≤ t) ⊂ C(x). (4.3)

This shows that there is a two-way street between C(x) and M(x): C(x) can
be replaced by M(x) and M(x) by C(x) whenever it is more convenient to work
with the other one.

5 Proofs of the properties of the M-regions

Lemma 4.3 follows from (4.3).

Proof of Lemma 4.4 from the ground breaking paper by Ewald, Larman,
Rogers [28]. Assume a is the common point of M(x, 1/2) and M(y, 1/2). Then

a = x +
1

2
(x − k1) = y +

1

2
(k2 − y)

for some k1, k2 ∈ K implying y = 3x− k1 − k2. Suppose now that b ∈ M(y, 1).
Then b ∈ K ⊂ x + 5(K − x) clearly, and b = y + (y − k3) with some k3 ∈ K.
Consequently

b = 2y − k3 = 6x − 2k1 − 2k2 − k3

= x + 5

(

x −
[

2

5
k1 +

2

5
k2 +

1

5
k3

])

∈ x + 5(x − K).
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Lemma 4.5 is also from the Ewald, Larman, Rogers paper. The proof below
is a slight improvement on their constant, and comes from an effort to find an
affine invariant proof when the statement is affine invariant.

Proof of Lemma 4.5. The basic observation is that if C(x) = K ∩ H(a ≤ t)
is minimal cap, then x is the centre of gravity of the section K∩H(a = t). This
can be checked by a routine variational argument. We first prove the following

Claim 5.1. Assume C(x) has width w, and K contains a point k in the hyper-
plane H(a = t + w). Then C(x) ⊂ M(x, 2d).

Proof. Assume that, on the contrary, there is a point z ∈ C(x) which is not
in M(x, 2d). Then z /∈ x + 2d(x − K) implying

z∗ = x − 1

2d
(z − x) /∈ K.

Let L be the two-dimensional plane containing x, k and z, then z∗ ∈ L as well,
and our problem has become a simple plane computation. Fix a coordinate
system to L with x lying at the origin and the hyperplane H(a = t) intersecting
L in the y axis, as shown in Figure 1.

b

b

b

b

b

−w w

0

z
u

z∗u∗

k

Figure 1

In this setting z∗ = − 1
2dz. The line aff{k, z}, resp. aff{k, z∗} intersects

the y axis at the points u ∈ K (since k, z ∈ K) and u∗ /∈ K (since k ∈ K
and z∗ /∈ K). As x is the centre of gravity of a (d − 1)-dimensional section,
(d−1)‖u∗‖ > ‖u‖ must hold. Write k = (k1, k2) and z = (z1, z2); the conditions
imply that k1 = w and z1 ∈ [−w, 0]. It is not hard to check that

‖u‖ =
|k1z2 − k2z1|

k1 − z1
and ‖u∗‖ =

|k1z2 − k2z1|
2dk1 + z1

.
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Then (d−1)‖u∗‖ > ‖u‖ implies (d−1)(k1−z1) > 2dk1 +z1 or −dz1 > (d+1)k1

contradicting k1 = w and z1 ∈ [−w, 0].

The rest of the proof is what I like to call trivial volume estimates. We
show that if C(x) = K ∩ H(a ≤ t) is a minimal cap of width w and v(x) ≤ ε0,
then the width of K in direction a is at least 2w. Assume the contrary. We can
suppose, by translating K if necessary, that H(a = 0) is the common supporting
hyperplane to C(x) and K. Then w = t, and we define

A(τ) = vol d−1(K ∩ H(a = τ)).

Then 1 = volK =
∫ 2w
0 A(τ)dτ , and v(x) = volC(x) =

∫ w
0 A(τ)dτ . Clearly

A(τ) is positive on an interval (0, s) with w ≤ s < 2w. The Brunn-Minkowski
theorem, actually Lemma 1.1, shows that A(τ)1/(d−1) is a concave function on
[0, s). It is easy to see then that A(2τ) ≤ 2d−1A(τ) for all τ ∈ [0, w], with strict
inequality when 2τ > s. Thus

1 =

∫ 2w

0
A(τ)dτ = 2

∫ w

0
A(2τ)dτ < 2d

∫ w

0
A(τ)dτ = 2dv(x),

contradicting v(x) ≤ ε0.
Lemma 4.6 follows immediately.

Proof of Lemma 4.7. We prove the stronger statement that u(x) ≤ (2d)−dε
and ε ≤ ε0 implies v(x) ≤ ε. This implication is the same as

K(u ≤ (2d)−dε) ⊂ K(v ≤ ε),

which is the same as

K(v ≥ ε) ⊂ K(u ≥ (2d)−dε).

The advantage of the last formulation is that both sets are convex, and both
contain the point where the function u takes its maximum. (The last state-
ment follows from Lemma 4.2.) So it suffices to check that every point on the
boundary of K(v ≥ ε) is contained in K(u ≥ (2d)−dε). But at boundary point,
z say, v(z) = ε ≤ ε0, and Lemma 4.6 implies what we need.

Proof of Lemma 4.8. Let x, y ∈ bdK(v ≥ ε) and assume z = 1
2(x + y) is

also in bdK(v ≥ ε). Then there is a minimal cap C(z) of volume ε. C(z)
cannot contain x (or y) in its interior as otherwise a smaller “parallel” cap
would contain x (or y). Then C(z) must contain both x and y in its bounding
hyperplane. Then it is a minimal cap for both x and y. But both x and y
cannot be the centre of gravity of the section K ∩ H(a = t) at the same time
unless x = y.

Proof of Lemma 4.9. Denote the set of outer normals to K(v ≥ ε) at
z ∈ bdK(v ≥ ε) by N(z). It is well known (see [58]) that as K(v ≥ ε) is a
convex body, N(z) coincides with the cone hull of its extreme rays.

For b ∈ Sd−1 define Cb as the unique cap Cb = K ∩ H(b ≤ t) such that
Cb ∩ K(v ≥ ε) 6= ∅ but Cb ∩ intK(v ≥ ε) = ∅. Then, by the previous lemma,
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Cb ∩ K(a ≥ ε) = {x}. We mention that the function b → volCb is obviously
continuous. We will need a classical result of Alexandrov (see for instance [64])
stating that at almost every point z on the boundary of a convex body the
supporting hyperplane is unique. This shows that if z ∈ bdK(v ≥ ε) is such a
point then N(z) ∩ Sd−1 is a unique vector, to be denoted by b(z). In this case,
of course, volCb(z) = ε .

Claim 5.2. If b is the direction of an extreme ray of N(z), then volCb = ε.

Proof. We prove the claim first for an extremal ray which is exposed as well.
This means that there is a vector w ∈ Sd−1 such that w · b = 0 and w · x < 0
for all x ∈ N(z), x 6= λb (λ > 0).

Note that N(z) is the polar of the minimal cone whose apex is z and which
contains K(v ≥ ε). Then w is in the polar of N(z), and w is a tangent direction
to K(v ≥ ε) at z. So there are points z(t) ∈ bdK(v ≥ ε) for all small enough
t > 0 with

‖(z(t) − z) − tw‖ = o(t) as t → 0.

Choose now a subsequence zk ∈ bdK(v ≥ ε) very close to z(1/k) with unique
tangent hyperplane to K(v ≥ ε) (using Alexandrov’s theorem). We may assume
that lim b(zk) exists and equals b0 ∈ Sd−1. It is easily seen that b0 ∈ N(z).
Assume b0 6= b. Then, since b(zk) ∈ N(zk),

0 ≥ b(zk) · (y − zk)

for every y ∈ K(v ≥ ε). In particular, for y = z we get

0 ≥ b(zk) · (z − zk) = −1

k
b(zk) · w − o(1/k) > −2

k
b0 · w − o(1/k) > 0

for large enough k. A contradiction proving b0 = b. The continuity of the map
b → volCb implies vol Cb = ε. This finishes the proof of the claim for exposed
rays.

A theorem of Straszewicz (see [64] says (in a slightly different form) that
the set of extreme rays is the closure of the set of exposed rays. This implies,
again by the continuity of the map b → volCb, that for an extreme ray b of
N(z), volCb = ε.

Now let C = K ∩H(a ≤ t) be the cap in the statement of the lemma. Then
−a ∈ N(x) and thus −a is in the cone hull of extreme rays of N(x). Thus by
Carathédory’s theorem −a is in the cone hull of b1, . . . , bd ∈ Sd−1 where each bi

represents an extreme ray of N(z). Then C is contained in ∪Cbi . This implies
that volC ≤ d volCbi = dε. Also, each Cbi is a minimal cap, so by Lemma 4.5,
it is contained in M(x, 2d). Consequently,

C ⊂
d

⋃

1

Cbi ⊂ M(x, 2d).
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Proof of Lemma 4.10. The minimal cap C(y) = K ∩ H(a ≤ t) is internally
disjoint from the floating body K(v ≥ ε). Let τ be the maximal number
with H(a ≤ τ) internally disjoint from K(v ≥ ε). By Lemma 4.8 the cap
C = K ∩ H(a ≤ τ) contains a unique point x ∈ bdK(v ≥ ε). The proof of
Lemma 4.9 gives that

y ∈ C(y) ⊂ C ⊂
d

⋃

1

Cbi

where each Cbi is a minimal cap of x.

Proof of Lemma 4.11. Assume the contrary and let y ∈ K(v ≤ ε) be a point
contained in no M(x) with x from the boundary of K(v ≥ ε). Then y /∈ 2x−K,
or 2x − y /∈ K. This means that the twice blown-up copy, from centre y, of
the convex body K(v ≥ ε) is disjoint from K. Then a halfspace, H(a ≤ t) say,
contains K but is disjoint from K(v ≥ ε). We assume, without loss of generality,
that y = 0. Then the halfspace H(a ≤ t/2) is disjoint from K(v ≥ ε). So the
cap C = K ∩H(a ≤ t/2) has volume at most dε (by Lemma 4.9). At the same
time, the width of K in direction a is less than twice the width of C (in the
same direction). As we have seen at the end of the proof of Lemma 4.5, this
implies that 2d volC > volK which contradicts the conditions volK = 1 and
volC ≤ (d2d)−1.

Proof of Lemma 4.12. The first statement follows directly from u(x) ≤
2v(x). The second was demonstrated in the proof of Lemma 4.7.

6 Proof of the cap covering Theorem

We start with a definition: if a cap C = K ∩ H(a ≤ t) has width w, then
H(a = t − w) is a supporting hyperplane to K. The centre of the cap is the
centre of gravity of the set K ∩ H(a = t − w). The blown-up copy of C from
its centre by a factor λ > 0 is denoted by Cλ. It is clear that Cλ lies between
hyperplanes H(a = t − w) and H(a = t − w + λw), and convexity implies that

K ∩ H(a ≤ t − w + λw) ⊂ Cλ (6.1)

and so volK ∩ H(a ≤ t − w + λw) ≤ λd volC.
Choose a system of points x1, . . . , xm on the boundary of the floating body

K(v ≥ ε) which is maximal with respect to the property

M(xi, 1/2) ∩ M(xj , 1/2) = ∅

for each i, j distinct. Such a maximal system is finite since they are pair-
wise disjoint, all of them are contained in K and volM(xi, 1/2) = 2−du(xi) ≥
(4d)−dv(x) = (4d)−dε.

We show next that

K(ε) ⊂
m
⋃

1

M(xi, 5).
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Indeed, by Lemma 4.11, for each y ∈ K(ε) there is an x ∈ bdK(v ≥ ε) with
y ∈ M(x). By the maximality of the system x1, . . . , xm, there is an xi with
M(x, 1/2) ∩ M(xi, 1/2) 6= ∅. Lemma 4.4 shows then that y ∈ M(xi, 5).

We have now a covering of K(ε) with M -regions. We are going to turn it into
a covering with caps. The minimal cap at xi is given by C(xi) = K∩H(ai ≤ ti),
let wi be its width. Define

C ′
i = M(xi, 1/2) ∩ H(ai ≤ ti) and Ci = K ∩ H(ai ≤ ti + 5wi)..

It is evident that the C ′
i are pairwise disjoint convex sets, each contained in

Ci and volC ′
i ≥ 1

2 volM(xi,
1
2) ≥ 1

2(4d)−dε by Lemma 4.6. On the other hand,
M(xi, 5) lies between hyperplanes H(ai = ti −wi) and H(ai = ti + 5wi) and so
it is contained in Ci. Finally, (6.1) shows that volCi ≤ 6d volC(xi) = 6dε.

So far this is the proof of (i) and (ii) of the theorem. We now show how one
can enlarge Ci to satisfy (iii).

This is quite simple. Keep the previous notation except for Ci, which we
now define as Ci = K ∩ H(ai ≤ ti + (10d − 1)wi). The new Ci satisfy (i) and
(ii), with a much larger constant but that does not matter. Then volCi ≪ ε.
Moreover, M(xi, 10d) ⊂ Ci.

Consider now a cap C, disjoint from K(v > ε). We may assume that our
C is maximal in the sense that C ∩ K(v ≥ ε) nonempty. Then by Lemma 4.8
they have a single point, say x, in common, and by Lemma 4.9

C ⊂ M(x, 2d).

By the maximality of the system x1, . . . , xm there is an xi with M(x, 1) ⊂
M(xi, 5). We claim that M(x, 2d) ⊂ M(xi, 10d). This will prove what we need.

