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Abstract

The colorful Carathéodory theorem asserts that if X1, X2, . . . , Xd+1

are sets in Rd, each containing the origin 0 in its convex hull, then exists
a set S ⊆ X1 ∪ · · · ∪ Xd+1 with |S ∩ Xi| = 1 for all i = 1, 2, . . . , d + 1 and
0 ∈ conv(S) (we call conv(S) a colorful covering simplex). Deza, Huang,
Stephen and Terlaky proved that if the Xi are in general position with
respect to 0 (consequently, each Xi has at least d + 1 points), then there
are at least 2d colorful covering simplices, and they constructed an example
with no more than d2 + 1 such simplices. Under the same assumption, we
show that there are at least 1

5
d(d + 1) colorful covering simplices, thus

determining the order of magnitude. We also obtain a lower bound of
3d, which is better for small d, and in particular, together with a parity
argument it settles the case d = 3, where the minimum possible number
of colorful covering simplices is 10.

1 Introduction

The following theorem, proved by the first author [1], has found numerous
applications (see [2] and [3]):

Theorem 1.1 (Colorful Carathéodory theorem) Let X1, X2, . . . , Xd+1 be
finite sets in Rd such that 0 ∈ conv(Xi) for all i = 1, 2, . . . , d + 1. Then there
exists a (d+1)-point set S ⊆ X1 ∪ · · · ∪ Xd+1 with |Xi ∩ S| = 1 for each i and
such that 0 ∈ conv(S).
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If we imagine that the points of Xi have color i, then the theorem asserts
the existence of a colorful set S with 0 ∈ conv(S), where “colorful” means
“containing all colors”. We call the convex hull of such an S a colorful covering
simplex.

We will assume throughout this paper that the sets Xi as in the colorful
Carathéodory theorem are in general position with respect to 0, meaning that
Xi ∩ Xj = ∅ for i 6= j and no k + 1 points of X = X1 ∪ · · · ∪ Xd+1 lie in a
common k-dimensional linear subspace of Rd, for all k = 0, 1, . . . , d− 1. In this
situation 0 ∈ conv(Xi) implies |Xi| ≥ d + 1.

It was shown in [1] that if the Xi are as in the colorful Carathéodory theorem
and in general position with respect to 0, then there are actually at least d + 1
colorful covering simplices. The minimum possible number of colorful covering
simplices was investigated by Deza et al. [4], who improved the lower bound
to 2d, and on the other hand, they exhibited a configuration with only d2 + 1
colorful covering simplices. They conjectured that this is actually the minimum
possible number.

We prove that this is at least the correct order of magnitude.

Theorem 1.2 Let X1, . . . , Xd+1 be sets in Rd in general position with respect
to 0, each containing 0 in its convex hull. Then there are at least 1

5d(d + 1)
colorful covering simplices.

We could get a constant little better than 1
5 , but since we have no reason to

believe that an optimal constant could be obtained by our approach, we prefer
simplicity of the numbers appearing in the proof.

Deza et al. [4] show that for d = 2 the smallest possible number of colorful
simplices is 5, and for d = 3 this number is either 8 or 10. The following theorem
shows that the number is 10.

Theorem 1.3 Under the assumptions of Theorem 1.2, the number of colorful
covering simplices is at least 3d if d ≥ 3. For d = 3, the smallest possible
number of colorful covering simplices equals 10.

2 Preparations

From now on, we assume that X1, . . . , Xd+1 ⊂ Rd are (d + 1)-point sets in
general position with respect to 0 and with 0 ∈ conv(Xi) for all i. We may also
assume that all points of X lie on the unit sphere Sd−1 (if not, we replace X
by its central projection on Sd−1, which affects neither the assumptions nor the
conclusions of our theorems).

Every d-point subset A ⊂ X generates the convex cone

pos(A) =

{

∑

a∈A

taa : ta ≥ 0 for all a ∈ A

}

.

We let σ(A) = pos(A)∩Sd−1 be the corresponding spherical simplex spanned by
A. By the general position assumption, each such spherical simplex is contained
in an open hemisphere.
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The set Xd+1, the points of the last color, will play a special role in our
arguments. We let Y = X \ Xd+1 be the subset made of the first d colors, and
we let P = −Xd+1 be the points antipodal to the last color class.

A transversal is any subset T ⊂ Y with |T∩Xi| = 1 for all i = 1, 2, . . . , d, and
a partial transversal is any subset of a transversal. Let T d(Y ) denote the system
of all transversals of Y , and for Y ′ ⊆ Y , we let T d(Y ′) = {T ∈ T d(Y ) : T ⊆ Y ′}.