The claim follows from a more general statement:
Fact. Assume A and B are centrally symmetric convex sets with centre a

and b respectively. If B ⊂ A and λ ≥ 1, then

b + λ(B − b) ⊂ a + λ(A − a). (6.2)

Proof. We may assume a = 0. Let c ∈ B, we have to prove that b+λ(c−b) ∈
λA. B is symmetric, so 2b − c ∈ B ⊂ A, and A is symmetric so c − 2b ∈ A.
Also, A is convex and c ∈ B ⊂ A, thus (1/2)(c + (c − 2b)) = c − b ∈ A. Then
c ∈ A and c− b ∈ A imply λc ∈ λA and λ(c− b) ∈ λA. But b + λ(c− b) lies on
the segment connecting λc and λ(c − b):

b + λ(b − c) =
1

λ
(λc) +

(

1 − 1

λ

)

λ(c − b) ∈ A

proving the fact.

Proof of Corollary 3.2. Let C1, . . . , Cm be the economic cap covering from
Theorem 3.1. We will show that, with notation µ = λ1/d,

K(λε) ⊂
m
⋃

1

C µ
i .

11



This will prove what we want, since, by the economic cap covering theorem,

volK(λε) ≤
m

∑

1

vol (Cµ
i ) = µd

m
∑

1

volCi ≪ λmε

≪ λ
m

∑

1

volC ′
i ≤ λ volK(ε).

Consider x ∈ K(λε), we may assume x /∈ ⋃

Ci. The minimal cap C(x) =
K ∩ H(a ≤ t) has centre z and width w. It is again convenient to assume
(and can be reached by translation) that z lies in the hyperplane H(a = 0).
Then w = t as well. The segment [x, z] intersects bd K(v ≥ ε) at the point y,
and let y ∈ H(a = w′). Now setting A(τ) = vol d−1K ∩ H(a = τ) we have

ε = v(y) ≤
∫ w′

0 A(τ)dτ , and λε ≥ v(x) =
∫ w
0 A(τ)dτ . We use again Lemma 1.1:

λε ≥
∫ w

0
A(τ)dτ =

w

w′

∫ w′

0
A

( w

w′
τ
)

dτ

≥ w

w′

∫ w′

0

( w

w′

)d−1
A(τ)dτ ≥

( w

w′

)d
ε.

Thus µ = λ1/d ≥ w/w′ and w/w′ = ‖z − x‖/‖z − y‖, implying

‖z − x‖ ≤ µ‖z − y‖.

Consider now the cap Ci = K ∩H(ai ≤ ti) that contains y. Let zi be the centre
of Ci and write yi for the intersection of [zi, x] ∩ H(ai = ti). The line aff{z, x}
intersects the hyperplanes H(ai = ti), H(ai = ti −wi) respectively at y′ and z′.
It is easy to check that the points z′, z, y, y′, x come on this order on aff{z, x}.
Consequently,

‖x − zi‖
‖yi − zi‖

=
‖x − z′‖
‖y′ − z′‖ ≤ ‖x − z‖ + ‖z − z′‖

‖y − z‖ + ‖z − z′‖ ≤ ‖x − z‖
‖y − z‖ ≤ µ.

So indeed x ∈ ⋃m
1 Cλ µ

i .

7 Auxiliary lemmas from probability

We will need an upper and lower bound for the quantity Prob{x /∈ Kn} where
x is a fixed point of K and the random polytope Kn varies. The lower bound
is simple: if C(x) is the minimal cap of x, then clearly

Prob{x /∈ Kn} ≥ Prob{Xn ∩ C(x) = ∅} = (1 − v(x))n (7.1)

where Xn is the random sample of n points from K.
We mention at once that this implies the lower bound in Theorem 2.2, or,

what is the same, in Theorem 2.1:

12



Proof of the lower bound in Theorem 2.1. Using the above inequality we
get, for all t > 0 that

E(K, n) =

∫

K
Prob{x /∈ Kn}dx ≥

∫

K
(1 − v(x))ndx

≥
∫

K(t)
(1 − v(x))ndx ≥

∫

K(t)
(1 − t)ndx ≥ (1 − t)n volK(t).

Choosing here t = 1/n gives the lower bound with c1 = 1/4 for instance. Note
that c1 is universal: it does not depend on dimension.

We need an upper bound on Prob{x /∈ Kn}:

Prob{x /∈ Kn} ≤ 2
d−1
∑

i=0

(

n

i

) (

u(x)

2

)i (

1 − u(x)

2

)n−i

. (7.2)

Proof. We are going to use the following equality which is due to Wendel [78].
Assume M is an 0-symmetric d-dimensional convex body, and let Xn be a
random sample of uniform, independent points from M . Then

Prob{0 /∈ M} = 2−n+1
d−1
∑

i=0

(

n − 1

i

)

. (7.3)

(I will give a proof of this result at the end of the section.)
Let x ∈ K be fixed and define N(x) = Xn ∩ M(x). Setting n(x) = |N(x)|

we have

Prob{x /∈ Kn} =
n

∑

m=0

Prob{x /∈ Kn|n(x) = m}Prob{n(x) = m}

≤
n

∑

m=0

Prob{x /∈ N(x)|n(x) = m}Prob{n(x) = m}

= 2
n

∑

m=0

2−m
d−1
∑

i=0

(

m − 1

i

)

Prob{n(x) = m}.

We used Wendel’s equality. Prob{n(x) = m} is a binomial distribution with

13



parameter u = u(x). Thus

Prob{x /∈ Kn} ≤ 2
n

∑

m=0

2−m
d−1
∑

i=0

(

m − 1

i

)(

n

m

)

um(1 − u)n−m

= 2

d−1
∑

i=0

n
∑

m=0

(

m − 1

i

)(

n

m

)

(u

2

)m
(1 − u)n−m

≤ 2
d−1
∑

i=0

n
∑

m=i+1

(

m

i

)(

n

m

)

(u

2

)m
(1 − u)n−m

= 2
d−1
∑

i=0

(

n

i

) n
∑

m=i

(

n − i

m − i

)

(u

2

)m
(1 − u)n−m

= 2
d−1
∑

i=0

(

n

i

) n−i
∑

k=0

(

n − i

k

)

(u

2

)k+i
(1 − u)n−i−k

= 2
d−1
∑

i=0

(

n

i

)

(u

2

)i (

1 − u

2

)n−i
.

Proof of Wendel’s equality. We start with the following simple fact. Assume
H1, . . . , Hn are hyperplanes in R

d in general position that is, every d of them
has exactly one point in common and no d + 1 of them intersect. The set
R

d \ ∪n
1Hi is the union of pairwise disjoint, connected open sets, to be called

cells. Each cell is a convex polyhedron.

Claim 7.1. The number of cells is exactly
∑d

i=0

(

n
i

)

.

We prove this by induction on d. Everything is clear when d = 1. Assume
d > 1 and the statement is true in Rd−1. Let a ∈ Rd be a unit vector in
general position and let C be one of the cells. If min{a · x : x ∈ C} is finite,
then it is reached at a unique vertex of C which is the intersection of some d
hyperplanes Hi1 , . . . , Hid . There are

(

n
d

)

such minima and each one comes from
a different cell. So exactly

(

n
d

)

cells have a finite minimum in direction a. Let
K be a number smaller than each of these

(

n
d

)

minima. The rest of the cells are
unbounded in direction a, so they all intersect the hyperplane H with equation
a · x = K . The induction hypothesis can be used in H (which is a copy of
Rd−1) to show that the number cells, unbounded in direction a is

∑d−1
i=0

(

n
i

)

.
This finishes the proof of the Claim.

Now for the proof of Wendel’s equality. The basic observation is that choos-
ing the points x1, . . . , xn and choosing the points ε1x1, . . . , εnxn (where each
εi = ±1) are equally likely. So we want to see that, out of the 2n such choices,
how many will not have the origin in their convex hull. If 0 /∈ [ε1x1, . . . , εnxn],
then all the εixi are contained in the open halfspace {x ∈ R

d : a · x > 0} for
some unit vector a ∈ R

d. The conditions a · (εixi) > 0 show that all halfspaces
containing each εixi (i = 1, . . . , n, the εi are fixed) have their normal a in the
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cone
n
⋂

1

{y ∈ R
d : y · (εixi) > 0}.

So the question is how many such cones there are. Or, to put it differently,
when you delete the hyperplanes Hi = {y ∈ R

d : y · xi = 0} i = 1, . . . , n from
Rd you get pairwise disjoint open cones Cα; how many such cones are there?
Surprisingly, this number is independent of the the position of the xi (if they
are in general position and, in the given case, they are). We claim that this
number is equal to

2
d−1
∑

i=0

(

n − 1

i

)

.

This will, of course, prove Wendel’s equality (7.3).
Consider the hyperplane H∗ = {y ∈ R

d : y · xn = 1}. The cones Cα come
in pairs, Cα together with −Cα and only one of them intersects H∗. So the
question is this. If you delete the hyperplanes Hi, i = 1, . . . , n−1 from H∗, how
many connected components are left? This is answered by the Claim: there are
exactly

d−1
∑

i=0

(

n − 1

i

)

such cells.

8 Proof of Theorem 2.1

We only have to prove the upper bound. We start with the integral represen-
tation of E(K, n) and use the upper bound from (7.2):

E(K, n) =

∫

K
Prob{x /∈ K}dx

≤
∫

K
2

d−1
∑

i=0

(

n

i

) (

u(x)

2

)i (

1 − u(x)

2

)n−i

dx

≤ 2
d−1
∑

i=0

(

n

i

) ∫

K

(

u(x)

2

)i (

1 − u(x)

2

)n−i

dx.

K is the disjoint union of the sets for λ = 1, 2, . . . , n

Kλ = K((λ − 1)/n ≤ u < λ/n).

We integrate separately on each Kλ using that, on Kλ, u(x) < λ/(2n) and
1 − u(x)/2 ≤ exp{−(λ − 1)/(2n)}. Thus

∫

Kλ

(

u(x)

2

)i (

1 − u(x)

2

)n−i

dx ≪
(

λ

2n

)i

exp{−(λ − 1)/4} volK(u ≤ λ/n).
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We continue the inequality for E(K, n):

E(K, n) ≪ 2

d−1
∑

i=0

(

n

i

) n
∑

λ=1

(

λ

2n

)i

exp{−(λ − 1)/4} vol K(u ≤ λ/n)

≪
n

∑

λ=1

d−1
∑

i=0

(

n

i

) (

λ

2n

)i

exp{−(λ − 1)/4} volK(u ≤ λ/n)

=
Λ

∑

λ=1

.. +
n

∑

λ=Λ+1

..

where Λ = (2d)−2dε0n = 8−dd−2d−1n which we take for an integer. Note that
(

n
i

) (

λ
2n

)i ≪ λi. So we have, using Lemma 4.12 and Corollary 3.2

Λ
∑

λ=1

.. ≪
Λ

∑

λ=1

dλd−1 exp{−(λ − 1)/4} volK(v ≤ (2d)dλ/n)

≪
Λ

∑

λ=1

λd−1 exp{−(λ − 1)/4}λ volK(v ≤ 1/n)

≪ volK(v ≤ 1/n).

Estimating the second sum is simpler since one can use the trivial volK(u ≤
λ/n) ≤ 1 and 1/n ≤ volK(u ≤ 1/n) inequalities:

n
∑

Λ+1

.. ≪
n

∑

Λ+1

λd−1 exp{−(λ − 1)/4} volK(v ≤ (2d)dλ/n)

≪
n

∑

Λ+1

λd−1 exp{−(λ − 1)/4}

≪ volK(v ≤ 1/n).

Thus we have E(K, n) ≪ volK(1/n).

Remark. This proof comes from the paper Bárány, Larman 1988.

9 Expectation of fk(Kn)

The following simple identity is due to Efron [27] : for K ∈ K1

Ef0(Kn) = nE(K, n − 1). (9.1)

The proof is straightforward:

Ef0(Kn) =
n

∑

i=1

Prob{xi is a vertex of Kn}

= n Prob{x1 is a vertex of Kn} = n Prob{x1 /∈ [x2, . . . , xn]}
= n Prob{x /∈ Kn−1} = nE(K, n − 1)
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where the last probability is taken with both Kn−1 and x varying.
Theorem 2.2 determines then the order of magnitude of Ef0(Kn) as well.

The expectation of fk(Kn) for k = 1, . . . , d−1 must be close to that of Ef0(Kn)
since, as n goes to infinity, Kn looks locally like a “random” triangulation of
R

d−1 where you don’t expect vertices of high degree. We have the following
result from Bárány [7].

Theorem 9.1. For large enough n and for all K ∈ K1 and for all k =
0, 1, . . . , d − 1

n volK(1/n) ≪ Efk(Kn) ≪ n volK(1/n).

The lower bound in case k = 0 follows, via Efron’s identity, from the lower
bound in Theorem 2.1. The following fact simplifies the proof of Theorem 9.1.

Lemma 9.2. For all 0 ≤ i < j ≤ d − 1

fi(Kn) ≤
(

j + 1

i + 1

)

fj(Kn).

Proof. Almost surely Kn is a simplicial polytope. Double counting the pairs
(Fi, Fj) where Fi and Fj are faces of dimension i and j of Kn with Fi ⊂ Fj we
have

fi(Kn) =
∑

Fi

1 ≤
∑

(Fi,Fj)

1 =

(

j + 1

i + 1

)

fj(Kn).

So we see that for the upper bound in Theorem 9.1 it suffices to show the
following:

Lemma 9.3. For large enough n and for all K ∈ K1

Efd−1(Kn) ≪ n volK(1/n).

At this point we state an interesting corollary to the economic cap covering
theorem which has no direct application in what follows. Some preparation is
necessary.

Assume x1, . . . , xk ∈ K, set L = aff{x1, . . . , xk} and define

v(L) = max{v(x) : x ∈ L}.

We write Kk for the set of ordered k-tuples (x1, . . . , xk) with xi ∈ K for each i.

Corollary 9.4. If K ∈ K1, k = 1, 2, . . . , d and ε ≤ ε0, then

{(x1, . . . , xk) ∈ Kk : v(L) ≤ ε} ⊂
m
⋃

1

(Ci, . . . , Ci)

where C1, . . . , Cm is the set of caps from the previous theorem.
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Proof. This is where we use part (iii) of Theorem 3.1. If v(L) ≤ ε, then L
and K(v > ε) are disjoint. By separation, there is a halfspace H, containing
L which is disjoint from K(v > ε). Then the cap C = K ∩ H is also disjoint
from K(v > ε). Clearly, C contains x1, . . . , xk. Consider now Ci from the cap
covering with C ⊂ Ci: it is evident that

(x1, . . . , xk) ∈ (C, . . . , C) ⊂ (Ci, . . . , Ci).

We mention that the Corollary implies the following estimate:

meas{(x1, . . . , xk) ∈ Kk : v(L) ≤ ε} ≤ εk−1K(ε).

Indeed, the measure of
⋃m

1 (Ci, . . . , Ci) is ≪ mεk ≪ εk−1K(ε) by the economic
cap covering theorem.

10 Proof of Lemma 9.3

Given xi1 , . . . , xid let V = V (xi1 , . . . , xid) denote the volume of the smaller cap
cut off by L = aff{xi1 , . . . , xid} from K. This is well defined almost surely since
L is a hyperplane with probability one. Write F for the set of facets of Kn.
Then we have

Efd−1(Kn) =
∑

1≤i1<···<id≤n

Prob{[xi1 , . . . , xid ] ∈ F}

=

(

n

d

)

Prob{[x1, . . . , xd] ∈ F}

=

(

n

d

) ∫

K
. . .

∫

K
[(1 − V )n−d + V n−d]dx1 . . . dxd.

The last equality follows form the fact that [x1, . . . , xd] is a facet of Kn if and
only if all other xi lie on one side of L.

Next we split the domain of integration into two parts: K1 is the subset
of Kd where the function V is smaller than (c lnn)/n, and K2 is where V ≥
(c lnn)/n. The constant c will be specified soon. Clearly V ≤ 1/2. The
integrand over K2 is estimated as follows:

(1 − V )n−d + V n−d ≤ exp{−(n − d)V } + 2−(n−d)

≤ 2 exp{−(n − d)(c lnn)/n}
= 2n−c(n−d)/n

which is smaller than n−(d+1) if c = 2(d+1) (and n > 2d which we can assume).
Then the contribution of the integral on K2 to Efd−1(Kn) is at most 1/n so it
is very small since, trivially, Efd−1(Kn) is at least one.

Now let h be an integer with 2−h ≤ (c lnn)/n. For each such h let Mh be
the collection of caps {C1, . . . , Cm(h)} forming the economic cap covering from

Theorem 3.1 with ε = 2−h.
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Assume now that (x1, . . . , xd) ∈ K1. We will denote by C(x1, . . . , xd) the
cap cut off from K by the hyperplane aff{x1, . . . , xd}, clearly volC(x1, . . . , xd) =
V (x1, . . . , xd). We associate with (x1, . . . , xd) the maximal h such that, for some
Ci ∈ Mh, C(x1, . . . , xd) ⊂ Ci. It follows that

V (x1, . . . , xd) ≤ volCi ≪ 2−h (10.1)

and, by the maximality of h,

V (x1, . . . , xd) ≥ 2−h−1 (10.2)

since otherwise C(x1, . . . , xd) would be contained in a cap from Mh+1. We
integrate over K1 by integrating each (x1, . . . , xd) on its associated Ci. It is
very easy to estimate the integrand on Ci:

(1− V )n−d + V n−d ≤ 2(1− V )n−d ≤ 2(1− 2−h−1)n−d ≤ 2 exp{−(n− d)2−h−1}.

Thus the integral on Ci ∈ Mh is bounded by

2 exp{−(n − d)2−h−1}(volCi)
d ≪ exp{−(n − d)2−h−1}(2−h)d

as all the xi come from Ci. Summing this for all Ci ∈ Mh and all h ≥ h0 where
h0 = ⌊(c lnn)/n⌋ we get that

Efd−1(Kn) ≪
(

n

d

) ∞
∑

h0

∑

Ci∈Mh

exp{−(n − d)2−h−1}2−hd

≪
(

n

d

) ∞
∑

h0

exp{−(n − d)2−h+1}2−hd|Mh|

≪
(

n

d

) ∞
∑

h0

exp{−(n − d)2−h+1}2−h(d−1) volK(2−h)

where the last inequality follows from (3.1).
The rest of the proof is a direct computation. We sum first for h ≥ h1 where

h1 is defined by 2−h1 ≤ 1/n < 2−h1+1. The sum from h1 to infinity is estimated
via:

∞
∑

h1

.. ≤
∞

∑

h1

exp{−(n − d)2−h+1}2−h(d−1) volK(1/n)

≤ volK(1/n)
∞

∑

h1

2−h(d−1) ≤ n−(d−1) volK(1/n).

When h0 ≤ h < h1 we set h = h1 − k so k runs from 1 to k1 = log2 lnn + ln c.
Corollary 3.2 shows that

volK(2−h) ≤ volK(2k/n) ≪ 2k volK(1/n).
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Thus

h1−1
∑

h0

.. ≪
k1
∑

k=1

exp{−(n − d)2−h1+k−1}2(−h1+k)(d−1)2k volK(1/n)

≪ n−(d−1) volK(1/n)

k1
∑

k=1

exp{−(n − d)2k−1/n}2kd

≪ n−(d−1) volK(1/n)
∞

∑

k=1

exp{−2k−2 + dk ln 2}

≪ n−(d−1) volK(1/n)

where the last step is easily justified.

Remark. This proof shows that Efd−1(Kn) ≪ volK(1/n). Then Ef0(Kn) ≪
volK(1/n) follows from Lemma 9.2. Efron’s identity implies that Ef0(Kn) ≈
E(K, n). Thus the proof of Lemma 9.3 is a new proof of the upper bound in
Theorem 2.2. We mention further that the proof of Efd−1(Kn) ≪ volK(1/n)
presented here is new and uses the cap-covering theorem in a different and
apparently more effective way than the old proof from Bárány [7].

11 The volume of the wet part

As we have seen in the previous sections, the order of magnitude of E(K, n)
and Efk(Kn), resp. is equal to that of volK(1/n) and n volK(1/n). In this
section we state several results on the function t → volK(t). In particular, we
are interested in the cases when this function is maximal and minimal.

Theorem 11.1. Assume K ∈ K1 and t ≥ 0 Then

volK(t) ≫ t

(

ln
1

t

)d−1

. (11.1)

This theorem is best possible (apart from the implied constant) as shown
by polytopes. We need the following definition. A tower of a polytope P is a
chain of faces F0 ⊂ F1 ⊂ . . . ,⊂ Fd−1 where Fi is i-dimensional. Write T (P ) for
the number of towers of P .

Theorem 11.2. Assume P ∈ K1 is a polytope and t ≥ 0. Then

volP (t) =
T (P )

dd(d − 1)!
t

(

ln
1

t

)d−1

(1 + o(1)).

We will only prove a simpler statement. Namely, let ∆i, i = 1, . . . , m(P ) be
simplices triangulating P . Then for all positive t ≤ e−d+1 min vol ∆i

volP (t) ≪ m(P )t

(

ln
1

t

)d−1

(11.2)

The implied constant depends on dimension only.
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Concerning the upper bound on the volume of the wet part, the affine
isoperimetric inequality of Blaschke [19] expresses an extremal property of el-
lipsoids (cf. Schütt [69] as well).

Theorem 11.3. For all convex bodies in K1

lim sup
t→0

t−
2

d+1 volK(t)

is maximal for ellipsoids, and only for ellipsoids.

Corollary 11.4. For all convex bodies K ∈ K1, and for all t ∈ (0, t0)

t

(

ln
1

t

)d−1

≪ volK(t) ≪ t
2

d+1 ,

where the implied constants depend only on dimension.

In case of smooth convex bodies in R
d volK(t) can be computed with high

precision:

Theorem 11.5. For a convex body K ∈ K1 with C2 boundary and positive
curvature κ at each point of bdK

volK(t) = c(d)t
2

d+1

∫

bd K
κ

1

d+1 dz(1 + o(1)).

The above results show that one can determine volK(t) for smooth convex
bodies and for polytopes. What happens between these two extreme classes
of convex bodies is not a mystery: it is the usual unpredictable behaviour.
Using the above results and a general theorem of Gruber [32] one can show the
following.

Theorem 11.6. Assume ω(t) → 0 and Ω(t) → ∞ as t → 0. Then for most (in
the Baire category sense) convex bodies in K1 one has, for an infinite sequence
t → 0

volK(t) ≥ ω(t)t
2

d+1 ,

and also, for another infinite sequence t → 0,

volK(t) ≤ Ω(t)t

(

ln
1

t

)d−1

.

We will only prove Theorems 11.1 and inequality (11.2).

12 Determination of E(K, n) and Efs(Kn)

The asymptotic determination of these expectations has been achieved only
when K is a polytope and when K has smooth boundary. Of course, Corol-
lary 11.4 and Theorem 2.1 imply that

1

n
(lnn)d−1 ≪ E(K, n) ≪ n−2/(d+1)

for all K ∈ K1, and analogous inequalities hold for fs(Kn).
For the upper bound on E(K, n) more precise information is available: a

result of Groemer [29] says the following.
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Theorem 12.1. Among all convex bodies in K1, E(K, n) is maximal for ellip-
soids, and only for ellipsoids.

For smooth convex bodies Efs(Kn) has been determined by Bárány, Schütt,
and Reitzner:

Theorem 12.2. Assume K ∈ C1 has positive Gauss curvature at every point
on its boundary. Then, for all s = 0, 1, . . . , d − 1,

Efs(Kn) = c(d, s)n
d−1

d+1

∫

bd K
κ

1

d+1 dz(1 + o(1)),

where c(d, s) is a positive constant.

The constants c(d, s) come from integrals that represent various moment of
random simplices. Most of them are not known explicitly. For polytopes the
following result holds.

Theorem 12.3. Assume K ∈ K1 is a polytope and s = 0, 1, . . . , d − 1. then

Efs(Kn) = b(d, s)T (P )(ln n)d−1 + O(lnd−2 ln lnn),

where b(d, s) is a positive constant.

This is a difficult theorem whose proof is based on work of Affentranger
and Wieacker[1] (for simple polytopes) and Bárány and Buchta [12] (for general
polytopes). The latter result is proved by showing that most of the vertices (and
other faces) of Kn are concentrated in certain small simplices associated with
the towers of K. The difference between the polytope and smooth case is shown
here very spectacularly: In the smooth case, the vertices are distributed almost
evenly near the boundary of K, while for a polytope they are concentrated in the
small simplices associated with the towers of K. We mention that Reitzner [54]
gives an interesting joint treatment of the smooth and polytope case, based on
a Blaschke-Petkantschin type integral formula.

13 Proof of Theorem 11.1

We start with introducing notation. Fix a ∈ Sd−1 and let H(a = t0) be the
hyperplane whose intersection with K has maximal (d−1)-dimensional volume
among all hyperplanes H(a = t). Assume the width of K in direction a is at
most 2t0: if this were not the case we would take −a instead of a. As a will be
fixed during this proof we simply write H(t) = H(a = t). Assume further that
H(0) is the tangent hyperplane to K. Define

Q(t) = H(t) ∩ K and q(t) = vol d−1Q(t).

The choice of t0 insures that for t ∈ [0, t0]

q(t) ≥
(

t

t0

)d−1

q(t0) and 2t0q(t0) ≥ volK = 1. (13.1)
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Claim 13.1. For ε > 0 and for t ∈ (0, t0]

Q(t)
(

uQ(t) ≤
ε

2t

)

⊂ K(uK ≤ ε) ∩ H(t)

Proof. We are going to show that x ∈ H(t)∩K implies uK(x) ≤ 2tuQ(t)(x).
This of course proves the lemma.

Note first that M(x) lies between hyperplanes H(0) and H(2t). Thus

u(x) =

∫ 2t

0
vold−1(M(x) ∩ H(τ)dτ ≤ 2t vold−1(M(x) ∩ H(t))

since M(x) is centrally symmetric so its largest section is the middle one. It is
easy to check from the definition of M(x) that

M(x) ∩ H(t) = MQ(t)(x).

Consequently u(x) ≤ 2t vol d−1MQ(t)(x) = 2tuQ(t)(x)

We show next that for ε ∈ (0, 1]

volK(u ≤ ε) ≫ ε

(

ln
1

ε

)d−1

. (13.2)

Then Lemma 4.12 implies that, for ε ≤ (2d)−2dε0

volK(v ≤ ε) ≥ volK(u ≤ (2d)−dε) ≫ ε

(

ln
1

ε

)d−1

.

When ε ≥ (2d)−2dε0 the statement of the theorem follows from the fact that
ε → volK(v ≤ ε) is an increasing function of ε.

We prove (13.2) by induction on d. The case d = 1 trivial. We will need the
induction hypothesis in its invariant form (4.1): for Q ∈ Kd−1 and for η ∈ (0, 1]

volQ(uQ ≤ η volQ)

volQ
≥ cd−1η

(

ln
1

η

)d−2

.