If a ∈ Sd−1 is a point and T ∈ T d(Y ), we say that T covers a if a ∈ σ(T ).
Similarly, if F ⊆ T d(Y ) is a system of transversals, we say that F covers a if
at least one S ∈ F covers A.

Colorful covering simplices, the objects of interest in Theorem 1.2, are in
one-to-one correspondence with ordered pairs (p, T ), where p ∈ P , T ∈ T d(Y ),
and T covers p. Indeed, for any such (p, T ), it is easily seen that T∪{−p} defines
a colorful covering simplex (and it is equally easy to see that the correspondence
is bijective, but we won’t actually need that). So we aim at bounding the
number of such pairs (p, T ) from below.

We will use the following stronger version of the colorful Carathéodory the-
orem [1].

Theorem 2.1 Let X1, X2, . . . , Xd be finite sets in Rd such that 0 ∈ conv(Xi)
for all i = 1, 2, . . . , d and let x ∈ Rd be arbitrary. Then there exists a d-point set
S ⊆ X1 ∪ · · · ∪Xd with |Xi ∩S| = 1 for each i and such that 0 ∈ conv(S ∪{x}).

This theorem clearly implies that the set of transversals T d(Y ) covers every
point of the unit sphere, and in particular, it shows that the number of colorful
simplices is at least d + 1. We will actually apply the following consequence:

Corollary 2.2 For every point y ∈ Y there is p ∈ P and a transversal T ∈
T d(Y ) that contains y and covers p.

Proof. If y is in Xi, say, then apply Theorem 2.1 to the sets Xj , j 6= i and to
the point y. Then 0 ∈ conv(S ∪ {y}) for a suitable S. Setting x = S ∩ Xd+1,
T = S \ {x} ∪ {y} is a transversal in T d(Y ). It is easy to see that T covers −x,
which is a point in P . 2

We will also use the following lemma, with an easy topological proof.

Lemma 2.3 (Octahedron lemma) Let S, T be two disjoint transversals, and
let x be a point covered by S.

(i) (Degree-0 case) If T d(S ∪ T ) doesn’t cover all of Sd−1, then there exists
T ′ ∈ T d(S ∪ T ), T ′ 6= S, that also covers x.

(ii) (Degree-1 case) If S is the unique transversal in T d(S ∪ T ) covering x,
then T d(S ∪ T ) covers all of Sd−1.

The second half of the lemma is from Deza et al. [4].

Proof. We let Q denote the boundary of the octahedron conv{±e1, . . . ,±ed},
where e1, . . . , ed form the standard basis of Rd. We define a map f : Q → Rd

as follows. First, for all i, we set f(ei) = si and f(−ei) = ti where si and ti
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is the point of S, resp. T of color i. Now f is defined on the vertices of the
octahedron, so we can extend it simplicially to its faces (which are simplices).
We claim that 0 /∈ f(Q). Indeed, 0 ∈ f(Q) would mean that 0 belongs to the
convex hull of a transversal, contrary to the general position hypothesis.

Now we define another map g: Q → Sd−1: for q ∈ Q let g(q) = f(q)/‖f(q)‖
be the projection from the origin of f(q) to Sd−1. We note that y ∈ Sd−1 is
covered by a transversal {si1 , . . . , siktik+1

, . . . , tid} if and only if y belongs to
the g-image of the facet

conv{ei1 , . . . , eik ,−eik+1
, . . . ,−eid}.

The map g has degree zero in case (i), so if it attains the value x somewhere,
then it has to attain it once more. In case (i) g has degree 1, and so its image
covers all of Sd−1. 2

3 Proof of Theorem 1.2

Let Y = X1 ∪ · · · ∪Xd and P = −Xd+1 be as in the previous section. For every
p ∈ P , let k(p) be the number of transversals T ∈ T d(Y ) that cover p. We thus
want to bound K :=

∑

p∈P k(p) from below.

Let kmin = minp∈P k(p). If kmin ≥ 1
5(d + 1), then K ≥ |P | · 1

5(d + 1) >
1
5d(d + 1), and the conclusion of Theorem 1.2 holds. So from now on, we
assume kmin < 1

5(d + 1).
We let p0 ∈ P be one of the points covered by exactly kmin times by T d(Y ).