We have

volK(u ≤ ε) ≥ volK(u ≤ ε) ∩ H(a ≤ t)

=

∫ t0

0
vol d−1K(u ≤ ε) ∩ H(t)dt

≥
∫ t0

0
vol d−1Q(t)(uQ(t) ≤ ε/(2t))dt

according to Claim 13.1. Define η = η(t) = ε/(2tq(t)) and let t1 be the unique
solution to η(t) = 1 between 0 and t0. Then η(t) ∈ (0, 1] for t ∈ [t1, t0], so the
induction hypothesis implies that, for t ∈ [t1, t0],

vol d−1Q(t)(uQ(t) ≤ ηq(t)) ≥ cd−1q(t)η

(

ln
1

η

)d−2

= cd−1
ε

2t

(

ln
2tq(t)

ε

)d−2

.
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It follows from (13.1) that

2tq(t)

ε
≥ 2tdq(t0)

εtd−1
0

.

The left hand side is larger than 1 on the interval (t2, t0] where t2 ∈ [t1, t0] is
defined as follows. The function t → 2tdq(t0)/(εtd−1

0 ) is increasing on [t1, t0]. In
view of (13.1), it is larger than 1

ε at t = t0. By (13.1) again, at t = t1 it is smaller

than one. Let t2 ∈ (t1, t0) be the unique number with 2td2q(t0)/(εtd−1
0 ) = 1.

We continue with volK(u ≤ ε):

volK(u ≤ ε) ≥
∫ t0

t1

cd−1
ε

2t

(

ln
2tq(t)

ε

)d−2

≥
∫ t0

t2

cd−1
ε

2t

(

ln

(

2tdq(t0)

εtd−1
0

))d−2

dt,

Finally, the last integral can be determined. We have, with µ = ln 2q(t0)

εtd−1

0

,

volK(u ≤ ε) ≥ cd−1
ε

2

∫ t0

t2

1

t
(d ln t + µ)d−2dτ

=
εcd−1

2d(d − 1)
(d ln t0 + µ)d−1 ≥ cd−1

2d(d − 1)
ε

(

ln
1

ε

)d−1

where the last inequality follows from (13.1).

Remark. This is the only proof known for Theorem 11.1 and it comes from
Bárány, Larman 1988. The best possible constant in the inequality probably
goes with the simplex. Note that in the proof we made full use of the two-way
street between minimal caps and M -regions.

14 Proof of (11.2)

This is a repetition of the previous computation, just the inequalities go the
other direction. We need to know vol ∆(v ≤ t) where ∆ is the d-dimensional
simplex:

Lemma 14.1. For all t ≤ e−d+1

vol ∆(v ≤ t vol∆)

vol ∆
≪ t

(

ln
1

t

)d−1

.

We remark that the function on the left hand side of this inequality increases
with t while the one on the right hand side increases on [0, e−d+1] and decreases
afterwards. That is the reason for the condition t ≤ e−d+1.

Proof. We may assume that ∆ is the simplex whose vertices are the origin
and the d basis vectors, e1, . . . , ed of R

d. We give an upper bound on the volume
of the wet part which lies below the hyperplane H with equation

∑

ξi ≤ d/(d+
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1). Denote this part by ∆0. The minimal cap C(x) of x = (ξ1, . . . , ξd) ∈ ∆0 is
a simplex with vertices 0, dξ1e1, . . . , dξded, because x is the centre of gravity of
the section. Then v(x) = dd

d!

∏

ξi. It follows then that vol ∆0 is less than the
volume of the set

S(T ) = {x ∈ R
d :

∏

ξi ≤ T, ξi ∈ [0, 1], i = 1, . . . , d},

where T = d!
dd t. The volume of S(T ) can be determined precisely: for all

T ∈ (0, 1]

volS(T ) = T
d−1
∑

0

1

j!

(

ln
1

T

)j

.

This can be proved by a simple induction on d, we omit the details.
To finish the proof of the claim note that H is parallel with the facet opposite

to the vertex at the origin. Also, H contains the centre of gravity of ∆.
Finally, let A be the affine transformation, of determinant one, that carries

∆ to a regular simplex. Then d+1 congruent copies of A∆0, one for each vertex
of A∆ completely cover the wet part of A∆. So vol ∆(v ≤ t vol∆) is at most
d + 1 times vol∆0.

Now we turn to the proof of inequality (11.2).
Assume the polytope P is triangulated by simplices ∆i i = 1, . . . , m(P ).

Clearly, if v(x) ≤ t, then v∆i
(x) ≤ t for the simplex containing x. Consequently,

for all t ≤ e−d+1 min vol ∆i,

volP (v ≤ t) ≤
m(P )
∑

1

vol ∆i(v∆i
≤ t) ≤

∑

t

(

ln
vol ∆i

t

)d−1

≤ m(P )t

(

ln
1

t

)d−1

.

Remarks. These proofs are from Bárány, Larman [14] and from Bárány [7].

15 Proof of Greomer’s theorem

We will show Theorem 12.1 (which is Groemer’s theorem) in the following,
equivalent form.

Theorem 15.1. Among all convex bodies in K1, E vol(Kn) is minimal for
ellipsoids, and only for ellipsoids.

The proof is a neat example of symmetrization. Symmetrization is given by
a line L in R

d, and the d − 1-dimensional subspace, L⊥ orthogonal to it. The
symmatral, K∗ of a set K ∈ K is obtained from K by translating every chord
of K, within its own line so that its midpoint lies in L⊥. It is not difficult to see
that K∗ ∈ K, again. It is clear that K and K∗ have the same volume. We will
need the following fact: For every K ∈ K there is a sequence of symmetrizations

25



that tend to a Euclidean ball. (A proof can be found in Schneider’s book The
Brunn-Minkowski theory.)

Given K ∈ K and a line L ∈ R
d, the mid-point set, M(K, L), is defined as

the set of midpoints of all the chords of K that are parallel with L. We will
need the following result.

Lemma 15.2. Under the above conditions, K is an ellipsoid if and only if
M(K, L) is contained in a hyperplane.

Proof. If K is an ellipse, then M(K, L) lies indeed in a hyperplane. For the
opposite direction, the condition implies that, for every line L, symmetrization
with respect to L is an affine transformation. Consider the smallest volume
ellipsoid, E say, that contains K.

There is nothing to do if K = E. If K 6= E, then consider the sequence
of symmetrizations of K tending to B, the Euclidean ball (of the same volume
as K). The sequence of symmatrals is just K, A1K, A2K, . . . where each Ai

is an affine transformation. Then, for a suitably large m, AmK lies in the
a ball B′, concentric with B and only slightly larger, and for m large enough,
volB′ < volE. Then A−1

m B′ is an ellipsoid, containing K having smaller volume
than E. A contradiction with the definition of E.

One more piece of preparation is needed before we can start the proof of
Theorem 15.1. Assume X ⊂ R

d is convex compact, and let X0 denote the
projection of X onto the hyperplane xd = 0. For a = (a1, . . . , ad−1, 0) ∈ X0

we define the upper function as x(a) = sup{xd : (a1, . . . , ad−1, xd) ∈ X} and
the lower function as x(a) = inf{xd : (a1, . . . , ad−1, xd) ∈ X}. Trivially, x is
a concave, x is a convex function on X0 and x(a) ≤ x(a) at every a ∈ X0.
Conversely, given functions x and x on a convex set in the hyperplane xd = 0
with these properties, there is a unique convex set X ⊂ R

d, whose upper and
lower functions are the given ones.

Proof of Groemer’s theorem. We first fix points a1, . . . , an in the hyperplane
xd = 0. Given Z = (z1, . . . , zn) ∈ R

n, define C(Z) = conv{(a1, z1), . . . , (an, zn)}
and let V (Z) = volC(Z).

Lemma 15.3. Under the previous condition assume that Z, Y ∈ R. Then

V

(

1

2
(Z + Y )

)

≤ 1

2
V (Z) +

1

2
V (Y ).

Proof. Let z, z, and y, y respectively, be the upper and lower functions of

C(Z) and C(Y ). Define x(a) = 1
2z(a) + 1

2y(a) and x(a) = 1
2z(a) + 1

2y(a). It is

clear that x and x are the upper and lower functions of a convex set X ⊂ R
d

for which X0 coincides with the convex hull of the ai. Moreover, the definition
directly implies that

x(ai) ≤
1

2
(zi + yi) ≤ x(ai)
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for all i, so that C(1
2(Z + Y )) ⊂ X. Then V (1

2(Z + Y )) ≤ volX. Further,

volX =

∫

(x(a) − x(a))da

=

∫

1

2
(z(a) − z(a))da +

∫

1

2
(y(a) − y(a))da

=
1

2
(V (Z) + V (Y )).

This completes the proof of the lemma.

For the next step of the proof we assume that, together with each point ai,
(i ∈ [m]) an interval Li = {zi : |zi − pi| ≤ li} is given. Then P = (p1, . . . , pn) ∈
R

n and we set

W (P ) =

∫

Li

. . .

∫

Ln

V (Z)dz1 . . . dzn.

Lemma 15.4. W (P ) ≥ W (0) with strict inequality if V (P ) 6= 0.

Proof. Substituting ui = pi − zi for zi in the integral defining W (P ) gives

W (P ) =

∫

|ui|≤l1

. . .

∫

|un|≤ln

V (P + U)du1 . . . dun.

It is straightforward to see that here V (P + U) can be replaced by V (P − U),
and then by V (U − P ) without changing the value of the integral. Thus

W (P ) =

∫

|ui|≤l1

. . .

∫

|un|≤ln

1

2
(V (U + P ) + V (U − P ))dz1 . . . dzn

≥
∫

|ui|≤l1

. . .

∫

|un|≤ln

V (U)dz1 . . . dzn = W (O),

where the last inequality follows from Lemma 15.3. If V (P ) 6= 0, then the
inequality 1

2(V (U + P ) + V (U − P )) ≥ V (U) is strict at U = 0.

Finally, let C ∈ K be a convex body for which E volKn is minimal among
all convex bodies in K1. (The existence of such a body follows from Blaschke’s
selection theorem and the continuity of the map K → E volKn, using the
Löwner-John ellipsoid.) Assume C is not an ellipsoid. By Lemma 15.2 there is
a line L such that the midpoint set M(C, L) does not lie in a hyperplane. We
choose the coordinate system so that L⊥ is the hyperplane xd = 0. We choose m
chords to C, L1, . . . , Ln, each parallel with with L, and each of positive length
so that their midpoints are not contained in a hyperplane. (The condition n > d
is used here.) Then V (P ) 6= 0 where P = (p1, . . . , pn) is the vector of midpoints
of the chords. Lemma 15.4 shows that V (P ) > V (O), and for any other system
of m chords, parallel to L, the same inequality holds, but possibly with equality
sign.

Now let C∗ be the symmetral of K0 with respect to xd = 0. When one inte-
grates first over Z with a1, . . . , an fixed, and then over the systems a1, . . . , an,
it follows that E volCn > E volC∗

n, contradicting the choice of K0.
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16 Andrews’ theorem: an application of the cap cov-
ering technique

In 1963 G. E. Andrews [2] proved the following remarkable theorem.

Theorem 16.1. Assume P ⊂ Rd is a lattice polytope of volume V > 0. Then

fd−1(P ) ≪ V
d−1

d+1 .

Alternative proofs were later found by Arnold [4], Konyagin and Sevastyanov [43],
Schmidt [62], Bárány and Vershik [18], Reisner, Schütt, Werner [52]. Here is
yet another proof, due to Bárány and Larman [15], based on the technique of
M -regions.

Proof. We start the proof by fixing ε = (2d(10d)d(d + 1)!V )−1. Note that
in this way εV < ε0. Let F be a facet of P and let xF be the point on
bdP (v ≥ εV ) where the tangent hyperplane to P (v ≥ εV ) is parallel with F .
According to Lemma 4.8, xF is unique. Let CF stand for the cap cut off from
K by the hyperplane parallel to F and passing through xF .

Lemma 16.2. For distinct facets F and G of P

M(xF , 1/2) ∩ M(xG, 1/2) = ∅.

Proof. To see this assume this intersection is nonempty. Then by Lemma
4.4 M(xG, 1) ⊂ M(xF , 5). Further, Lemma 4.9 shows that

G ⊂ CG ⊂ M(xG, 2d) ⊂ M(xF , 10d),

where the last containment is a simple consequence of M(xG, 1) ⊂ M(xF , 5).
Even simpler is

F ⊂ CF ⊂ M(xF , 2d) ⊂ M(xF , 10d).

Now M(xF , 10d) contains both facets F and G so it contains d + 1 affinely
independent lattice points. Thus its volume is at least 1/d!. Then, using again
Lemma 4.9,

1
d! ≤ volM(xF , 10d) = (10d)du(xF ) ≤ (10d)d2v(xF )

≤ 2(10d)ddεV = 1
(d+1)! .

A contradiction (due to the choice of ε), finishing the proof.

So the half M -regions M(xF , 1/2), for all facets F are pairwise disjoint.
Their “half” M(xF , 1/2) ∩ C(F ) lies completely in P (ε). Then, by the equiv-
ariant version of Theorem 11.3,

∑ 1

2
volM(xF , 1/2) ≤ volP (v ≤ εV ) ≪ ε

2

d+1 V ≪ V
d−1

d+1 .

Now, again by Lemma 4.9 and Lemma 4.3,

volM(xF , 1/2) = 2−du(xF ) ≥ 2−d(2d)−2dεV ≫ 1.
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The last two formulae show that the number of facets of P is is indeed ≪ V
d−1

d+1 .

Theorem 16.1 implies, via a trick of Andrews [2], the following slightly
stronger theorem.

Theorem 16.3. For a lattice polytope P ∈ R
d with volume V > 0

f0(P ) ≪ V
d−1

d+1 .

In what follows we will consider polytopes Q whose vertices belong to the
lattice 1

sZ
d where s ∈ N. Such a polytope is called a 1

sZ
d-lattice polytope. Its

volume, relative to the new lattice, is just sd volQ, which is the same as the
volume of Q when the unit volume is the volume of a basic parallelotope of the
new lattice.

Proof of Theorem 16.3. Let Q be the convex hull of (P ∩ 1
3Z

d) \X where X
is the set of vertices of P . So the vertices of P disappeared, but there are (at
least) two new lattice points (from the lattice 1

3Z
d) on every edge of P . The

volume of Q, relative to the new lattice, is at most 3d volP ≪ V . Also, every
vertex of P is separated from Q by a facet of Q, and each one by a different

facet. Thus f0(P ) ≤ fd−1(Q) ≪ V
d−1

d+1 .

We can further strengthen the above theorems using a variant of the above
method.

Theorem 16.4. For a lattice polytope P ∈ Rd with volume V > 0

T (P ) ≪ V
d−1

d+1 .

Proof. We start with a construction. Given a lattice polytope P in R
d, we

construct another polytope Q ⊂ P which is a 1
s(d)Z

d-lattice polytope, together
with a map f from the set of towers of P to the vertices of Q mapping distinct
towers to distinct vertices. Here s(d) is an integer depending only on d.

Such a construction suffices for the proof of the theorem because then

T (P ) ≤ f0(Q) and f0(Q) is bounded, by the previous theorem, by V
d−1

d+1 , since
the volume of Q, relative to the new lattice is at most s(d)d volP .

The construction goes by induction. We start with d = 2. Given P , let
Q be the 1

3Z
2-lattice polygon, constructed in the previous proof. A tower of

P is just a vertex v and an edge vu of P . The map f takes this tower to the
first vertex of Q after v on the segment (v, u]. This vertex is clearly on the
segment(v, (2v + u)/3], and we are done with the case d = 2.

For the induction step d − 1 → d, consider a facet, F , of P . This facet is a
lattice polytope, in the lattice Z

d ∩ aff F . The induction hypothesis guarantees
the existence of a 1

s(d−1)Z
d-lattice polytope QF and a map fF with the required

properties. Shrink the lattice a little further to 1
2ds(d−1)Z

d. Then QF contains a
new lattice point, say z, in its relative interior. We shrink now QF , from center
z, by a factor of 2, let Q∗

F denote the new polytope. It is easy to see that Q∗
F
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is a 1
2ds(d−1)Z

d-lattice polytope, Q∗
F ⊂ F , and also, it has no point in common

with the relative boundary of F . We set now

Q = conv
⋃

all F

Q∗
F .

The next task is to define the map f . Let F0, F1, . . . , Fd−1 be a tower of P .
For simpler notation we write F = Fd−1. Now F0, F1, . . . , Fd−2 is a tower of F ,
so it is mapped by fF to a unique vertex of QF . This vertex goes to a unique
vertex, say v, of Q∗

F , during the shrinking by a factor of 2. We can define now
f on the tower F0, F1, . . . , Fd−1: its value is just v. Distinct towers are then
mapped to distinct vertices of Q since v lies in the relative interior of F . The
construction is finished.

Remark. Theorems 16.1, 16.3, and 16.4 are best possible, apart from the
dimension dependent constant. This will be shown by a construction in the
next section (in connection with Theorem 17.1), and also by the integer convex
hull of rBd in Section 21.

17 Arnold’s question

In 1980, V I Arnold [4] asked the following question which turned out to be
very fertile. How many distinct lattice polytopes are there? Of course, in-
finitely many, so one has to ask a more subtle question. Write P or Pd for the
set of all convex lattice polytopes in R

d of positive volume. Two convex lattice
polytopes are equivalent if there is a lattice preserving affine transformation
R

d → R
d carrying one to the other. This is an equivalence relation, and equiv-

alent polytopes have the same area. Write Nd(V ) for the number of different,
that is, non-equivalent, convex lattice polytopes form Pd, having volume at
most V . Arnold showed that, in the two dimensional case, (we write A instead
of V for the area)

A1/3 ≪ log N2(A) ≪ A1/3 log A.

He conjectured and Konyagin and Sevastyanov [43] proved that

V
d−1

d+1 ≪ log Nd(V ) ≪ V
d−1

d+1 log V.

The log factor can be removed. This was done in [17] for the case d = 2,
and in [18] for the general case.

Theorem 17.1.

V
d−1

d+1 ≪ log Nd(V ) ≪ V
d−1

d+1 .

The lower bound is easier and follows from the following construction of
Arnold [4]. We explain it first in the planar case. Consider the parabola (t, t2)
when t ∈ [0, T ] and T is an even integer. Write E = {(t, t2), t ∈ [0, T ] even} ∪
{(0, T 2)} and D = {(t, t2), t ∈ [0, T ] odd}. Each subset V of D defines a convex
lattice polygon conv{W ∪ E}. These 2T/2 convex lattice polygons are distinct
(that is, no two of them are equivalent), and their area is less than T 3. So with
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A = T 3 we have 2T/2 = exp{1
2 log 2A1/3} convex lattice polytopes of area at

most A. Out of this collection of convex lattice polygons one can even produce
the same number of distinct convex lattice polygons with the same area. This
can be achieved by cutting off a small lattice triangle, with one vertex at (0, T 2),
from each polygon.

The higher dimensional construction is very similar and based on the lattice
points lying on the paraboloid xd = x2

1 + · · · + x2
d−1 with xd ≤ T 2. The reader

will have no difficulty reconstructing this example.
We mention that the convex hull of all the integer points on the above

parabola (resp., paraboloid) is the example showing that the estimate given by
Andrews theorem (Theorem 16.1) is best possible.

A further example will come from Theorem ?? in Section 21.
The proof for the upper bound is more difficult and will be given, first for

the planar case, and then for the general one, in the next two section. One of
the main tools is a result about ”multi–partitions” which we state and prove
here.

Write Z
d
+ for the set of positive integer points of Rd, i. e., z ∈ Z

d
+ if every

component of z is a positive integer. Given n = (n1, . . . , nd) ∈ Z
d
+ we call a set

{z1, . . . , zt} ⊂ Zd
+ such that

∑t
i=1 zi = n a multi–partition of n. The number

of distinct multi–partitions of n will be denoted by p(n) or pd(n) if we want to
specify dimension. The generating function of p(n) is given in Andrews’ book
[3] as

f(x) = 1 +
∑

n∈Zd
+

p(n)xn =
∏

m∈Z
d
+

(1 − xm)−1, (17.1)

where x = (x1, . . . , xd) ∈ Rd and xn = xn1

1 . . . xnd

d . Actually, this is very easy
to check as well. It is clear and actually well known, that f(x) is well–defined
and finite when all |xi| < 1. We will prove

Theorem 17.2. log p(n) ≤ (d + 1) (ζ(d + 1)n1 . . . nd)
1/(d+1).

Here ζ(d + 1) =
∑∞

1 k−(d+1) is the zeta function.
When d = 1, p(n) = p1(n) is the number of partitions of n ∈ Z and the

upper bound from Theorem 2 is very good but, of course, much more precise
aymptotic formula is known (cf. [50]). There are asymptotic formulae for pd(n)
(when d ≥ 2) as well [48], [81], [82], but all of them are valid for some values of
the parameters n = (n1, . . . , nd), typically when all ratios ni/nj are bounded.
In this case the asymptotic formulae (in [48], for instance) imply that

log p(n) = (d + 1) (ζ(d + 1)n1 . . . nd)
1/(d+1) (1 + o(1)).

This shows that the estimate given in Theorem 17.2 is best possible. However,
log pd(n) is much smaller than the upper bound when the smallest ni is very
small.

We mention that the same estimation would not apply if zi = 0 were allowed
for the components of the constituents of the multi–partition. This can be seen
easily by comparing pd(1, n, . . . , n) with pd−1(n, . . . , n).
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Proof. We start with taking the logarithm of equation (17.1).

log f(x) = log
∏

m∈Z
d
+

(1 − xm)−1 =
∑

m∈Z
d
+

log
1

1 − xm
(17.2)

=
∑

m∈Z
d
+

∞
∑

k=1

xkm

k
=

∞
∑

k=1

1

k

∑

m∈Z
d
+

xkm =
∞

∑

k=1

1

k

d
∏

i=1

xi
k

1 − xi
k
,

where the last equality follows easily from

∑

m∈Z
d
+

xkm =
d

∏

i=1

(xi
k + xi

2k + . . . ) =
d

∏

i=1

xi
k

1 − xi
k
,

which is true when all |xi| < 1. Now for every t ∈ (0, 1)

tk

1 − tk
=

t

1 − t

tk−1

1 + t + · · · + tk−1
≤ t

k(1 − t)
.

From now on we assume all xi ∈ (0, 1). Then we get from (17.2) that

log f(x) ≤
∞

∑

k=1

1

k

d
∏

i=1

xi

k(1 − xi)
= ζ(d + 1)

d
∏

i=1

xi

1 − xi
.

On the other hand, we see from (17.1) that p(n)xn ≤ f(x). So

log p(n) +
d

∑

i=1

ni log xi ≤ log f(x).

Thus for all xi ∈ (0, 1), we have

log p(n) ≤
d

∑

i=1

ni log
1

xi
+ ζ(d + 1)

d
∏

i=1

xi

1 − xi
(17.3)

≤
d

∑

i=1

ni
1 − xi

xi
+ ζ(d + 1)

d
∏

i=1

xi

1 − xi
,

where we used the inequality log 1
t ≤ 1

t − 1, valid for every t ∈ (0, 1). Now we
try to choose x (with all xi ∈ (0, 1)) so that the last line in (17.3) is as small as
possible. A convenient choice is when all the d + 1 terms there are equal, i.e.,

n1
1 − xi

xi
= · · · = nd

1 − xd

xd
= ζ(d + 1)

d
∏

i=1

xi

1 − xi
= λ.

A simple computation shows now that

λ = (ζ(d + 1)
d

∏

i=1

ni)
1/(d+1) and xi =

ni

ni + λ

which is indeed between 0 and 1. Then we get in (17.3)

log p(n) ≤ (d + 1)λ = (d + 1)

(

ζ(d + 1)
d

∏

i=1

ni

)1/(d+1)

.

32



18 Proof of Theorem 17.1, the planar case

In this section we give the proof of the two-dimensional case of Theorem 17.1.
It is slightly different and simpler than the case of higher dimensions, which is
considered in the next section.

We need a definition that will be useful later as well. Given z ∈ Z
d the

width of a set K ∈ K is defined as

w(K, z) = max{z(x − y) : x, y ∈ K},

and the lattice width of K as

w(K) = min{w(K, z) : z ∈ Z
d, z 6= 0}. (18.1)

It is not hard to check that the minimum exists. The vector z in which the
minimum is reached is the lattice width direction of K. When K is a lattice
polytope, its lattice width plus 1 is equal to the minimal number of parallel
(consecutive) lattice hyperplanes that intersect K. An important property of
the lattice width is that is is invariant under lattice preserving affine transfor-
mations.

The box of γ = (γ1, . . . , γ0) ∈ Z
d
+ is defined as

Box(γ) = {x ∈ R
d : 0 ≤ xi ≤ γi for all i}.

The volume of Box(γ) is
∏d

1 γi, which will be denoted simply by Γ. Recall that
Pd stands for the set of all convex lattice polytopes of positive volume in R

d.
The so called Box Lemma is important for the proof of Theorem 17.1.

Lemma 18.1. For every P ∈ Pd there exist another Q ∈ Pd equivalent to P
such that Q ⊂ Box(γ) for a suitable γ ∈ Z

d
+ with Γ ≪ volP .

Proof for the d = 2 case. (The general case is proved in the Section 19.) Let
w be the lattice width of P ∈ P2 with A = AreaP > 0. We can assume that
the lattice width direction of P is (0, 1), and that P lies between lines y = 0 and
y = w. Let ℓ be the length of the longest segment in which a horizontal lattice
line intersect K. There are parallel tangent lines to K at the two endpoints of
this longest segment. We may assume (possibly after applying a suitable lattice
preserving affine transformation) that the slope of this line is at least one. Then
P is contained in a parallelogram, (see Fig. ??). It follows that 1

2ℓw ≤ A ≤ ℓw.
Using the notations of Fig. ??, ℓ + x ≥ w as otherwise the width of P in

direction (1, 0) would be smaller than w. Next we check the width in direction
(1, 1), which is at most (ℓ + x + w)− 2x = ℓ− x + w ≥ w implying ℓ ≥ x. This
shows that 2ℓ ≥ w. Consequently P lies in Box(ℓ + x, w) ⊂ Box(3ℓ, w). The
last box has area 3ℓw ≤ 6A and contains P .

The number of boxes of area 6A is less than (6A)2, by a very generous
estimate. Thus the following result suffices for the proof of Theorem 17.1.

Lemma 18.2. Each box of area A contains at most exp{cA1/3} convex lattice
polygons, where c is a universal constant.
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ℓ

w

x

P

Figure 1: P and the enclosing parallelogram.

Proof. Fix γ ∈ Z
2
+ with Γ ≤ A and consider some P ∈ P2 lying in Box(γ).

Define, for ε = (ε1, ε2) ∈ {−1, +1}2, the convex polyhedron

Pε = P + {x ∈ R
2 : εixi ≥ 0 for i = 1, 2}.

Pε is an infinite convex polyhedron whose vertices are from Z
2 ∩Box(γ). Write

Nε(γ) for the number of such polyhedra.

Claim 18.3. log Nε(γ) ≪ Γ1/3.