Let T0 ⊆ T d(Y ) consist of the kmin transversals covering p0, and let Z = Y \
⋃

T0

be the points of Y not contained in any transversals of T0 (here we mean
points that are elements of the transversals, considered as finite sets, not points
covered by the transversals). Let Zi = Xi ∩ Z. Since |T0| ≤

1
5(d + 1), we have

|Zi| ≥
4
5(d + 1) for all i.

A key to producing many transversals that cover points of P is the following
lemma (also see Fig. 1 for an illustration).

Lemma 3.1 (Many associated transversals) Suppose that p ∈ P is a point
covered by fewer than 1

5d(d + 1) transversals of X, and let S ∈ T d(X) \ T0

be a transversal that covers p but doesn’t cover p0. Let us denote by si the
point of S of color i. Then there is a color i ∈ {1, 2, . . . , d} and a subset
AS ⊆ Zi ∪ {si} of at least 1

3(d + 1) points such that for every a ∈ AS, the
transversal Sa = (S \ {si}) ∪ {a} also covers p.

Let us set W = Z \ S. For every transversal T ∈ T d(W ), we can apply the
octahedron lemma, case (ii) (Lemma 2.3) to S and T with x = p. Indeed, no
T ′ ∈ T d(S∪T ) can cover p0, since S 6∈ T0 and T is disjoint from all transversals
in T0. Hence we get that there is T ′ ∈ T d(S ∪ T ) different from S and covering
p. Let us fix one such T ′, and let us put U(T ) = T ′ \ S.

Let us consider the set system U0 = {U(T ) : T ∈ T d(W )}. For U ∈ U0, let

U
S

be the (unique) transversal T ′ with U = T ′\S. The following two properties
of U0 are clear from the construction.
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exactly these transversals cover p0

Z

S

AS

Figure 1: Illustration to Lemma 3.1.

(U1) Every U ∈ U0 is a nonempty partial transversal of W such that U
S

covers
p.

(U2) Every transversal T ∈ T d(W ) contains some U ∈ U0.

Now we will delete some sets from U0 so that we obtain a system U still
satisfying (U1) and (U2) but minimal with respect to (U2); that is:

(U3) For every U ∈ U there exists T ∈ T d(W ) (a “reason of existence” of U)
that contains U but no other set of U .

The deletion procedure works as follows. We begin with U0 as the current
system. If U is a set in the current system such that every T ∈ T d(W ) con-
taining it also contains some other set of the current system, we delete U , and
we repeat this step as long as we can. The resulting system U satisfies all of
(U1)–(U3).

Each U ∈ U corresponds to the transversal U
S

covering p, so by the as-
sumption of the lemma we have |U| < 1

5d(d + 1).
In order to prove the lemma, it suffices to show that there is an i such that

at least 1
3(d + 1) − 1 points in Wi = Xi ∩ W form singleton sets in U . Indeed,

then the points of Wi covered by singletons in U plus the point si form the
desired AS .

First we observe that for every i, we have either Wi ⊆
⋃

U , or Wi∩
⋃

U = ∅.
Indeed, let U ∈ U contain a point w ∈ Wi, and let T ⊇ U be a “reason of
existence” of U as in (iii) above. Then R = T \ {w} contains no set of U , and
hence every T ′ = R ∪ {w′} ∈ T d(W ), where w′ ∈ Wi, has to contain some
U ′ ∈ U with w′ ∈ U ′.

Let I = {i ∈ {1, 2, . . . , d} : Wi ⊆
⋃

U} be the colors covered by U . Let
Vi be the part of Wi not covered by singleton sets of U , and let ni = |Vi|. It
suffices to show that ni ≤

7
15(d + 1) for some i, since then at least |Wi| − |Vi| ≥

4
5(d+1)− 1− 7

15(d+1) > 1
3(d+1)− 1 elements of Wi are covered by singletons

as needed. So we assume ni > 7
15(d + 1) for all i ∈ I.
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There are M =
∏

i∈I ni transversals of V =
⋃

i∈I Vi (here the transversals
have |I| points and they cover only the colors in I). Any U ∈ U contained in V
has at least two elements (since all singletons have been removed), and hence
the number of transversals of V containing it is

M
∏

i: U∩Vi 6=∅ ni
<

M

( 7
15(d + 1))2

.