Proof. It suffices to prove this with ε = (−1, +1) since all the Nε(Γ) are
equal. In this case each Pε can be translated, by a vector form Z

2, so that
its infinite horizontal edge coincides with the negative half of the x axis, and
its infinite vertical edge coincides with the vertical halfline starting at β =
(β1, β2) ∈ Z

2 ∩ Box(γ). Let P ∗
ε denote this translated copy. At most Γ such

translations result in the same P ∗
ε .

Observe next that each multipartition of β produces such a P ∗
ε by ordering

the vectors in the multipartition by increasing (or rather non-decreasing) slope.
Sometimes two multipartitions give rise to the same P ∗

ε , for instance when the
same vector appears twice. But certainly, the number of multipartitions of β is
not smaller than the number of P ∗

ε with fixed β. Thus Theorem 17.2 applies:

N(−1,1)(γ) ≤
∑

β∈Z2∩Box(γ)

Γ exp{3ζ(3)(β1β2)
1/3} (18.2)

≤ Γ2 exp{3ζ(3)Γ1/3}.

This finishes the proof of the claim.

We are almost done. It is clear that P determines the four infinite polyhedra
Pε uniquely. Conversely, four polyhedra Pε with distinct ε determine P ∈ P2

uniquely if they determine a convex lattice polygon at all. Thus N(γ) ≤ Nε(γ)4,
and the theorem follows from Claim 18.3.
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19 Proof of Theorem 17.1, the general case

We prove first the Box Lemma for general d. We formulate it in a different way,
more suitable for the proof.

Assume B = {b1, . . . bd} is a basis of Z
d. Given α and β in R

d define

T (B, α, β) = {x =
d

∑

i=1

ξib
i ∈ R

d : αi ≤ ξi ≤ βi for all i}.

T (B, α, β) is, obviously, a convex polytope. In fact, it is a parallelotope whose
edges are parallel to the bi. Its volume equals

∏d
i=1(βi − αi). Given K ∈ Kd

choose αi maximal and βi minimal under the condition that K ⊂ T (B, α, β)
for every i = 1, . . . , d. Write T (B, K) = T (B, α, β) with the extremal α and β
which are, of course, uniquely determined. We need the following result.

Theorem 19.1. Given P ∈
cP d there is a basis B of Z

d such that

volT (B, P ) ≪ volP.

Note that this theorem immediately implies the Box Lemma. One just
applies a lattice preserving affine transformation carrying T (B, P ) = T (B, α, β)
to Box(γ) where γ = β − α.

Proof. We prove the theorem first when P is centrally symmetric with centre
at the origin. In this case, as is well–known, there is an ellipsoid E ⊂ R

d centred
at the origin such that

d−1/2E ⊂ P ⊂ E.

Apply now a linear transformation τ that carries E to the Euclidean unit
ball of R

d. We denote this ball by D. Evidently, L = τZ
d is a lattice again.

Consider now a basis B̂ = {b̂1, . . . , b̂d} of L together with a dual basis C =
{c1, . . . , cn}. This is defined (see, for instance, [25]) so as to satisfy b̂icj = δij

for all i and j. The dual basis spans a lattice, L∗, which is dual to L in the
sense that, for all x ∈ L and y ∈ L∗, xy ∈ Z. It is also well known that
det(L) det(L∗) = 1 where det(L) and det(L∗) are equal to the volume of a basis
parallelotope of the lattice L and L∗, respectively.

The definition of T (B, K) extends without any difficulty to the case when
the underlying lattice is L and not Z

d. So we can consider T (B̂, D) = T (B̂,−α, α).
The facets of T (B̂,−α, α) touch the unit ball D and the point αib̂

i is on
such a facet. Since the unit normal to this facet is ci/‖ci‖ we must have
1 = (αib̂

i)(ci/‖ci‖) = αi/‖ci‖. Consequently

volT (B̂, D) = det(L)
d

∏

i=1

2αi = det(L)2d
d

∏

i=1

‖ci‖.

According to an old theorem of Hermite (see [34] or [25]), there is a basis C of
the lattice L∗ such that

∏d
i=1 ‖ci‖ ≪ det(L∗). Fix a basis C with this prop-

erty, and compute the corresponding dual basis B̂ of L. Then volT (B̂, D) ≪
det(L) det(L∗) = 1.
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Let us apply now τ−1 to B̂, D, and L. We get a basis B = τ−1B̂ of
Z

d = τ−1L, and
τ−1T (B̂, D) = T (B, E).

Moreover, T (B, P ) is a lattice polytope (a parallelotope, in fact) which is con-
tained in T (B, E) since P ⊂ E. Now

volT (B, P ) ≤ volT (B, E) = det τ−1 volT (B̂, D)

≪ det τ−1 = volE/ volD ≪ volP.

This proves the case when P is centrally symmetric.
The general case P ∈ Pd follows now easily. We assume 0 ∈ P and consider

Q = P − P . Clearly, Q is centrally symmetric and is in Pd. By a result of
Rogers and Shephard [60], volQ ≪ volP . Let now B be the ”good” basis for
Q whose existence is established above. It is a good basis for P as well since
T (B, P ) ⊂ T (B, Q) and

volT (B, P ) ≤ volT (B, E) ≪ volQ ≪ volP.

Remark. There are other ways to prove Theorem 3. We could, for instance,
choose C to be a Lovász–reduced basis of the dual lattice ,(for the definition
see [45] or [31]), and argue that τ−1B̂ satisfies the assertion of the theorem. Or
we could take a Korkine–Zolotarov basis of L∗ (see [25] or [31]).

Proof of Theorem 17.1, general case. By the Box Lemma we may assume
that the given P ∈ Pd with volP ≤ V lies in Box(γ) where γ ∈ Z

d
+ satisfies

Γ =
∏d

i=1 γi ≪ V .

Fix now γ ∈ Z
d
+ and set Γ =

∏d
i=1 γi. Write N(γ) for the number of convex

lattice polytopes (not necessarily with positive volume) that lie in Box(γ). We
are going to show the following fact, analogous to Lemma 18.2

Lemma 19.2. log N(γ) ≪ Γ
d−1

d+1 .

This will prove the theorem since the number of γ ∈ Z
d
+ with Γ ≪ V is less

than V d as one can easily check. (Their number is, actually, O(V (log V )d−1)
but that makes no difference in this case.)

Let the convex lattice polytope P lie in Box(γ). Consider, just like in the
planar case, the 2d unbounded polyhedra

Pε = P + {x ∈ R
d : εixi ≤ 0 for all i}

where ε = (ε1, . . . , εd) ∈ R
d with εi = +1 or −1. These 2d polyhedra deter-

mine P uniquely. Conversely, 2d such polyhedra determine P uniquely if they
determine a polytope at all.

Define Nε(γ) as the number of different polyhedra Pε coming from a lattice
polytope in T (γ). The following lemma is similar to Lemma 18.2 but for its
proof different ideas are needed.

Lemma 19.3. log Nε(γ) ≪ Γ
d−1

d+1 .
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Lemma(19.2) follows from here the same way as in the planar case. Thus
the theorem is proved once Lemma 19.3 is demonstrated.

Proof. By symmetry, it is be enough to show the lemma when ε = (1, . . . , 1).
In this case we denote Pε simply by P+.

Let πi be the orthogonal projection onto the hyperplane xi = 0. Define

P ∗ = {x ∈ R
d : πi(x) ∈ πi(P+) for all i}.

This unbounded polyhedron is called the profile of P or P+. The lattice poly-
topes Pi (i = 1, . . . , d) are defined as

Pi = P ∗ ∩ Box(γ) ∩ {x ∈ R
d : xi = 0}.

They determine P ∗ uniquely. Pi is a (d− 1)-dimensional polytope lying in box
πi Box(γ) which is an aligned box in (d−1)-dimensions that has (d−1)-volume
Γ/γi. Write N∗(γ) for the number of different profiles of all convex lattice
polytopes P ⊂ Box(γ). An easy induction, using Lemma 19.2 as the induction
hypothesis, shows that

log N∗(γ) ≪
d

∑

i=1

(Γ/γi)
d−2

d ≪ Γ
d−2

d . (19.1)

(A little extra care is needed when d = 2. Then N∗(γ) = γ1γ2 and this works
for the remainder of the proof.)

Fix now a profile P ∗ coming from some P ⊂ Box(γ), and write N+(P ∗) for
the number of different polyhedra with profile P ∗.

Claim 19.4. log N+(P ∗) ≪ Γ
d−1

d+1 .

This will prove Lemma 19.3 because

N+(γ) =
∑

P ∗

N+(P ∗) ≤ N∗(γ) exp{cΓ
d−1

d+1 }.

Proof of Claim 19.4. Now we have a closer look at the bounded facets of
P+. Notice, first, that if P+ has no bounded facets, then P+ = P ∗. Assume
now that P+ has a bounded facet F . As P is a lattice polytope there is a unique
outer normal v(F ) to F which is a primitive vector in Z

d (actually in Z
d
+). F

is a (d − 1)-dimensional lattice polytope in the sublattice, of Z
d, orthogonal to

v(F ). The determinant of this sublattice is ‖v(F )‖. Whence

vol d−1F =
z

(d − 1)!
‖v(F )‖,

for some positive integer z. So the facet F determines the vector u(F ) =
z

(d−1)!v(F ) ∈ 1
(d−1)!Z

d, which, in turn, gives the outer normal and the (d − 1)-

dimensional volume of F . Moreover, the ith component of u(F ) is equal to
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vold−1 πi(F ) as the reader can easily check. Since all the bounded facets of P+

lie in Box(γ) we get

∑

F

ui(F ) =
∑

F

vol d−1πi(F ) ≤ πi(Box(γ)) = Γ/γi. (19.2)

We call a finite subset U of Z
d
+ special if, for all i = 1, . . . , d

∑

u∈U

ui ≤ (d − 1)!Γ/γi. (19.3)

(Of course, U is special with respect to γ.) We need the unicity part of the
following result of Pogorelov [49].

Lemma 19.5. Given a profile P ∗ and vectors u1, . . . , uk ∈ R
d
+, no two of them

parallel, there is a unique unbounded polyhedron P+ with profile P ∗ and having
exactly k bounded facets F1, . . . , Fk such that, for j = 1, . . . , k, the outer normal
to P+ at Fj is uj and the (d − 1)-dimensional volume of Fj is ‖uj‖.

A more general result in three-dimensional space is given in Pogorelov’s
book [49], page 542, and the proof there goes through in higher dimensions.
For the convenience of the reader we reproduce Pogorelov’s proof at the end of
this section.

This means that, given P ∗ and a special U = {u1, . . . , uk} ⊂ Z
d
+, there is a

unique unbounded polyhedron P+ with k bounded facets F1, . . . , Fk such that
uj is an outer normal to Fj and vold−1 Fj = 1

(d−1)!‖uj‖. Not every such P+ is a
lattice polyhedron, but certainly all P+ coming from a lattice polytope P can
be represented this way. Consequently

N+(P ∗) ≤ number of special sets U satisfying (19.3).

Finally, define n ∈ Z
d
+ by ni = (d−1)!Γ/γi. According to Theorem 17.2 the

number of special sets satisfying (19.3) is

∑

m≤n, m∈Z
d
+

p(m) ≤
∑

m≤n, m∈Z
d
+

exp

{

(d + 1)(ζ(d + 1)
d

∏

i=1

mi)
1/d+1

}

≤
(

d
∏

i=1

ni

)

exp

{

(d + 1)(ζ(d + 1)
d

∏

i=1

ni)
1/d+1

}

= (d − 1)!dΓd−1 exp
{

(d + 1)(ζ(d + 1)(d − 1)!dΓd−1)1/d+1
}

This proves Claim 19.4 which, in turn, proves Lemma 19.3 and Lemma 19.2,
finishing the proof of Theorem 17.1.

Remark. Lemma 19.2 implies rather quickly Andrews theorem in the
following way. Assume P ∈ Pd, we suppose it is contained in Box(γ) with
Γ ≤ volP . Write X for the set of vertices of P . Then conv Y is a convex lattice
polytope for each nonempty Y ⊂ X. This is 2|X| − 1 distinct lattice polytopes
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in Box(γ). By Lemma 19.2, the total number of lattice polytopes in Box(γ) is
at most exp{constΓ(d−1)/(d+1)}, implying

f0(P ) = |X| ≪ (vol P )
d−1

d+1 .