Since every transversal of V contains some U ∈ U , we get |U| ≥ ( 7
15(d + 1))2 ≥

1
5d(d+1), contradicting the assumption |U| < 1

5d(d+1). This finishes the proof
of Lemma 3.1. 2

Now we are ready to finish the proof of Theorem 1.2. For every point z ∈ Z,
Corollary 2.2 guarantees the existence of a transversal S = S(z) ∈ T d(X) that
contains z and covers some p = p(z) ∈ P . For each such S(z), we apply
Lemma 3.1 (of course, we may assume that no p ∈ P is covered by more than
1
5d(d + 1) transversals, since otherwise we are done). This yields the system of
at least 1

3(d + 1) transversals S(z)a, a ∈ AS(z), that all cover p and differ from
S(z) in at most one point. Let us denote this system by A(S(z)) and call it the
system of associated transversals of S(z).

Let us put S = {S(z) : z ∈ Z}, and let (S1, S2, . . . , St) be an enumeration of
all sets in S in some arbitrary order (each set occurs only once in the sequence,
although the same set may be obtained for many different z).

We observe that if |Si4Sj | > 2 (with 4 denoting the symmetric difference),
then A(Si) and A(Sj) have no transversal in common. Indeed, if both T ∈ A(Si)
and T ∈ A(Sj), then |T4Si| ≤ 1 and |T4Sj | ≤ 1, and hence |Si4Sj | ≤ 2.
Moreover, since all Si have the same size, |Si \ Sj | ≥ 2 implies |Si4Sj | > 2.

Let us call an index i ∈ {1, 2, . . . , t} a jump if |Si \ Sj | ≥ 2 for every j < i,
and a non-jump otherwise.

If i is a non-jump, then Si adds at most one point not covered by the union
⋃

j<i Sj . For a jump, Si may add up to d points. If J denotes the number of

jumps and N the number of non-jumps, we have J + dN ≥ |Z| ≥ 4
5d(d + 1)

(since the Si cover Z). Now if J ≥ 1
5d(d + 1), we are done since t ≥ J and each

Si is a transversal covering some point of P . Otherwise, we have N ≥ 3
5(d+1).

By the above observation, the systems A(Si) for all jumps i are disjoint and
each contains at least 1

3(d + 1) transversals, so altogether we have at least
3
5(d + 1) · 1

3(d + 1) > 1
5d(d + 1) transversals. Theorem 1.2 is proved. 2

4 Proof of Theorem 1.3

We use the same notation as before. We begin with a simple lemma about a set
system. We let V1, . . . , Vd be disjoint finite sets, we set ni = |Vi| = ni, and we
assume 1 ≤ n1 ≤ . . . ≤ nd. As before, T d(V ) denotes the set of all transversals
S of V = V1 ∪ · · · ∪ Vd; that is, S ⊂ V with |S ∩ Vi| = 1 for all i. Finally, let U
be a system of partial transversals of V satisfying conditions (U1)–(U3) as in
in the proof of Lemma 3.1..
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Vi
Vj

z1

zni

w1

wm

wnj

Figure 2: The set system U(Vi, Vj , m).

One example of such a U consists of all the singletons of some Vi. We
denote this system by U(Vi). Another example is the following (Fig. 2): Writing
Vi = {z1, . . . , zni

} and Vj = {w1, . . . , wnj
}, i 6= j, and choosing an integer

m ∈ {1, 2, . . . , nj}, we set

U(Vi, Vj , m) = {{z2}, . . . , {zni
}, {z1, w1}, . . . , {z1, wm}, {wm+1}, . . . , {wnj

}}.

We note that | U(Vi, Vj , m)| = ni + nj − 1.

Lemma 4.1 Under the above conditions | U| ≥ n1, with equality if and only if
U = U(Vi) for some i with ni = n1. Moreover, if U is distinct from each U(Vi),
then | U| ≥ n1 +n2−1 with equality if and only if U = U(Vi, Vj , m) for some i, j
with {ni, nj} = {n1, n2} and some m (with a suitable numbering of the points
of Vi and Vj).

Proof. The first statement follows easily from the fact that T d(V ) contains n1

disjoint transversals.
For the second statement we delete all singletons {v} from U , and with

every deleted {v} we also delete v from the ground set V . The remaining
system U∗ satisfies properties (U1), (U2), and (U3) on the remaining ground set
V ∗

1 , . . . , V ∗
d , |V ∗

i | = n∗
i . No V ∗

i is empty and the total number of transversals in
T d(V ∗) is M =

∏

n∗
k. We also note that each U ∈ U∗ has at least two elements.

We fix U ∈ U∗ with U = {z1, w1, . . .}, where z1 ∈ Vi and w1 ∈ Vj . Such a
U is contained in at most

M
∏

k: U∩V ∗

k
6=∅ n∗

k

≥
M

n∗
i n

∗
j

transversals. It follows that |U∗| ≥ min n∗
i n

∗
j , where the minimum is taken

over all pairs i, j, i 6= j. We observe that n∗
i n

∗
j ≥ n∗

i + n∗
j − 1, with equality

if and only if n∗
i = 1 or n∗

j = 1. Adding back the deleted singletons, we get
|U| ≥ mini6=j ni + nj − 1, and if equality holds, then either n∗

i = 1 or n∗
j = 1. It

is not hard to check the precise conditions for equality. We omit the details. 2

Now we can start the proof of Theorem 1.3. If kmin ≥ 3, then we even have
3(d + 1) colorful covering simplices. It follows from Theorem 2.1 that kmin > 0.
So we have kmin = 1 or kmin = 2, and we consider these two cases separately.
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Case 1: kmin = 1. Let p0 ∈ P be a point covered by a single transversal S ∈
T d(Y ), and let p ∈ Sd−1 be a point in not covered by S. We may assume that
S = {e1, . . . , ed}, with e1, . . . , ed the standard basis of Rd, because the problem
is invariant under nondegenerate linear transformations. So a coordinate system
is introduced. For a vector x ∈ Rd we write x[j] for its jth coordinate.

The octahedron lemma, case (ii), says that, for every T ∈ T d(Y ) disjoint
from S, the set T d(S ∪T ) contains a transversal, to be denoted by T ′, covering
p. We write U(T ) = T ′ \ S and we set U0 = {U(T ) : T ∈ T d(Z)}, where
Z = Y \ S. Next we take, in the same way as in the proof of Lemma 3.1, a
minimal subsystem U ⊂ U0. The new system U satisfies conditions (U1)–(U3).
Note that the systems U0 and U depend on p and S, and so in case of need we
will write U = U(p; S).

Claim 4.2 If |U| = d, then p has one negative coordinate and d − 1 positive
coordinates.

Proof. Lemma 4.1 shows in this case that U = U(Zi) for some i. For simpler
notation we assume U = U(Z1), and Xi = {e1, z1, . . . , zd}.

We recall that σ(T ) denotes Sd−1∩pos(T ). For T = {x1, . . . , xd} we will also
use σ(x1, . . . , xd) to denote σ(T ). Since U = U(Z1), we have p ∈ σ(zi, e2, . . . , ed)
for every i = 1, 2, . . . , d.

Let us suppose that p[1] > 0. Then, noticing that U = U(Z1) means p ∈
σ(zi, e2, . . . , ed) for every i = 1, 2, . . . , d, we get zi[1] > 0 for all i. Consequently,
X1 = {e1, z1, . . . , zd} lies in the halfspace {x ∈ Rd : x[1] > 0}, contradicting the
assumption 0 ∈ conv(X1). Since p[1] = 0 is impossible by the general position
hypothesis, we have p[1] < 0.

A similar argument shows that p[j] > 0 for all j > 1. Indeed, if p[2] < 0
(say), then p ∈ σ(zi, e2, . . . , ed) implies zi[2] < 0 for all i, and then X1 would
lie in the halfspace {x ∈ Rd : x[2] < 0}, which is again impossible. 2

We recall that k(p) denotes the number of transversals covering p. We want
to show that K =

∑

p∈P k(p) ≥ 3d.

Subcase 1a: k(p) > 1 for at least two p ∈ P . Then

K ≥ 2d + (d + 1 − 2) = 3d − 1.

So K ≥ 3d unless equality holds here. If equality holds, then there are exactly
two points, pd, pd−1 ∈ P (say) with k(p) > 1, and

| U(pd, S)| = | U(pd−1, S)| = d.

By Claim 4.2 both pd and pd−1 have one negative coordinate and d− 1 positive
coordinates. Since d ≥ 3, there is a coordinate j with pd[j] > 0 and pd−1[j] >
0. But since k(p) = 1 implies that all coordinates of p are positive (that is,
p ∈ σ(S)), we have that P lies completely in the halfspace x[j] > 0, which is
impossible because 0 ∈ conv(P ).

Subcase 1b: k(p) > 1 for exactly one p ∈ P , say for pd ∈ P . Then all other p ∈ P
lie in σ(S), and 0 ∈ conv(P ) implies pd[j] < 0 for all j. Now Claim 4.2 shows
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that | U(pd, S)| = d is impossible. Then Lemma 4.1 yields that | U(pd, S)| ≥
2d − 1. Thus k(pd−1) ≥ 2d − 1 and

K ≥ (2d − 1) + d = 3d − 1.