Proof of Lemma 19.5. Set e = (1, . . . , 1) ∈ R
d and denote by Hj(ωj) the

hyperplane orthogonal to uj and intersecting the line {τe ∈ R
d : τ ∈ R} at

the point ωje. Let H−
j (ωj) be the halfspace bounded by Hj(ωj) and containing

the infinite ray pointing in the direction −e. Any P+ with bounded facets
orthogonal to uj (j = 1, . . . , k) is of the form

P (ω) = P ∗ ∩
k

⋂

j=1

H−
j (ωj)

where the parameter ω is from R
k
+. Write Fj(ω) for the intersection of P (ω)

with Hj(ωj). Note that Fj(ω) may be empty.
We first prove existence. We choose a sufficiently large compact set C ⊂ R

k
+

by requiring two things. The first is that for ω ∈ C the set P ∗∩Hj(ωj) is nonvoid
which means that ωj ≤ Mj for some suitable Mj . The second is that the (d−1-

volume of P ∗ ∩ Hj(ωj) is at most
∑k

1 ||uj ||, which means that mj ≤ ωj with a
suitable mj . Note that with ωj < mj the (d− 1)-volume of the bounded facets

is larger than
∑k

1 ||uj ||.
Define Ω as the set of those ω ∈ C for which the (d−1)-volume of Fj(ω) is at

most ‖uj‖ (j = 1, . . . , k). The set Ω is clearly compact. It is nonempty because
the ω when each Hj(ωj) is tangent to P ∗ belongs to Ω. So the continuous
function g : Ω → R defined by

g(ω) =

k
∑

j=1

ωj

takes its minimum at some point in Ω which we denote by ω, too. We claim
that P (ω) has the required properties. Assume not, then vold−1 Fj(ω) < ‖uj‖
for some j. Decrease ωj a little and leave the other ωi unchanged. Let ω′ be
the new ω. It follows from continuity that vold−1 Fj(ω

′) < ‖uj‖. On the other
hand, for i 6= j, Fi(ω

′) ⊂ Fi(ω) and so vold−1 Fi(ω
′) ≤ vold−1 Fi(ω). Thus

ω′ ∈ Ω. But g(ω′) < g(ω), a contradiction.
Now for unicity. This time we include the ωj corresponding to the un-

bounded facets of P ∗ into ω. Then, of course, we include their outer nor-
mals into U as well. Suppose there are two solutions P (ω) and P (ω∗) and let
δ = maxj(ωj −ω∗

j ). We assume δ > 0 (otherwise exchange the names). Denote
by J the set of those indices j for which δ = ωj −ω∗

j and set Q(ω) = P (ω)− δe.
J is nonempty but does not contain the indices corresponding to the unbounded
facets since for those ωi = ω∗

i . Clearly Q(ω) =
⋂

j H−
j (ωj − δ) is a subset of

P (ω∗).
Denote by F̄j (and Fj) the facet of P (ω∗) (and Q(ω), respectively,) that

corresponds to the index j ∈ {1, . . . , k}. Two facets, F̄j and F̄i are said to be
adjacent if they intersect in a (d−2)–dimensional face of P (ω∗). We claim that,
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for j ∈ J , F̄j is adjacent only to facets F̄i with i ∈ J . Assume, on the contrary,
that there are indices j ∈ J and i /∈ J such that F̄j and F̄i are adjacent. We
have

F̄j = Hj(ω
∗
j ) ∩

k
⋂

m=1

H−
m(ω∗

m),

and similarly

Fj = Hj(ω
∗
j ) ∩

k
⋂

m=1

H−
m(ωm − δ).

As ω∗
m ≥ ωm−δ, we have Fj ⊂ F̄j . This inclusion is proper because ω∗

i > ωi−δ
and F̄j is adjacent to F̄i. But then vold−1 Fj < vold−1 F̄j , a contradiction.

The claim implies that all indices are in J . But this contradicts the fact
that an index corresponding to an unbounded facet is not in J .

20 Approximation

There are two types of problems in the theory of approximation of a convex
body K ∈ K by polytopes belonging to a certain class P of polytopes. The
first type is asking for a lower bound, that is, a statement of the form: no
polytope P ∈ P approximates K better than some function of K and P. The
second is asking for the existence of a polytope P ∈ P which approximates K
well, hopefully as well as the previous function. To be less vague, we consider
inscribed polytopes only (that is P ⊂ K) and we measure approximation by
the relative missed volume, that is, by

appr(K, P ) =
vol(K \ P )

volK
.

To give a specific example, let K ∈ K1 be a convex body with C2 boundary
and Gauss curvature κ > 0 everywhere. Its affine surface area, Ω(K), is defined
as

∫

bd K κ1/(d+1). The following two results are from Gruber [33]. If Pn is an
inscribed polytope with n vertices, then

appr(K, Pn) ≥ deld−1Ω(K)(d−1)/(d+1)n−2/(d−1)(1 + o(1)). (20.1)

where the more or less explicit constant deld−1 depends only on d. This is a
first type statement. A second type one is that, under the same conditions,
there is an inscribed polytope P ∗

n with n vertices, such that

appr(K, P ∗
n) ≤ deld−1Ω(K)(d−1)/(d+1)n−2/(d−1)(1 + o(1)), (20.2)

where even the constant is the same as in (20.1).
In this section we show how the cap-covering technique can be used to

attack both type of approximation problems. As expected, the results do not
give precise constants but tell the right order of magnitude.

We start with the problem of the second type. C. Schütt [69] proved two
very neat and general results.

40



Theorem 20.1. Given K ∈ K1 and t ∈ (0, t0] (where t0 depends only on the
dimension), there is a polytope P with K(v ≥ t) ⊂ P ⊂ K for which

f0(P ) ≪ volK(t)

t
.

Theorem 20.2. Given K ∈ K1 and t ∈ (0, t0] (where t0 depends only on the
dimension), there is a polytope P with K(v ≥ t) ⊂ P ⊂ K for which

fd−1(P ) ≪ volK(t)

t
.

This means that appr(K, P ) ≤ volK(t) and the lost volume is “t per vertex”,
and “t per facet”, respectively. We will see below that, for smooth bodies, this
is the best possible order of magnitude. One may wonder whether the same
result holds with T (P ) ≪ vol K(t)

t . If it does, it contains both theorems above.
Schütt’s proof of these theorems is direct and technical. Here I present a

simple argument showing the power and efficacy of the cap covering method.
Nevertheless, this argument gives weaker constants than Schütt’s original the-
orem and does not extend to approximation by circumscribed polytopes (cf
[69]).

We mention that Theorem 20.1, for instance, gives the order of magnitude
in the formula (20.2). Indeed, by Theorem 11.5, K(t) is of order t2/(d+1), so
n = f0(P ) in Theorem 20.1 is ≪ t−(d−1)/(d+1) and appr(K, P ) ≪ K(t) ≈
t2/(d+1). Thus P is an inscribed polytope on n vertices satisfying appr(K, P ) ≤
const(K)n−2/(d−1). Even const(K) ≤ cd

∫

κ1/(d+1) follows from Theorem 11.5.
For both theorems, start with setting τ = d−16−dt and choose a system

of points {x1, . . . , xm} from bdK(v ≥ τ) maximal with respect to the prop-
erty that the sets M(xi, 1/2) are pairwise disjoint. The economic cap covering
argument shows that

m ≪ volK(τ)

τ
≤ volK(t)

τ
≪ volK(t)

t
.

Proof of Theorem 20.2. Let C(xi) be a minimal cap, and define

P = K \ ∪m
1 C(xi)

6.

We will show that (1) no z ∈ bdK belongs to P , and (2) K(v ≥ t) ⊂ P . This
is clearly sufficient.

To see (1), assume z ∈ bdK. By Lemma 4.11 there is x ∈ bdK(v ≥ τ)
such that z ∈ M(x). By the maximality of the system x1, . . . , xm, there is an xi

with M(x, 1/2)∩M(xi, 1/2) 6= ∅. By Lemma 4.4, M(x) = M(x, 1) ⊂ M(xi, 5),
implying

z ∈ M(x) ⊂ M(xi, 5) ∩ K ⊂ C(xi)
6.

To check that (2) also holds, note that volC(xi) ≤ dτ by Lemma 4.9. So
we have

volC(xi)
6 ≤ 6d volC(xi) ≤ 6ddτ = t,

so v(x) ≤ t for every point x cut off from K by one of the caps C(xi)
6.
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Figure 2: When P does not contain K(t).

Proof of Theorem 20.1. Let yi be an arbitrary point from M(xi, 1). (One is
tempted to choose yi from the boundary of K but that is not important here.)
Define

P = conv{y1, y2, . . . , ym}.
Clearly P ⊂ K. So we have to show K(v ≥ t) ⊂ P . Assume the contrary: then
there is a halfspace H1 disjoint from P whose bounding hyperplane is tangent
to K(v ≥ t). Note that no yi is in H1, see Fig. 2. Let H2 be the halfspace
whose bounding hyperplane is parallel to that of H1, and which is tangent to
K(v ≥ τ) at the point z, say. Set Cj = K ∩ Hj , j = 1, 2. Lemma 4.9 says that
volC2 ≤ dτ , and volC1 ≥ t = d6dτ .

By the maximality of the xi, M(z, 1/2) intersects some M(xi, 1/2) and, in
view of Lemma 4.4, again, M(xi, 1) ⊂ M(z, 5). Also, M(z, 5) ∩ K is contained
in C6

2 ∩ K which is a cap of K whose volume is at most 6d volC1 ≤ d6dτ , by
Lemma 4.9. Now C6

2 ⊂ C1 follows from the construction and from volC1 ≥
d6dτ . By the construction yi ∈ M(xi), and so yi ∈ C1 ⊂ H1. A contradiction.
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We turn now to the first type of approximation question. We will consider
here the family of all polytopes inscribed in K with at most n s-dimensional
faces. Denote this class of polytopes by Pn(K, s). The usual question of ap-
proximation by inscribed polytopes with at most n vertices, the case Pn(K, 0)
in our notation, is well understood, see (20.1) and (20.2) above. In the same
paper Gruber [33] proves an asymptotic formula for circumscribed polytopes
with at most n facets, and in [46], Ludwig gives exact asymptotic formulae for
the unrestricted case with n vertices and n facets, respectively. (Approximation
is measured as the relative volume of the symmetric difference of P and K.)

Is there a similar estimate for Pn(K, s) when 0 < s < d − 1? Or a weaker
one, giving the order of magnitude of appr(K, P )? This unusual approximation
question has come up in connection with the integer convex hull (cf [15]). We
will see how it is used there in Section 21.

Again, M -regions and cap coverings are going to help. Here we present
the basic ideas of the proof in the case when K = Bd, the unit ball R

d: this
extends without serious difficulty to convex bodies whose product curvature
is separated from 0 and ∞. It should be mentioned that K. Böröczky Jr in
[20] has worked out several other cases of this type, for instance, inscribed,
circumscribed, and unrestricted polytopes with at most n s-dimensional faces
(again when 0 < s < d − 1). His approach is different: it is based on local
quadratic approximation of the boundary and uses power diagrams.

Here is the result on approximation by polytopes in Pn(Bd, s) for the unit
ball.

Theorem 20.3. For every s = 0, 1, . . . , d − 1 and for every polytope P ∈
Pn(Bd, s), and for large n

appr(Bd, P ) ≫ n− 2

d−1 .

The proof below is based on an idea from [15] which is used there when
s = d− 1. This particular case, when K = Bd, was first proved by Rogers [59].
We mention that the theorem holds for smooth convex bodies, not only for the
Euclidean ball. But the technique and the arguments are simpler and cleaner
in the case of Bd. The interested reader will have no difficulty in extending the
proof below to smooth convex bodies.

Proof. We may suppose that

vol(Bd \ P ) ≤ b1n
− 2

d−1

for any particular constant b1 of our choice ( b1 depending on d), as otherwise
there is nothing to prove. We assume further that s ≥ 1, the case s = 0 being
covered by (20.1) and (20.2). We can and do suppose further that all vertices
of P are on the boundary of Bd.

Let F1, . . . , Fn denote the s-dimensional faces of P and let zi be the nearest
point of Fi to the origin. The minimal cap C(zi) has width hi. It is not hard
to check that Fi ⊂ C(zi). Also, vol(C(zi) \ P ) ≥ 1

2 volC(zi). This means that
volC(zi) must be small, and so hi must be small. Consequently, volC(zi) ≈
h

d+1

2

i , as a quick computation reveals.
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Choose next a subsystem {xi1 , . . . , xim} from the xi which is, as we are
used to it by now, maximal with respect to the property that the M -regions
M(xij , 1/2) are pairwise disjoint. To have simple notation set zj = xij and also
hj = hij with minimal abuse. By Lemma 4.4, every C(xi) is contained in some
M(zj , 5). So writing V for the set of vertices of P we clearly have

V ⊂ ∪n
1Fi ⊂ ∪n

1C(xi) ⊂ ∪m
1 M(zj , 5).

As we observed before, half of C(xi) is outside of P . The sets M(zj , 1/2)
are pairwise disjoint, and half of C(zj)∩M(zj , 1/2) is outside of P which gives
a lower bound for vol(Bd \ P ):

m
∑

1

h
d+1

2

j ≪ vol(Bd \ P ) ≤ b1n
− 2

d−1 ,

where hj denotes the width of the cap C(zj).

Fix ρ = b2n
− 1

d−1 , where b2 = b2(d) is to be defined later. We want to show
that the set V + ρBd covers at most half of Sd−1 = bdBd. We estimate the
surface area of this set by that of Sd−1 ∩∪m

1 (M(zj , 5) + ρBd). For a particular
zj , M(zj , 5)+ρBd is contained in a cap, centered at zj , with radius ≪ ρ+

√

hj .
Thus the surface area of Sd−1, covered by V + ρBd is at most

≪
m

∑

1

(

ρ + h
1

2

j

)d−1

=
m

∑

j=1

d−1
∑

k=0

(

d − 1

k

)

ρd−1−kh
k
2

j

=
d−1
∑

k=0

(

d − 1

k

)

ρd−1−k





m
∑

j=1

h
k
2

j





≤
d−1
∑

k=0

(

d − 1

k

)

ρd−1−km





1

m

m
∑

j=1

h
d+1

2

j





k
d+1

= m



ρ +

(

1

m

m
∑

1

h
d+1

2

j

) 1

d+1





d−1

,

where we used the inequality between the kth and (d + 1)st means.
The last expression is smaller than half the surface area of Sd−1 if the

constants b1, b2 are chosen suitably. Indeed, as m ≤ n,

ρ = b2n
− 1

d−1 ≤ b2m
− 1

d−1 ,

and since
∑m

j=1 h
d+1

2

j ≤ b1n
− 2

d−1 ,

(

1

m

∑

h
d+1

2

j

) 1

d+1

≤ b
1

d+1

1 m− 1

d−1 .