So K ≥ 3d unless equality holds throughout: | U(pd, S)| = 2d−1 and U(pd, S) is
of the type U(Vi, Vj). For simpler notation we assume it is equal to U(V1, V2, m)
with X1 = {e1, z1, . . . , zd} and X2 = {e2, w1, . . . , wd}, and

U(pd, S) =
{

{z2}, . . . , {zni
}, {z1, w1}, . . . , {z1, wm}, {wm+1}, . . . , {wnj

}
}

.

Now pd ∈ σ(zi, e2, . . . , ed) implies zi[j] < 0 for all i, j. Also, σ(wi, e2, . . . , ed)
contains pd for i > m which implies that all coordinates of wi are negative
for i > m. Further, z1[j] > 0 for all j > 1 since z1[j] < 0 for some j > 1
would imply that X1 lies in the halfspace x[j] ≤ 0, and this would contradict
0 ∈ conv(X1), by the general position hypothesis. Now p ∈ σ(z1, wi, e3, . . . , ed)
holds for i ≤ m which yields wi(3) < 0 for all i ≤ m. But then X2 lies in the
halfspace x(3) ≤ 0 which is impossible.

So we have K ≥ 3d in Case 1.

Case 2: kmin = 2. Let p0 ∈ P be a point with k(p0) = 2. So p0 is covered
by exactly two transversals S1, S2 ∈ T d(Y ). Set Z = Y \ (S1 ∪ S2). To fix
notation suppose pm ∈ σ(S1) ∩ σ(S2) for m ≤ ` and pm /∈ σ(S1) ∩ σ(S2) for
m > `. We observe that ` < d, since otherwise, P ⊂ σ(S1) ∩ σ(S2), which
would contradict the assumption 0 ∈ conv(P ). For each pm ∈ P with m > `
we construct the sets U0(pm, S1) and U0(pm, S2) and the minimal subsystems
U(pm, S1) and U(pm, S2). Lemma 4.1 shows that

k(pm) ≥ |U(pm, S1) ∪ U(pm, S2)| ≥ | U(pm, S1)| ≥ d − 1.

Thus
K ≥ 2` + (d − 1)(d − `) = d2 − (d + 1)` + 3` + 1.

In the range ` ∈ {0, 1, . . . , d− 1}, the last expression is minimized for ` = d− 1,
which gives K ≥ d2 − (d + 1)(d − 1) + 3(d − 1) + 1 = 3d − 1.

So K ≥ 3d unless equality holds here, in which case ` = d − 1, and
| U(pd, S1)| = d − 1 and U(pd, S1) = U(pd, S2). The last conditions imply that
|S1∩S2| = d−1 and U(pd, S1) is the special system consisting of singletons from
Lemma 4.1. We may assume that S1 = {e1, e2, . . . , ed} and S2 = {e∗1, e2, . . . , ed}
and U(pd, S1) = {{z2} . . . , {zd}}, where X1 = {e1, e

∗
1, z2, . . . , zd}. In this case,

of course, pi ∈ σ(S1) ∩ σ(S2) for all i < d.
Here e∗1[1] > 0 since otherwise p0 ∈ σ(S1) ∩ σ(S2) wouldn’t hold. Next

p0 ∈ pos(S1) ∩ pos(S2) implies that, with certain positive reals αi, βi,

α1e1 + α2e2 + . . . + αded = p0 = β1e
∗
1 + β2e2 + . . . + βded.

By the general position assumption, αi 6= βi for all i. Thus we may assume
that e∗1[2] < 0 (possibly swapping S1 and S2).

Now it is easy to show that K = 3d−1 is impossible. For each i ≥ 2, zi[2] < 0
must hold since every coordinate of pd is negative and pd ∈ σ(zi, e2, . . . , ed) for
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each i ≥ 2. But then X1 = {e1, e
∗
1, z2, . . . , zd} lies in the halfspace x[2] ≤ 0,

which contradicts the assumption 0 ∈ conv(X1). 2

Remark. It is perhaps interesting to note that K ≥ 3d − 1 is much easier to
prove than K ≥ 3d. In fact, K ≥ 3d does not hold when d = 2 and, of course,
we had to use d > 2 during the proof.

MENTION THE SET SYSTEM PROBLEM (MIN SIZE OF U SATISFY-
ING (U1)–(U3))
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