We just proved that V + ρBd covers at most half of Sd−1. But then

Sd−1 \ (V +
ρ

2
Bd)
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contains many pairwise disjoint caps of radius ρ/2. This is shown by a greedy
algorithm: assume the centers yp ∈ Sd−1 \ (V + ρBd) of these caps Cp have
been chosen for p = 1, 2, . . . , q and the caps are pairwise disjoint. The caps
with centres yp and radius ρ cover at most

qρd−1 vol d−1S
d−1

of Sd−1. So as long as this is smaller than the surface area of

Sd−1 \ (V + ρBd),

there is room to choose the next center yq+1. The algorithm produces as many
as ≫ ρ−(d−1) ≈ n pairwise disjoint caps. They are all disjoint from P , so the
volume missed by P is

∑

volCp ≫ nρd+1 ≫ n− 2

d−1 ,

finishing the proof of Theorem 20.3.

21 The integer convex hull

The “integer convex hull” of K ∈ Kd is, by definition,

I(K) = conv(Zd ∩ K),

which is clearly a convex lattice polytope if it is non-empty. How many vertices
does I(K) have? Motivation for the question comes from different sources:
integer programming (cf. [26], [13] ), classical enumeration problems ([37],[62],
or more generally [77],[74]), and from the theory of random polytopes (see
later).

In this section we determine the order of magnitude of fs(I(K)) when K =
rBd, the Euclidean ball of radius r, centered at the origin. Write Pr = I(rBd).
For the case d = 2 it is shown in [5] that

0.33r2/3 ≤ f0(Pr) ≤ 5.55r2/3. (21.1)

The limit, as R → ∞, of the average of r−2/3f0(Pr), on an interval [R, R + H],
is determined by Balog and Deshoullier [6], and turns out to be 3.453 . . . , (H
must be large). Our main result extends (21.1) to any d ≥ 2 and to any fs(Pr)
with s = 0, . . . , d − 1.

Theorem 21.1. For every d ≥ 2 for every s ∈ {0, . . . , d − 1}

rd d−1

d+1 ≪ fs(Pr) ≤ rd d−1

d+1 . (21.2)

We mention that this theorem is valid not only for K = rBd but more
generally for rC where C ∈ K is a convex body with smooth, C2 say, boundary,
and product curvature κ separated from 0 and infinity, and 0 ∈ intC. In this
case the constants implied by the ≪ notation depend on d and also on how well
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κ is separated from 0 and infinity. The proof for the general case is very similar
to that of C = Bd. We choose to give it for Bd because this way the idea is
clearer and we don’t have use local approximation of bdC by a paraboloid.

The upper bound follows from Theorem 16.4, which is a slightly stronger
version of Andrews theorem. Indeed, trivially, fs(P ) ≤ T (P ) for every s and
every polytope P . We don’t even need C = Bd.

We give a simple proof for f0(Pr) ≪ rd d−1

d+1 since we will need it later. Define

first h = c(d)r−
d−1

d+1 where the constant c(d) is sepcified soon. Let z ∈ Z
d be

a lattice point at distance r − h at most from the origin. It is easy to check
that volM(z) ≥ 2d (if the constant c(d) in the definition of h is chosen large
enough). M(z) is centrally symmetric with center z. By Minkowski’s theorem
it contains a lattice point y 6= z. Then it contains 2z − y ∈ Z

d as well. Thus z
is the midpoint of the segment [y, 2z − y]. Consequently it cannot be a vertex
of Pr. Then all vertices of Pr lie in the annulus rBd \ (r − h)Bd. By classical
results about the circle problem (see for instance [?])

|Zd ∩ rBd| = volBdrd + o(rd d−1

d+1 ).

this implies that the annulus contains ≪ rd d−1

d+1 lattice points, showing, in turn,

that f0(Pr) ≪ rd d−1

d+1 .
The proof of the lower bounds is based on

Theorem 21.2. For every d ≥ 2

vol(rBd \ Pr) ≪ rd d−1

d+1 .

Proof of Theorem 21.1 from Theorem 21.2. This is based on the approx-
imation result of Theorem 20.3 and is quite easy. Setting f0(Pr) = n the
approximation result says that

n− 2

d−1 ≪ appr(rBd, Pr) =
vol(rBd \ Pr)

vol rBd

≪ rd d−1

d+1

rd
= r−

2d
d+1 .

From this n ≫ rd d−1

d+1 immediately follows.

Remark. The inequality given in Theorem 21.2 is best possible, apart from
the implied constant, and the corresponding inequality follows quickly from this
proof. Indeed, if one had the bound vol(rBd \ Pr) ≪ rD, then with n = f0(Pr)
we had n−2/(d−1) ≪ rD−d from (20.1). The upper bound in Theorem 21.1 shows

that n ≪ rd d−1

d+1 . Thus

r
1

2
(d−1)(d−D) ≪ n ≪ rd d−1

d+1 ,

implying D ≥ dd−1
d+1 .

Before the proof of Theorem 21.2 we introduce notation and terminology.
We write P for the set of primitive vectors z ∈ Z

d. Recall that z ∈ Z
d is called
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primitive if the greatest common divisor of its components is 1. Each facet of
Pr has a unique outward normal vector which is primitive, and for p ∈ P we
denote this facet (if it exists) by F (p). It lies in the hyperplane H(p) = aff F (p)
which cuts of a small cap C(p) from rBd. Clearly,

Z
d ∩ intC(p) = ∅. (21.3)

Let ρ = ρ(p) be the radius of the (d − 1)-ball H(p) ∩ rBd and let h = h(p) be
the width, in direction p, of the cap C(p). Then

ρ2 = (2r − h)h and so rh ≪ ρ2 ≪ rh. (21.4)

Write ||x|| for the Euclidean length of x ∈ R
d. Letting Area to denote (d − 1)-

dimensional volume, we have

AreaF (p) = ℓ(p)|p| ≪ ρd−1. (21.5)

Here ||p|| is, in fact, the determinant of the lattice Z
d ∩ H(p), and so

ℓ(p) ∈ 1

(d − 1)!
Z+.

Proof of Theorem 21.2. We begin with a simple lemma.

Lemma 21.3. The contribution to vol(rBd \ Pr) of the caps C(p) with h(p) ≤
r−

d−1

d+1 is ≪ rd d−1

d+1 .

Proof. Everything that is contained in such a C(p) is also contained in

rBd \ (r − r−
d−1

d+1 )Bd

whose volume is just
(

rd − (r − r−
d−1

d+1 )d
)

volBd ≪ rd d−1

d+1 .

From now on we can only consider facets F (p) with

h(p) ≥ r−
d−1

d+1 . (21.6)

We are going to use the Flatness Theorem (cf. [39] or [38]) saying that the
lattice width of a lattice point free convex body (in R

d) is at most c0d
2 where

c0 is a universal constant. Applying this to C(p), or rather to intC(p) which is
lattice point free by (21.3), we get a primitive vector q ∈ Z

d such that

max{q(x − y) x, y ∈ C(p)} ≤ c0d
2. (21.7)

Case 1: when h(p) ≤ c0d
2||p||−1. In this case p is the flatness direction for

C(p) (since consecutive lattice hyperplanes with normal p ∈ P are at distance
||p||−1 apart). Then ρ2 ≪ rh ≪ r||p||−1 and

AreaF (p) = ℓ(p)||p|| ≪ ρd−1 ≪ (r||p||−1)
d−1

2 ,

implying

ℓ(p) ≪ r
d−1

2 ||p||− d+1

2 .
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Figure 3: The section in the plane of 0, q, and the centre of C(p).

Now equation (21.6) and the condition h(p) ≤ c0d
2||p||−1 imply that ||p|| ≪

r
d−1

d+1 . We write b = b(d) for the implied constant. The lost volume in Case 1 is

≪
∑

p

AreaF (p)h(p) ≪
∑

p∈P

ℓ(p) ≪
∑

||p||≤br
d−1
d+1

r
d−1

2 ||p||− d+1

2

≪ r
d−1

2

∫ br
d−1
d+1

0
x− d+1

2 xd−1dx ≪ rd d−1

d+1 (21.8)

where in the last steps we extended the sum from p ∈ P to p ∈ Z
d, and then

estimated the sum by the corresponding integral.

Case 2: when h(p) > c0d
2||p||−1. Then some q ∈ Z

d, distinct from p, is the
flatness direction of C(p).

Assume C(p) is between hyperplanes qx = ℓ1 and qx = ℓ2 with ℓ1, ℓ2 ∈
(0, ||q||r] and ℓ2 − ℓ1 ≤ c0d

2. Set ki = |q|r − ℓi and xi = ki/|q|, (i = 1, 2).
Consider the two-dimensional plane containing 0, q, and the centre of C(p).

We show first that φ and ψ (see Fig. 3) gets small as r gets large. Indeed,
assuming x2 > 0, and using (21.6)

sinφ =
x1 − x2

2ρ
=

x1 − x2

2
√

(2r − h)h
≤ k1 − k2

2||q||
√

rh
≤ c0d

2

2||q||
√

r · r−
d−1

d+1

≪ r−
1

d+1

since ||q|| ≥ 1. This holds even if x2 = 0 since then sinφ < x1/ρ and the same
estimate works.
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As φ and ψ (see Fig. 3) again) are almost equal, the previous inequality
implies

x1 = r(1 − cos ψ) ≤ r sin2 φ ≪ r
d−1

d+1 .

Next we estimate ρ. As cos φ > 1/2 for large enough r, we get

ρ <
√

(2r − x1)x1 −
√

(2r − x2)x2

=
(2r − x1)x1 − (2r − x2)x2

√

(2r − x1)x1 +
√

(2r − x2)x2

≤ (2r − x1 − x2)(x1 − x2)√
r(
√

x1 +
√

x2)

≤ 2
√

r
k1 − k2

||q||

√

||q||√
k1 +

√
k2

≪
√

r

||q||k1
. (21.9)

The same estimate follows almost the same way when x2 = 0. We only have to
start with ρ < 2

√

(2r − x1)x1.
It follows from (21.9 that h ≪ ρ2r−1 ≪ (||q||k1)

−1. Now (21.6) shows

k1||q|| ≪ r
d−1

d+1 . Set now k = ⌈k1⌉. As p is not a flatness direction, 1 ≤ k1−k2 ≤
k1. So k ≥ 1 and

k||q|| ≪ r
d−1

d+1 .

Collect the F (p) with fixed flatness direction q and fixed k into groups. The
missed volume in the corresponding caps is

≪
∑

AreaF (p)h(p) ≤ S max h(p) (21.10)

where S is the surface area of rBd between hyperplanes qx = ℓ1 and qx = ℓ2.
Since φ is small,

S ≤ 2
(

[(2r − x1)x1]
d−1

2 − [(2r − x2)x2]
d−1

2

)

Area Bd−1

≪
(

√

(2r − x1)x1 −
√

(2r − x2)x2

)

((2r − x1)x1)
d−2

2

≪
√

r

||q||k

(

rk

||q||

)
d−2

2

.

where we used the estimate in (21.9). Evidently maxh(p) ≤ ρ2/r ≪ (||q||k)−1.
We continue (21.10):

≪ 1

|q|k

√

r

||q||k

(

rk

||q||

)
d−2

2

= r
d−1

2 ||q||− d+1

2 k
d−5

2 .

This is to be summed for all k = 1, 2, . . . and q ∈ Z
d primitive with k||q|| ≤ R

where R ≪ r
d−1

d+1 . Then the total missed volume is

≪ r
d−1

2

R
∑

k=1

R
k

∑

q∈Zd

||q||− d+1

2 k
d−5

2 ≪ r
d−1

2

R
∑

k=1

∫

x∈Rd, ||x||≤R
k

||x||− d+1

2 k
d−5

2 dx

≪ r
d−1

2

R
∑

k=1

k
d−5

2

∫ R
k

0
td−1t−

d+1

2 dt ≪ r
d−1

2

R
∑

k=1

k
d−5

2

(

R

k

)
d−1

2

= r
d−1

2 R
d−1

2

R
∑

k=1

k−2 ≪ (rR)
d−1

2 ≪ rd d−1

d+1 .
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Here, again, we replaced the sum over q ∈ P with sum over q ∈ Z
d, which was

estimated by the corresponding integral.

Remark 1. This proof shows the inequality f0(Pr) ≪ rd d−1

d+1 (which is case
s = 0 of Theorem 21.1) directly. Actually, it shows the stronger result that

|∂Pr ∩ Zd| ≪ rd d−1

d+1 .

To see this one has to use the simple fact

|F (p) ∩ Zd| ≪ Area F (p)

||p||

valid for every facet F (p) of Pr. This gives, in Case 1,

∑

p

|F (p) ∩ Zd| ≪
∑

p

AreaF (p)

||p|| ≪
∑

p

ρ(p)d−1

||p|| ≪
∑

p

r
d−1

2 ||p||− d+1

2 ,

which is ≪ rd d−1

d+1 , according to (21.8). Case 2 is even simpler. Then

|F (p) ∩ Zd| ≪ AreaF (p)

||p|| ≪ Area F (p)h(p) ≪ volC(p)

and the estimates in the end of Case 2 can be applied. Finally, if h(p) ≤ r−
d−1

d+1 ,

the total number of lattice points in the annulus rBd \ (r−r−
d−1

d+1 )Bd is at most

rd d−1

d+1 , as we have checked it before Theorem 21.2.
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[20] Böröczky, K. Jr: Polytopal approximation bounding the number of k-faces.
J. Appr. Theory, 102, 263–285 (1999).
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